首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perissin L  Facchin P  Porro CA 《Life sciences》2000,67(12):1477-1488
Diurnal changes in the behavioural reactions to subcutaneous formalin injection (20 microl, 1%) into the dorsum of an hindpaw were examined in female CBA/J mice aged 70-75 days, maintained in a 12/12 dark/ light cycle (light on at 07.00 h; light off at 19.00 h). Mice showed higher pain scores, as expressed by the amount of time spent licking the injected paw and by the number of flinching episodes, when tested under red light at the beginning of the dark phase (19.00-22.00: Dark group) than when tested either under white or red light at the beginning of the light phase of the diurnal cycle (7.00-10.00). The increases in pain reactions at night were found both during the first (0-10 min) and the second (11-55 min) phase of the behavioural response to formalin injection. They were not due to aspecific increases in motor behaviour, since self-grooming actually decreased in the Dark group during the second phase of the response, and the amount of locomotor activity after the injection was similar to, or lower than, that found in mice tested in the morning under white or red light, respectively. In another group of female CBA/J mice tested in the hotplate apparatus (at a temperature of 52 degrees), paw-lick latencies were significantly higher in mice tested at dark during the night, whereas jump (escape) latencies were higher in the morning. These results demonstrate different diurnal variations in the reactions to brief or prolonged noxious stimulation in mice, with greater responses to tonic pain at the onset of the dark phase.  相似文献   

2.
To investigate the impact of averseness, controllability and familiarity of a test situation on the involvement of the endocannabinoid system in the regulation of exploratory behaviour, we tested conventional and conditional cannabinoid receptor type 1 (CB1)-deficient mice in behavioural paradigms with different emotional load, which depended on the strength of illumination and the ability of the animals to avoid the light stimulus. Complete CB1 null-mutant mice (Total-CB1-KO) showed an anxiogenic-like phenotype under circumstances where they were able to avoid the bright light such as the elevated plus-maze and the light/dark avoidance task. Conditional mutant mice lacking CB1 expression specifically in cortical glutamatergic neurons (Glu-CB1-KO), in contrast, failed to show a similar phenotype under the same experimental conditions. However, both mutant lines showed increased avoidance of open arm exploration during a second exposure to the elevated plus-maze. If tested in situations where the fear eliciting light could not be avoided, Total-CB1-KO mice showed increased thigmotaxis in an open field, decreased social investigation and decreased novel object exploration under aversive light conditions, but not under non-aversive low light. This time, Glu-CB1-KO also showed decreased exploratory behaviour towards objects and conspecific juveniles and increased thigmotaxis in the open field. Taking into consideration that the behavioural performance of wild-type mice was only marginally affected by changes in light intensities, these data indicate that the endocannabinoid system renders exploratory behaviour largely independent of the test averseness. This process differentially involves endocannabinoid-controlled glutamatergic transmission, depending on the controllability of the test situation.  相似文献   

3.
The light-dark box (LDB) and the open-field (OF) tests are widespread experimental models for studying locomotion and anxiety in laboratory rats and mice. The fact that rodents are nocturnal animals and more active at night raises a critical question of whether behavioral experiments carried out in the light phase are methodologically correct. Parameters of behavior of four mouse strains (C57BL/6J, DBA2/J, AKR/J and CBA/LacJ) in the light-dark box and open-field tests in the light and dark phases were compared. No significant influence of the phase of testing on anxiety in LDB and OF tests was revealed. In the OF test CBA mice showed increased locomotor activity, whereas AKR and C57BL/6 mice showed increased defecation in the dark phase. It was concluded that: 1) the phase of testing is not crucial for the expression of anxiety in LDB and OF; 2) the sensitivity to the phase of testing depends on the genotype; 3) the indices of behavior in the genotypes sensitive to the phase of testing (locomotion in the CBA and defecation in the AKR and C57BL/6 mouse strains) are increased in the dark phase.  相似文献   

