首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies with inhibitors have implicated protein kinase C (PKC) in the adhesive functions of integrin alpha(IIb)beta(3) in platelets, but the responsible PKC isoforms and mechanisms are unknown. Alpha(IIb)beta(3) interacts directly with tyrosine kinases c-Src and Syk. Therefore, we asked whether alpha(IIb)beta(3) might also interact with PKC. Of the several PKC isoforms expressed in platelets, only PKC beta co-immunoprecipitated with alpha(IIb)beta(3) in response to the interaction of platelets with soluble or immobilized fibrinogen. PKC beta recruitment to alpha(IIb)beta(3) was accompanied by a 9-fold increase in PKC activity in alpha(IIb)beta(3) immunoprecipitates. RACK1, an intracellular adapter for activated PKC beta, also co-immunoprecipitated with alpha(IIb)beta(3), but in this case, the interaction was constitutive. Broad spectrum PKC inhibitors blocked both PKC beta recruitment to alpha(IIb)beta(3) and the spread of platelets on fibrinogen. Similarly, mouse platelets that are genetically deficient in PKC beta spread poorly on fibrinogen, despite normal agonist-induced fibrinogen binding. In a Chinese hamster ovary cell model system, adhesion to fibrinogen caused green fluorescent protein-PKC beta I to associate with alpha(IIb)beta(3) and to co-localize with it at lamellipodial edges. These responses, as well as Chinese hamster ovary cell migration on fibrinogen, were blocked by the deletion of the beta(3) cytoplasmic tail or by co-expression of a RACK1 mutant incapable of binding to beta(3). These studies demonstrate that the interaction of alpha(IIb)beta(3) with activated PKC beta is regulated by integrin occupancy and can be mediated by RACK1 and that the interaction is required for platelet spreading triggered through alpha(IIb)beta(3). Furthermore, the studies extend the concept of alpha(IIb)beta(3) as a scaffold for multiple protein kinases that regulate the platelet actin cytoskeleton.  相似文献   

2.
Modification of the cytoplasmic tails of the integrin alpha(IIb)beta(3) plays an important role in the signal transduction in platelets. We searched for proteins that bind to the alpha(IIb) cytoplasmic tail using the yeast two-hybrid assay with a cDNA library of the megakaryocyte-derived cell line and identified a protein, ancient ubiquitous protein 1 (Aup1), that is ubiquitously expressed in human cells. Observation of UT7/TPO cells expressing a red fluorescent protein-tagged Aup1 indicated its localization in the cytoplasm. Immunoprecipitation of UT7/TPO cells by an antibody for Aup1 revealed that approximately 40% of alpha(IIb) is complexed with Aup1. Binding study with an alpha(IIb) cytoplasmic tail peptide and glutathione S-transferase-Aup1 fusion protein revealed a low affinity (K(d) = 90 microm). Subsequent yeast two-hybrid assay indicated binding of Aup1 to cytoplasmic tails of other integrin alpha subunits. Binding study with the purified Aup1 and various glutathione S-transferase-alpha(IIb) cytoplasmic tail peptides revealed specific binding of Aup1 to the membrane-proximal sequence (KVGFFKR) that is conserved among the integrin alpha subunits and plays a crucial role in the alpha(IIb)beta(3) inside-out signaling. As Aup1 possesses domains related to signal transduction, these results suggest involvement of Aup1 in the integrin signaling.  相似文献   

3.
Agonist-generated inside-out signals enable the platelet integrin alpha(IIb)beta(3) to bind soluble ligands such as fibrinogen. We found that inhibiting actin polymerization in unstimulated platelets with cytochalasin D or latrunculin A mimics the effects of platelet agonists by inducing fibrinogen binding to alpha(IIb)beta(3). By contrast, stabilizing actin filaments with jasplakinolide prevented cytochalasin D-, latrunculin A-, and ADP-induced fibrinogen binding. Cytochalasin D- and latrunculin A-induced fibrinogen was inhibited by ADP scavengers, suggesting that subthreshold concentrations of ADP provided the stimulus for the actin filament turnover required to see cytochalasin D and latrunculin A effects. Gelsolin, which severs actin filaments, is activated by calcium, whereas the actin disassembly factor cofilin is inhibited by serine phosphorylation. Consistent with a role for these factors in regulating alpha(IIb)beta(3) function, cytochalasin D- and latrunculin A-induced fibrinogen binding was inhibited by the intracellular calcium chelators 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid acetoxymethyl ester and EGTA acetoxymethyl ester and the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A. Our results suggest that the actin cytoskeleton in unstimulated platelets constrains alpha(IIb)beta(3) in a low affinity state. We propose that agonist-stimulated increases in platelet cytosolic calcium initiate actin filament turnover. Increased actin filament turnover then relieves cytoskeletal constraints on alpha(IIb)beta(3), allowing it to assume the high affinity conformation required for soluble ligand binding.  相似文献   

