首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Escherichia coli mutant (polA1), defective in deoxyribonucleic acid (DNA) polymerase I, (EC 2.7.7.7) is unable to maintain colicinogenic factor E1 (ColE1), whereas several sex factor plasmids are maintained normally in this strain. polA1 mutant strains containing these sex factor plasmids do not exhibit a readily detectable plasmid-induced polymerase activity. A series of E. coli mutants that are temperature sensitive for ColE1 maintenance, but able to maintain other plasmids, were isolated and shown to fall into two phenotypic groups. Mutants in one group are defective specifically in ColE1 maintenance at 43 C, but exhibit normal DNA polymerase I activity. Mutations in the second group map in the polA gene of E. coli, and bacteria carrying these mutations are sensitive to methylmethanesulfonate (MMS). Revertants that were selected either for MMS resistance or the ability to maintain ColE1 were normal for both properties. The DNA polymerase I enzyme of two of these mutants shows a pronounced temperature sensitivity when compared to the wild-type enzyme. An examination of the role of DNA polymerase I in ColE1 maintenance indicates that it is essential for normal replication of the plasmid. In addition, the presence of a functional DNA polymerase I in both the donor and recipient cell is required for the ColV-promoted conjugal transfer of ColE1 and establishment of the plasmid in the recipient cell.  相似文献   

2.
rnh mutants harboring pBR322 were found to contain several slowly migrating DNA species when examined by agarose gel electrophoresis. The plasmid DNA from rnh mutants included large molecules, i.e. plasmids two, three or four times the size of a single plasmid unit. That this DNA contained concatemeric plasmid joined in a head-to-tail fashion was determined by digestion with restriction endonucleases that cleaved the monomeric plasmid DNA at a unique site. This treatment resulted in migration of the plasmid DNA at a mobility identical to that of linearized monomeric plasmid by agarose gel electrophoresis. This was confirmed by electron microscopy. Plasmid concatemer formation was detected with several high-copy-number (relaxed type) plasmids but not with low-copy-number (stringent) plasmids. Concatemer formation was dependent on RecA+ and RecF+ functions since several recA and recF mutations abolished concatemer formation. ColE1-type plasmids were previously shown to replicate in rnh mutants in the absence of DNA polymerase I (PolI) activity. This DNA PolI-independent plasmid replication was also examined for its dependence on the recF and recA gene products. rnh- polA(Ts) recF- strains were efficiently transformed with these plasmids at 30 degrees C and 42 degrees C, indicating the presence of DNA PolI-independent replication under recF- conditions. The presence or absence of plasmid replication in rnh- polA- recA(Ts) strains was also examined by measuring the increase in total amounts of plasmid. The results indicated that DNA PolI-independent replication occurred in these triple mutants at 42 degrees C as well as at 30 degrees C. It was concluded that the recombination event giving rise to concatemer formation was not essential for DNA PolI-independent replication in rnh mutants.  相似文献   

3.
We examined several aspects of bacteriophage Mu development in Escherichia coli strains that carry mutations in the polA structural gene for DNA polymerase I (PolI). We found that polA mutants were markedly less efficient than PolI wild-type (PolI+) strains in their capacity to form stable Mu lysogens and to support normal lytic growth of phage Mu. The frequency of lysogenization was determined for polA mutants and their isogenic PolI+ derivatives, with the result that mutants were lysogenized 3 to 8 times less frequently than were PolI+ cells. In one-step growth experiments, we found that phage Mu grew less efficiently in polA cells than in PolI+ cells, as evidenced by a 50 to 100% increase in the latent period and a 20 to 40% decrease in mean burst size in mutant cells. A further difference noted in infected polA strains was a 10-fold reduction in the frequency of Mu-mediated transposition of chromosomal genes to an F plasmid. Pulse labeling and DNA-DNA hybridization assays to measure the rate of phage Mu DNA synthesis after the induction of thermosensitive prophages indicated that phage Mu replication began at about the same time in both polA and PolI+ strains, but proceeded at a slower rate in polA cells. We conclude that PolI is normally involved in the replication and integration of phage Mu. However, since phage Mu does not exhibit an absolute requirement for normal levels of PolI, it appears that residual PolI activity in the mutant strains, other cellular enzymes, or both can partially compensate for the absence of normal PolI activity.  相似文献   