4.
Down syndrome is a common disorder associated with intellectual disability in humans. Among a variety of severe health problems, patients with Down syndrome exhibit disrupted sleep and abnormal 24‐h rest/activity patterns. The transchromosomic mouse model of Down syndrome, Tc1, is a trans‐species mouse model for Down syndrome, carrying most of human chromosome 21 in addition to the normal complement of mouse chromosomes and expresses many of the phenotypes characteristic of Down syndrome. To date, however, sleep and circadian rhythms have not been characterized in Tc1 mice. Using both circadian wheel‐running analysis and video‐based sleep scoring, we showed that these mice exhibited fragmented patterns of sleep‐like behaviour during the light phase of a 12:12‐h light/dark (LD) cycle with an extended period of continuous wakefulness at the beginning of the dark phase. Moreover, an acute light pulse during night‐time was less effective in inducing sleep‐like behaviour in Tc1 animals than in wild‐type controls. In wheel‐running analysis, free running in constant light (LL) or constant darkness (DD) showed no changes in the circadian period of Tc1 animals although they did express subtle behavioural differences including a reduction in total distance travelled on the wheel and differences in the acrophase of activity in LD and in DD. Our data confirm that Tc1 mice express sleep‐related phenotypes that are comparable with those seen in Down syndrome patients with moderate disruptions in rest/activity patterns and hyperactive episodes, while circadian period under constant lighting conditions is essentially unaffected.  相似文献   

5.
T Ikeda  T Abe  K Tashiro 《Jikken dobutsu》1987,36(4):453-457
This system for measuring behavioral activity and for its analysis by personal computer as the recording device of the actograph was developed in order to measure the drinking activity and the feeding activity of small laboratory animals. According to the results of the measurement on male DBA/2J mice with this actograph, 84.0% of the drinking activity occurred in the dark period while 16.0% in the light period, and the amount of water drunk by the mouse was about 5.7 ml/day under the conditions of a 12 hour light period and 12 hour dark period. Under the same conditions, 79.6% of the feeding activity took place in the dark period and 20.4% in the light period. Also there was a positive correlation between both activities.  相似文献   

6.
Peirson SN  Foster RG 《EMBO reports》2011,12(5):380-380
The smooth extrapolation of results from mouse to man faces many significant obstacles, not least that humans are diurnally active primates whereas mice are nocturnally active rodents.All animals display profound variations in their physiology over a 24-h period, including changes in locomotor activity, hormone production, metabolism and neural activity. These rhythms are endogenously generated by the circadian system and provide a selective advantage by enabling organisms to anticipate both daily and seasonal changes in the environment. As a result, normal physiology is dynamic, showing constant circadian modulation of homeostatic set-points (Mrosovsky, 1990). Although this is adaptive for the organism, it poses a problem for biological measurement, whether physiological, behavioural or biochemical. For example, in mammals, approximately 10% of the genes expressed in any given tissue show significant circadian variation (Storch et al, 2002). Toxicology and pharmacology studies have also demonstrated dramatically different effects at different times of the day (Burns, 2000). As a result, time-of-day and the temporal niche of the animal model need to be taken into consideration in the design of any experiment.Mice have become the organism of choice in biomedical research due to the availability of extensive genomic information and well-established methods of genetic modification. This has resulted in the production of an enormous range of transgenic and knockout models, which are used widely in attempts to demonstrate genotype–phenotype associations (Crawley, 2008). Much of this research is undertaken in an attempt to understand human physiology and disease. However, the smooth extrapolation of results from mouse to man faces many obstacles, not least that humans are diurnally active primates, whereas mice are nocturnally active rodents. During the daytime a mouse is normally inactive or asleep, and as animal facilities are generally operational between 07:00 and 17:00, most of the data collected from mice is from a mammalian model in the resting state. In the drug development process, many compounds are excluded on the basis of efficacy or adverse effects. One wonders at the potential lost opportunities that have occurred because differences in temporal biology have not been taken into account.Although there is a growing awareness of the importance of circadian rhythms in experimental design, it is not just time-of-day effects that represent a potential problem. Most behavioural phenotyping is undertaken in the light, when mice are normally inactive or asleep, and when in the wild they would be concealed from light. Several studies have assessed the impact of light and dark on behavioural testing. Mice are photophobic and normally avoid bright light, a phenomenon that is exploited in many tests such as the open-field and light/dark-box paradigms (Crawley, 2008). Open-field testing has demonstrated dramatic differences in exploratory activity in mice in different levels of light (Valentinuzzi et al, 2000). In DBA mice, testing in the light has been shown to result in behavioural inhibition and cognitive disruption (Roedel et al, 2006). Conversely, testing in the dark results in improved discrimination in a range of behavioural tests, including the widely used SHIRPA test battery (Hossain et al, 2004). Collectively, these findings suggest that testing under different light conditions produces differences in behaviour, and that testing in the dark provides superior outcomes. By contrast, there have been relatively few studies that have assessed the effects of circadian phase on performance in behavioural tests (that is, under constant conditions). Beeler et al (2006) found no effect of circadian phase on a range of behavioural tests. However, other studies have demonstrated a notable impact of circadian phase on learning and memory, which would be expected to translate into performance (Chaudhury & Colwell, 2002).To a circadian biologist, it is surprising that testing at different circadian phases does not result in more profound differences in behavioural performance. After all, toxicity effects can vary from 20% to 80% in one day, and changes in gene expression can vary by more than 100-fold. One explanation for this might be that the stimuli involved in many test protocols, including handling, could override the normal circadian gating of arousal. After all, we are not slaves to our internal clocks, and indeed, it would be maladaptive if we were. Environmental factors such as light exert acute effects on arousal. In mice, light exposure during the active phase produces an acute suppression of locomotor activity and induction of sleep (Lupi et al, 2008). Conversely, light exposure during the inactive period gives rise to an increase in activity and heart rate (Thompson et al, 2008). As levels of arousal are closely linked to performance, a challenge for the future is to determine the way in which time-of-day and responsiveness to environmental stimuli interact to regulate behaviour.  相似文献   

7.
《Behavioural processes》1987,15(1):37-45
The present experiment examined spontaneous visual choice behaviour and acquisition of a positively reinforced visual discrimination task in Swiss albino mice. In experiment I animals were given 4 consecutive trials in which they could freely enter either a dimly illuminated or a darkened arm of a Y-maze; the position of the light stimulus was randomized across trials. D groups and L groups were tested during the dark and the light period of the day respectively. Results revealed a significant spontaneous preference for the illuminated arm of the maze, independent of the testing period. It is suggested that the dim light has a reinforcing value because it provides additional information about a novel environment. In a second experiment an appetitive visual discrimination task was carried out in the same Y-maze. After a pretraining period, half the animals were reinforced in the illuminated arm and half were reinforced in the darkened one, on five consecutive days. On the first test session all groups of animals chose the illuminated arm significantly more frequently, whereas light/dark choices reached chance level on the last test session. Discrimination learning was not acquired and a behavioural analysis revealed an increasing tendency to a side preference across testing.  相似文献   

8.
Experiments were performed in C57BL/6J male mice to determine 1) light/dark effects of acute and chronic shaker stress on open field behavioral patterns and 2) light/dark effects of chronic stress on plasma corticosterone and oxytocin. Shaker stress was applied acutely (15 min) or chronically (3 or 7 days). Mice were tested in the open field in the light or dark phase of the circadian cycle. For the endocrine study, mice were exposed to 3 days of intermittent shaker stress and sacrificed after the last stress event (09:00 or 19:00 h). Acute or chronic shaker stress had no significant effects on intensity of motor activity and rearing of mice tested under either light condition. Mice tested in the dark phase had higher motor activity and exhibited lower anxiety-like behavior as expressed by central zone activities and had higher emotionality as expressed by increased defecation. Chronic stress increased corticosterone with a greater absolute increase in the dark period. However, the percentage stress-induced increase was not different between the day and night periods. The oxytocin response to stress was observed only during the light phase with no change seen at dark phase. These results show that there is a marked difference in the light/dark pituitary stress response with no alteration in stress induced behavioral changes. They also suggest that there are circadian interactions in the endocrine stress axis that are without consequences for open field behavior.  相似文献   