4.
Attempts to transduce the ultraviolet-sensitive mutator lesion mutU4 into strains deficient in deoxyribonucleic acid polymerase I (polA) were unsuccessful. Mutator recombinants were found when the polA recipient had first been reverted to Pol(+) by selection for resistance to methyl methanesulfonate. The inviability of the mutU4 polA double mutant was demonstrated by a reduction in the absolute number of transductants when the recipient was polA as compared with Pol(+), and selection was made for markers very close to mutU4. Double mutants containing mutU4 and polA4, which determines a cold-sensitive polymerase, were unable to grow at 24 C, the nonpermissive temperature.  相似文献   

5.
Two modes of excision repair in toluene-treated Escherichia coli.   总被引:2,自引:2,他引:0       下载免费PDF全文
In toluene-treated Escherichia coli incision breaks accumulate during post-irradiation incubation in the presence of adenosine 5'-triphosphate (ATP). It is shown that incised deoxyribonucleic acid (DNA) is converted to high-molecular-weight DNA during reincubation in the presence of the four deoxyribonucleoside triphosphates (dNTP's) and nicotinamide adenine dinucleotide (NAD). This restitution process is ATP independent and N-ethylmaleimide insensitive and takes place only in polA+ strains. It is defective in strains carrying a mutation in the 5' leads to 3' exonucleolytic activity associated with DNA polymerase I. Repair of accumulated incision breaks differs from repair in which all the steps of the excision repair process occur simultaneously or in rapid succession. The latter is observed if toluene-treated E. coli are incubated immediately after irradiation in the presence of the four dNTP's, NAD, and ATP. It is shown that under these conditions dimer excision occurs to a larger extent than during repair of accumulated incision breaks and that, except in strains defective in polynucleotide ligase, incision breaks do not accumulate. This consecutive mode of repair is detectable in polA+ strains and at low doses also in polA mutants.  相似文献   

6.
We have examined the role of the uvrC gene in UV excision repair by studying incision, excision, repair synthesis, and DNA strand reformation in Escherichia coli mutants made permeable to nucleoside triphosphates by toluene treatment. After irradiation, incisions occur normally in uvrC cells in the presence of nicotinamide mononucleotide (NMN), a ligase-blocking agent, but cannot be detected otherwise. We conclude that repair incisions are followed by a ligation event in uvrC mutants, masking incision. However, a uvrC polA12 mutant accumulates incisions only slightly less efficiently than a polA12 strain without NMN. Excision of pyrimidine dimers is defective in uvrC mutants (polA(+) or polA12) irrespective of the presence or absence of NMN. DNA polymerase I-dependent, NMN-stimulated repair synthesis, which is demonstrable in wild-type cells, is absent in uvrC polA(+) cells, but the uvrC polA12 mutant exhibits a UV-specific, ATP-dependent repair synthesis like parental polA12 strains. A DNA polymerase I-mediated reformation of high-molecular-weight DNA takes place efficiently in uvrC polA(+) mutants after incision accumulation, and the uvrC polA12 mutant shows more reformation than the polA12 strain after incision. These results indicate that normal incision occurs in uvrC mutants, but there appears to be a defect in the excision of pyrimidine dimers, allowing resealing via ligation at the site of the incision. The lack of NMN-stimulated repair synthesis in uvrC polA(+) cells indicates that incision is not the only requirement for repair synthesis.  相似文献   

7.
E. coli strains bearing the recA441 mutation and various mutations in the polA gene resulting in enzymatically well-defined deficiencies of DNA polymerase I have been constructed. It was found that the recA441 strains bearing either the polA1 or polA12 mutation causing deficiency of the polymerase activity of pol I are unable to grow at 42 degrees C on minimal medium supplemented with adenine, i.e., when the SOS response is continuously induced in strains bearing the recA441 mutation. Under these conditions the inhibition of DNA synthesis is followed in recA441 polA12 by DNA degradation and loss of cell viability. A similar lethal effect is observed with the recA730 polA12 mutant. The recA441 strain bearing the polA107 mutation resulting in the deficiency of the 5'-3' exonuclease activity of pol I shows normal growth under conditions of continuous SOS response. We postulate that constitutive expression of the SOS response leads to an altered requirement for the polymerase activity of pol I.  相似文献   