9.
As a general rule an increase in carbohydrates occurs during the light phase of the cell cycle and that of protein during phase, although variations were found in these components under autotrophic and mixotrophic growth conditions. The results are based on the quantitative determination of carvohydrates as trimethylsilyl (TMS) derivatives and amino acids as N-trifluoroacetyl-n-butyl (TAB) esters in algal cells cultured in light and dark periods by gas-liquid chromatography (LC). Cells harvested during the dark period contained more amino acids as compared to similar cultures harvested during the light phase. In light, the production of amino acids of the aspartate family increased in cells cultivated with glucose and carbon dioxide. With glucose as sole carbon source, the carbohydrate content was higher in the dark than in the light period. Under continuous light conditions, in the presence of carbon dioxide, there was a decrease in the carbohydrate content also. Gas-liquid chromatography analysis of the extract of the purified cell walls showed that they are made up of 0.076% carbohydrates and 0.28% amino acids on the dry weight (DW) basis of whole cells. The results on the metabolism of cells, under autotrophic and mixotrophic conditions, are discussed in this article.  相似文献   

10.
The authors examined spatial working memory in the Morris water maze during the activity and rest periods of Wistar rats. Wheel-running activity was measured continuously as a marker of circadian phase. To minimize possible masking effects on performance, animals were placed in constant dim light the day before testing and tested in similar light conditions. Three experiments were run, each of them using animals varying in their previous experience in the water maze. Half of the animals of each experiment were tested 2 to 3 h after activity onset (active group), and the other half were tested 14 to 15 h after activity onset (inactive group). In the three experiments, a significant phase effect was observed in the animals' performance in the water maze; animals tested in the active phase showed steeper acquisition curves. These phase effects on performance are due to the animals' search pattern and not to a better acquisition and maintenance of spatial information; rats tested in the inactive phase found the platform faster on the first trial of the test, when the information on the location of the platform had not been presented to the animals. This effect vanished as the amount of training in the pool increased. Finally, swimming speed also showed a temporal effect, suggesting the existence of a phase effect for motivation to escape from the water; rats tested during their inactive phase tended to swim faster. All together, the data suggest a modulating effect of the biological clock on performance in the water maze, particularly when the animals are less experienced.  相似文献   

11.
Circadian rhythms of animals are reset by exposure to light as well as dark; however, although the parameters of photic entrainment are well characterized, the phase-shifting actions of dark pulses are poorly understood. Here, we determined the tonic and phasic effects of short (0.25 h), moderate (3 h), and long (6-9 h) duration dark pulses on the wheel-running rhythms of hamsters in constant light. Moderate- and long-duration dark pulses phase dependently reset behavioral rhythms, and the magnitude of these phase shifts increased as a function of the duration of the dark pulse. In contrast, the 0.25-h dark pulses failed to evoke consistent effects at any circadian phase tested. Interestingly, moderate- and long-dark pulses elevated locomotor activity (wheel-running) on the day of treatment. This induced wheel-running was highly correlated with phase shift magnitude when the pulse was given during the subjective day. This, together with the finding that animals pulsed during the subjective day are behaviorally active throughout the pulse, suggests that both locomotor activity and behavioral activation play an important role in the phase-resetting actions of dark pulses. We also found that the robustness of the wheel-running rhythm was weakened, and the amount of wheel-running decreased on the days after exposure to dark pulses; these effects were dependent on pulse duration. In summary, similarly to light, the resetting actions of dark pulses are dependent on both circadian phase and stimulus duration. However, dark pulses appear more complex stimuli, with both photic and nonphotic resetting properties.  相似文献   

12.
Summary Pulses of darkness can phase-shift the circadian activity rhythms of hamsters,Mesocricetus auratus, kept in constant light. Dark pulses under these conditions alter photic input to the circadian system, but they also commonly trigger wheel-running activity. This paper investigates the contribution of running activity to the phase-shifting effects of dark pulses. A first experiment showed that running activity by itself can phaseshift rhythms in constant light. Hamsters were induced to run by being confined to a novel wheel for 3–5 h. When this was done at circadian times (CT) 0, 6, and 9, the mean steady-state phase-shifts were 0.6 h, 3.5 h, and 2.3 h, respectively. The latter two values are at least as large as those previously obtained with dark pulses of similar durations and circadian phases. A second experiment showed that restricting the activity of hamsters during 3-h dark pulses at CT 9 reduces the amplitude of the phase-shifts. Unrestrained animals phase-advanced by 1.1 h, but this shift was halved in animals whose wheel was locked, and completely abolished in animals confined to nest boxes during the dark pulse. Activity restriction in itself (without dark pulses) had only minimal phase-delaying effects on free-running rhythms when given between ca. CT 10 and CT 13. These results support the idea that, in hamsters at least, dark pulses affect the circadian system mostly by altering behavioural states rather than by altering photic input to the internal clock.Abbreviations CT circadian time - DD constant darkness - LD light-dark - LL constant light - PRC phase response curve - period of rhythm  相似文献   

13.
Most of the extensive literature concerning the resynchronization of circadian rhythms after a Zeitgeber shift is devoted to the dependence of resynchronization on the mode of the shift and the strength of the Zeitgeber, as well as on the circadian function investigated. Ontogenetic influences have rarely been investigated. Therefore, we studied the resynchronization of several circadian rhythms in juvenile and adult female laboratory mice. We present here the results concerning the corticosterone rhythm. The daily rhythms were determined as transverse profiles (2-h intervals) before as well as 3, 7, and 14 days after an 8-h phase delay of the light/dark cycle produced by a single prolongation of dark time. The corticosterone concentration in serum was determined radioimmunologically. In the control animals the daily patterns were bimodal, with main maxima at the end of the light time and secondary ones just after lights on. Ontogenetic differences were small. In adult mice the amplitude was slightly increased due to an increase in the maximum values, and the time of highest hormone concentrations was slightly phase advanced. In juvenile mice, a distinct daily pattern with a phase position in relation to the light/dark cycle corresponding to that of control animals was present on the 3rd day after the Zeitgeber shift. The daily mean as well as the minimum and maximum values increased initially and reached the values of control animals during the second week. In adult animals, a pronounced daily rhythm with the normal phase position was present only at the 7th postshift day. The amplitude, daily mean, and maximum values were decreased, and the minimum values were increased. The initial values were not reached even after 2 weeks. The results show that resynchronization was faster in juvenile mice compared with adult mice. As a possible cause for the observed age-related differences, a not yet stabilized phase-coupling between various circadian rhythms is supposed.  相似文献   

14.
Most of the extensive literature concerning the resynchronization of circadian rhythms after a Zeitgeber shift is devoted to the dependence of resynchronization on the mode of the shift and the strength of the Zeitgeber, as well as on the circadian function investigated. Ontogenetic influences have rarely been investigated. Therefore, we studied the resynchronization of several circadian rhythms in juvenile and adult female laboratory mice. We present here the results concerning the corticosterone rhythm. The daily rhythms were determined as transverse profiles (2-h intervals) before as well as 3, 7, and 14 days after an 8-h phase delay of the light/dark cycle produced by a single prolongation of dark time. The corticosterone concentration in serum was determined radioimmunologically. In the control animals the daily patterns were bimodal, with main maxima at the end of the light time and secondary ones just after lights on. Ontogenetic differences were small. In adult mice the amplitude was slightly increased due to an increase in the maximum values, and the time of highest hormone concentrations was slightly phase advanced. In juvenile mice, a distinct daily pattern with a phase position in relation to the light/dark cycle corresponding to that of control animals was present on the 3rd day after the Zeitgeber shift. The daily mean as well as the minimum and maximum values increased initially and reached the values of control animals during the second week. In adult animals, a pronounced daily rhythm with the normal phase position was present only at the 7th postshift day. The amplitude, daily mean, and maximum values were decreased, and the minimum values were increased. The initial values were not reached even after 2 weeks. The results show that resynchronization was faster in juvenile mice compared with adult mice. As a possible cause for the observed age-related differences, a not yet stabilized phase-coupling between various circadian rhythms is supposed.  相似文献   