8.
Previous attempts to clone the Escherichia coli polA+ gene onto a high copy number plasmid were unsuccessful. The apparent lethality of unregulated overproduction of DNA polymerase I can be eliminated by cutting at a BglII site 100 nucleotides upstream from the ATG start codon of the polA gene. This permitted the construction of plasmid pMP5 which contains both the coding sequence for DNA polymerase I and the lambda pL promoter for conditional control of polA gene expression. BglII cutting only damages but does not eliminate the polA promoter activity; the BglII site thus lies within the polA promoter region. Leakiness of the damaged polA promoter results in overproduction of DNA polymerase I even under conditions where pL is fully repressed. This overproduction is inhibitory of cell growth, as reflected in both growth rate and in the frequency of appearance of mutant plasmids which are nonproducers of DNA polymerase I. Transformation of plasmid pMP5 into E. coli N4830 yields strain ATL100 which under inducing conditions provides 138-fold amplification of DNA polymerase I. Optimization of growth and expression conditions are presented together with an optimized rapid polymerase purification scheme. In addition to providing a convenient source for preparation of DNA polymerase I, this work serves as the basis for a future detailed molecular genetic analysis of the polA gene product.  相似文献   

9.
The repair response of Escherichia coli to hydrogen peroxide has been examined in mutants which show increased sensitivity to this agent. Four mutants were found to show increased in vivo sensitivity to hydrogen peroxide compared with wild type. These mutants, in order of increasing sensitivity, were recA, polC, xthA, and polA. The polA mutants were the most sensitive, implying that DNA polymerase I is required for any repair of hydrogen peroxide damage. Measurement of repair synthesis after hydrogen peroxide treatment demonstrated normal levels for recA mutants, a small amount for xthA mutants, and none for polA mutants. This is consistent with exonuclease III being required for part of the repair synthesis seen, while DNA polymerase I is strictly required for all repair synthesis. Sedimentation analysis of cellular DNA after hydrogen peroxide treatment showed that reformation was absent in xthA, polA, and polC(Ts) strains but normal in a recA cell line. By use of a lambda phage carrying a recA-lacZ fusion, we found hydrogen peroxide does not induce the recA promoter. Our findings indicate two pathways of repair for hydrogen peroxide-induced DNA damage. One of these pathways would utilize exonuclease III, DNA polymerase III, and DNA polymerase I, while the other would be DNA polymerase I dependent. The RecA protein seems to have little or no direct function in either repair pathway.  相似文献   

10.
The Streptococcus pneumoniae polA+ gene was introduced into Escherichia coli on the recombinant plasmid pSM31, which is based on the pSC101 replicon. Extracts of E. coli polA5 mutants containing pSM31 showed DNA polymerase activity, indicating that the pneumococcal DNA polymerase I was expressed in the heterospecific host. Complete complementation of the E. coli polA5 mutation by the pneumococcal polA+ gene was detected in excision repair of DNA damage.  相似文献   

11.
    
Summary A new mutation affecting DNA polymerase I of Escherichia coli is described. Strains carrying mutation polA107 are similar to polA1 strains in their sensitivity to methyl methanesulphonate (MMS), thymine deprivation, their reduced ability to repair MMS treated phage and are unable to propagate a phage red - mutant.Like the polA1-recBC combination, polA107-recBC double mutants are inviable. However, in contrast to polA1 mutants, polA107 mutants grow almost normally in the presence of acridine orange. PolA107 bacteria are more sensitive to UV and X-ray irradiation than Pol+ strains but not as sensitive as polA1 strains. Following X-ray irradiation, DNA degradation in the polA107 strains is as extensive as in the polA1 strain. X-ray induced single-strand breaks, however, are repaired in the polA107 strain but not in the polA1 strain. Following UV irradiations in contrast to the polA1 strain, only low levels of DNA degradation were observed in the polA107 strain.Complementation for MMS or radiation resistance between the polA107 and polA1 mutations was not observed. In the following paper it is shown that the polA107 strain contains a normal level of DNA polymerizing activity but lacks the associated 5–3 exonucleolytic activity found in DNA polymerase I.  相似文献   