15.
The term masking refers to immediate responses to stimuli that override the influence of the circadian timekeeping system on behavior and physiology. Masking by light and darkness plays an important role in shaping an organism's daily pattern of activity. Nocturnal animals generally become more active in response to darkness (positive masking) and less active in response to light (negative masking), and diurnal animals generally have opposite patterns of response. These responses can vary as a function of light intensity as well as time of day. Few studies have directly compared masking in diurnal and nocturnal species, and none have compared rhythms in masking behavior of diurnal and nocturnal species. Here, we assessed masking in nocturnal mice (Mus musculus) and diurnal grass rats (Arvicanthis niloticus). In the first experiment, animals were housed in a 12:12 light-dark (LD) cycle, with dark or light pulses presented at 6 Zeitgeber times (ZTs; with ZT0 = lights on). Light pulses during the dark phase produced negative masking in nocturnal mice but only at ZT14, whereas light pulses resulted in positive masking in diurnal grass rats across the dark phase. In both species, dark pulses had no effect on behavior. In the 2nd experiment, animals were kept in constant darkness or constant light and were presented with light or dark pulses, respectively, at 6 circadian times (CTs). CT0 corresponded to ZT0 of the preceding LD cycle. Rhythms in masking responses to light differed between species; responses were evident at all CTs in grass rats but only at CT14 in mice. Responses to darkness were observed only in mice, in which there was a significant increase in activity at CT 22. In the 3rd experiment, animals were kept on a 3.5:3.5-h LD cycle. Surprisingly, masking was evident only in grass rats. In mice, levels of activity during the light and dark phases of the 7-h cycle did not differ, even though the same animals had responded to discrete photic stimuli in the first 2 experiments. The results of the 3 experiments are discussed in terms of their methodological implications and for the insight they offer into the mechanisms and evolution of diurnality.  相似文献   

16.
Dark pulses presented on a background of constant light (LL) result in phase advances during midsubjective day and early subjective night, and phase delays during late subjective night, as shown in the dark-pulse phase response curve. In hamsters, the phase-shifting effects of dark pulses are thought to be mediated by increased activity, as previous studies have shown that restraining animals during dark pulses blocks the phase shifts observed in midsubjective day and late subjective night. This study focuses on dark-pulse-induced phase shifting during early subjective night, examining the influence of both LL intensity and restraint on the magnitude of these phase shifts. Syrian hamsters were maintained in LL of four different illumination levels (1, 10, 100, or 600 lux) and periodically presented with 6-h pulses (dark pulse alone, restraint alone, or dark pulse plus restraint) beginning at circadian time 11. Phase advances were observed in response to dark pulses alone, and the magnitude of these shifts was dependent on background illumination, with significantly larger advances seen under higher intensities. No relationship was found between the amount of activity displayed during dark pulses and phase shift magnitude. Six-hour periods of restraint resulted in phase delays, the magnitude of which was also dependent on background illumination. Restraining hamsters during dark pulses reduced the magnitude of phase advances, but the extent of this reduction could be predicted from the additive effects of the dark-pulse-alone and restraint-alone conditions. These results indicate that the phase-shifting effects of dark pulses during early subjective night are not mediated by behavioral activation and may instead reflect a mirror image of the phase-delaying effects of light pulses at this phase.  相似文献   

17.
Dark-phase testing has previously been shown by others to improve the outcome of some 'classical' behavior test situations. However, the importance of such ethological correctness and the effect of the light/dark cycle on high throughput behavioral testing situations such as 'mutant vs. wild type' and 'screening', are less or unknown, respectively. These testing situations differ from the 'classical' in that they are designed primarily to discriminate between genetically different mice rather than provide a detailed assessment of ability or psychosocial state. Here we test the hypotheses that dark-phase testing affects the outcome of high throughput behavioral tests and that dark-phase testing improves discrimination between genetically distinct mice (C57BL/6J, 129S1/SvImJ and B6129F1) using high throughput behavioral tests. Our results demonstrate that, although all successful tests showed some effect of phase, only the SHIRPA primary screen, open-field test and motor learning on the rotarod showed improved strain discrimination in the dark phase. Surprisingly, the social interaction test did not show a clear benefit to either phase, and interestingly, the tail-flick test discriminated strains better in the light phase. However, since the preponderance of our data shows that dark-phase testing improves, or does not affect, strain discrimination, we conclude that for these strains and tests, dark-phase testing provided superior outcomes. If discrimination is not achieved in the dark phase, then light phase-testing would be undertaken.  相似文献   

18.
Endothelial nitric oxide synthase knock out mice (eNOS‐/‐) are mildly hypertensive in comparison to wild‐type (WT) mice. Hypertension in eNOS‐/‐ mice is partly the result of an increase in peripheral resistance due to the absence of the vasodilatory action of NO. No data are available for these animals regarding the 24 h blood pressure profile under the 12:12 h light‐dark cycle (LD) and constant dark (DD) conditions. Therefore, this study aimed to investigate by radiotelemetry the circadian rhythms in systolic blood pressure (SBP) and diastolic blood pressure (DBP) of six eNOS‐/‐ mice and five wild‐type mice under LD and DD. Data were collected beginning 3 wks after operation (implantation of sensor) for 2 wks under LD and for another 2 wks thereafter under DD. Our results show that eNOS‐/‐ mice were hypertensive under all experimental conditions. SBP and DBP were significantly higher by about 15% in eNOS‐/‐ mice. No differences were found in the pattern of the circadian rhythms, rhythmicity, or period lengths during LD or DD. The genetic deletion of eNOS seems to lead to higher SBP and DBP, but the circadian blood pressure pattern is still preserved with higher values during the night (active phase) and lower values during the daytime (rest phase). Thus, endothelial‐derived NO plays an important role in the regulation of vascular tone and haemodynamics, but it is not important for the circadian organization of SBP and DBP.  相似文献   

19.
We investigated gaze-stabilizing reflexes in the chameleon using the three-dimensional search-coil technique. Animals were rotated sinusoidally around an earth-vertical axis under head-fixed and head-free conditions, in the dark and in the light. Gain, phase and the influence of eye position on vestibulo-ocular reflex rotation axes were studied. During head-restrained stimulation in the dark, vestibulo-ocular reflex gaze gains were low (0.1-0.3) and phase lead decreased with increasing frequencies (from 100 degrees at 0.04 Hz to < 30 degrees at 1 Hz). Gaze gains were larger during stimulation in the light (0.1-0.8) with a smaller phase lead (< 30 degrees) and were close to unity during the head-free conditions (around 0.6 in the dark, around 0.8 in the light) with small phase leads. These results confirm earlier findings that chameleons have a low vestibulo-ocular reflex gain during head-fixed conditions and stimulation in the dark and higher gains during head-free stimulation in the light. Vestibulo-ocular reflex eye rotation axes were roughly aligned with the head's rotation axis and did not systematically tilt when the animals were looking eccentrically, up- or downward (as predicted by Listing's Law). Therefore, vestibulo-ocular reflex responses in the chameleon follow a strategy, which optimally stabilizes the entire retinal images, a result previously found in non-human primates.  相似文献   

20.
Fragile X syndrome (FXS) is the most prevalent form of heritable mental retardation. It arises from a mutation in the FMR1 gene on the X chromosome that interferes with expression of fragile X mental retardation protein (FMRP) and leads to a wide range of behavioural and cognitive deficits. Previous studies have shown a deficit in basic visual perceptual processing as well as spatial abilities in FXS. How such a deficit may impact spatial navigation remains unknown. The current study extended previous research by evaluating spatial learning and memory using both virtual and physical versions of Hebb-Williams mazes, which allows for testing of humans and animals under comparable conditions. We compared the performance of individuals affected by FXS to typically developing individuals of equivalent mental age as well as the performance of Fmr1 knockout mice to wild-type control mice on the same maze problems. In human participants, performance of the comparison group improved across trials, showing expected significant decreases in both errors and latency. In contrast, the performance of the fragile X group remained at similar levels across trials. Although wild-type control mice made significantly fewer errors than the Fmr1 knockout mice, latencies were not statistically different between the groups. These findings suggest that affected humans and mice show similar spatial learning deficits attributable to the lack of FMRP. The implications of these data are discussed including the notion that Hebb-Williams mazes may represent a useful tool to examine the impact of pharmacological interventions on mitigating or reversing the symptoms associated with FXS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号