12.
Haemophilus influenzae was found to produce a DNA polymerase that was similar to polymerase I of Escherichia coli. E. coli polA mutants were used as backgrounds for the selection of H. influenzae polA suppressor genes. Six different H. influenzae fragments were isolated that could suppress E. coli polA mutations. None of the suppressors appeared to encode the H. influenzae equivalent of the E. coli polA gene. One type of clone, represented by pGW41, caused a polymerase I activity to appear in a suppressed polA1 mutant. Plasmids from the pGW41 class contained two genes (pol-2 and pol-3) that were both required for polA suppression. Mutated nonsuppressing derivatives of the pGW41 class were used to create H. influenzae mutants that were deficient in polymerase I.  相似文献   

13.
R plasmids pMG1, R2, R931 and pMG15 increased the survival of Pseudomonas aeruginosa exposed to ultraviolet radiation (u.v.) in the wild type, and uvr and polA mutants but did not alter the u.v.-response of a recA mutant. The R plasmid RPL11 reduced u.v.-survival in the wild type, and uvr and polA mutants but did not alter the u.v.-response of a recA host. All the plasmids enhanced the level of spontaneous and u.v.-induced back mutation (Trp+) in a trpB1 strain. The effect of sublethal concentration of sodium arsenite following u.v.-irradiation was examined. It was concluded that in strains trpB1(pMG1) and trpB1(R931), u.v.-protection is determined by a recA+-dependent, arsenite-sensitive repair pathway, whereas in strains trpB1(R2) and trpB1(pMG15), u.v.-protection is determined by a recA+-dependent, arsenite-insensitive step in DNA repair.  相似文献   

14.
Curing of the mini-ColE1 plasmid pML21 was observed among cells of Escherichia coli K-12 strain C600(pML21) grown under subinhibitory conditions in the presence of trimethoprim, a specific inhibitor of dihydrofolate reductase. Some of the cured colonies showed (i) a reduction in frequency of transformation with pML21 compared with those of isogenic strains not treated with trimethoprim, (ii) loss of viability after acquisition of a recA mutation, and (iii) UV sensitivity greater than that of the original isogenic strain. These colonies therefore had PolA- phenotypes. Moreover, they were found to be deficient in DNA polymerase I activity in the in vitro assays, indicating the occurrence of a polA mutation in them. Many of the colonies with PolA- phenotypes were also thyA deoC mutants, and these mutations, in addition to the polA mutations, appeared to be involved in the expression of the PolA- phenotypes.  相似文献   

15.
An in vitro Escherichia coli oriC-specific DNA replication system was used to investigate the DNA replication pathways of oriC plasmids. When this system was perturbed by the DNA ligase inhibitor nicotinamide mononucleotide (NMN), alterations occurred in the initiation of DNA synthesis and processing of intermediates and DNA products. Addition of high concentrations of NMN soon after initiation resulted in the accumulation of open circular dimers (OC-OC). These dimers were decatenated to open circular monomers (form II or OC), which were then processed to closed circular supercoiled monomers (form I or CC) products. After a delay, limited ligation of the interlinked dimers (OC-OC to CC-OC and CC-CC) also occurred. Similar results were obtained with replication protein extracts from polA mutants. The presence of NMN before any initiation events took place prolonged the existence of nicked template DNA and promoted, without a lag period, limited incorporation into form II molecules. This DNA synthesis was nonspecific with respect to oriC, as judged by DnaA protein dependence, and presumably occurred at nicks in the template DNA. These results are consistent with oriC-specific initiation requiring closed supercoiled molecules dependent on DNA ligase activity. The results also show that decatenation of dimers occurs readily on nicked dimer and represents an efficient pathway for processing replication intermediates in vitro.  相似文献   

16.
Summary The induction of prophage by ultraviolet light has been measured inE. coli K12 lysogenic cells deficient in DNA polymerase I. The efficiency of the induction process was greater inpolA1 polC(dnaE) double mutants incubated at the temperature that blocks DNA replication than inpolA + polC single mutants. Similarly, thepolA1 mutation sensitizedtif-promoted lysogenic induction in apolA1 tif strain at 42°. In strains bearing thepolA12 mutation, which growth normally at 30°, induction of the prophage occured after the shift to 42°. It is concluded that dissapearance of the DNA polymerase I activity leads to changes in DNA replication that are able, per se, to trigger the prophage induction process.  相似文献   

17.
We have isolated a strain of Escherichia coli K-12 carrying a mutation, polA12, that results in the synthesis of a temperature-sensitive deoxyribonucleic acid (DNA) polymerase I. The double mutants polA12 recA56 and polA12 recB21, constructed at 30 C, are inviable at 42 C. About 90% of the cells of both double mutants die after 2 hr of incubation at 42 C. Both double mutants filament at 42 C and show a dependence on high cell density for growth at 30 C. In polA12 recB21 cells at 42 C, DNA and protein synthesis gradually stop in parallel. In polA12 recA56 cells, DNA synthesis continues for at least 1 hr at 42 C, and there is extensive DNA degradation. The results suggest that the primary lesion in these double mutants is not in DNA replication per se.  相似文献   

18.
Analysis of plasmid deletional instability in Bacillus subtilis.   总被引:8,自引:4,他引:4       下载免费PDF全文
Using a model system, we have studied deletion formation in Bacillus subtilis. When the staphylococcal plasmids pSA2100 (7.1 kilobases) and pUB110 (4.5 kilobases) were ligated to one another at their unique XbaI sites and transformed into either rec+ or recE4 strains of B. subtilis, an intramolecular recombination event usually occurred. Two plasmids, one of 2.6 kilobases and the other of 9.0 kilobases, were consistently isolated and shown by restriction enzyme analysis to be derived by recombination occurring in the pSA2100-pUB110 cointegrate. Analysis of the sequence of the junctions of the recombinant plasmids and of the crossover regions of the parental plasmids suggested that a reciprocal, conservative, intramolecular recombination event had occurred between short 18-base-pair homologous sequences that were oriented as direct repeats and bounded by regions of dyad symmetry. Evidence is presented that the above illegitimate recombination event is biased to occur intramolecularly and that randomly chosen direct repeats of either 22 or 29 base pairs are not sufficient to support recombination. The recombination event occurs in recA1, recB2, recD3, recE5, recL16, recM13, polA59, polA13, uvr-22, uvr-13, and stb mutants of B. subtilis and does not require that the competent state be established.  相似文献   

19.
The changes in molecular weight of deoxyribonucleic acid (DNA) synthesized after ultraviolte irradiation of Escherichia coli WP28 uvrA, and strains additionally mutant at polA, exrA, recA, and exrA and polA loci, were examined by alkaline sucrose gradient centrifugation. In a repari=deficient uvrA recA strain, the frequency of breaks in newly synthesized DNA was equal to that for pyrimidine dimers in parental DNA. Measurements of the amounts and rates of postreplication repair of these breaks indicate that (i) repair is two to three times faster when DNA polymerase I is present, although (ii) almost all breaks are repaired regardless of DNA polymerase I activity. (iii) Increased ultraviolet doses lead to an increase in the proportion of breaks remaining unrepaired in uvrA recA, UVRA exrA, and uvrA exrA polA strains. The numbers of unrepaired breaks resemble the numbers expected if repair of one lesion is prevented by proximity of a second lesion.  相似文献   

20.
The plasmid R6K has been introduced into a number of Escherichia coli polymerase deficient (pol) mutants. In polCts mutants transferred to the nonpermissive temperature to inactivate polymerase III, R6K replicates but the replication products have a density in dye-CsCl gradients intermediate between supercoiled and linear forms. This aberrant replication requires normal cellular levels of polymerase I since it does not occur in polA polCts mutants. Normal R6K replication and maintenance occur in a polA polB polC+ host, however, we cannot tell from our experiments wheather polymerase I or III replicates R6K in polA+ polC+ host. Polymerase II, the polB gene product, has no detectable role in R6K replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号