4.
Integrin adhesion receptors appear to be regulated by molecules that bind to their cytoplasmic domains. We previously identified a 22-kDa, EF-hand-containing protein, CIB, which binds to the alpha(IIb) cytoplasmic tail of the platelet integrin, alpha(IIb)beta(3). Here we describe regions within CIB and alpha(IIb) that interact with one another. CIB binding to alpha(IIb) cytoplasmic tail peptides, as measured by intrinsic tryptophan fluorescence, indicates a CIB-binding site within a hydrophobic, 15-amino acid, membrane-proximal region of alpha(IIb). This region is analogous to the alpha-helical targets of other EF-hand-containing proteins, such as calcineurin B or calmodulin. A homology model of CIB based upon calcineurin B and recoverin indicated a conserved hydrophobic pocket within the C-terminal EF-hand motifs of CIB as a potential integrin-binding site. CIB engineered to contain alanine substitutions in the implicated regions retained wild type secondary structure as determined by circular dichroism, yet failed to bind alpha(IIb) in 11 of 12 cases, whereas CIB mutated within the N terminus retained binding activity. Thus, specific hydrophobic residues in the C terminus of CIB appear necessary for CIB binding to alpha(IIb). The identification of essential interacting regions within alpha(IIb) and CIB provides tools for further probing potential interrelated functions of these proteins.  相似文献   

5.
pp72syk is essential for development and function of several hematopoietic cells, and it becomes activated through tandem SH2 interaction with ITAM motifs in immune response receptors. Since Syk is also activated through integrins, which do not contain ITAMs, a CHO cell model system was used to study Syk activation by the platelet integrin, alpha IIb beta 3. As in platelets, Syk underwent tyrosine phosphorylation and activation during CHO cell adhesion to alpha IIb beta 3 ligands, including fibrinogen. This involved Syk autophosphorylation and the tyrosine kinase activity of Src, and it exhibited two novel features. Firstly, unlike alpha IIb beta 3-mediated activation of pp125FAK, Syk activation could be triggered by the binding of soluble fibrinogen and abolished by truncation of the alpha IIb or beta 3 cytoplasmic tail, and it was resistant to inhibition by cytochalasin D. Secondly, it did not require phosphorylated ITAMs since it was unaffected by disruption of an ITAM-interaction motif in the SH2(C) domain of Syk or by simultaneous overexpression of the tandem SH2 domains. These studies demonstrate that Syk is a proximal component in alpha IIb beta 3 signaling and is regulated as a consequence of intimate functional relationships with the alpha IIb beta 3 cytoplasmic tails and with Src or a closely related kinase. Furthermore, there are fundamental differences in the activation of Syk by alpha IIb beta 3 and immune response receptors, suggesting a unique role for integrins in Syk function.  相似文献   

6.
Following platelet aggregation, integrin alpha(IIb)beta(3) becomes associated with the platelet cytoskeleton. The conserved NPLY sequence represents a potential beta-turn motif in the beta(3) cytoplasmic tail and has been suggested to mediate the interaction of beta(3) integrins with talin. In the present study, we performed a double mutation (N744Q/P745A) in the integrin beta(3) subunit to test the functional significance of this beta-turn motif. Chinese hamster ovary cells were co-transfected with cDNA constructs encoding mutant beta(3) and wild type alpha(IIb). Cells expressing either wild type (A5) or mutant (D4) alpha(IIb)beta(3) adhered to fibrinogen; however, as opposed to control A5 cells, adherent D4 cells failed to spread, form focal adhesions, or initiate protein tyrosine phosphorylation. To investigate the role of the NPLY motif in talin binding, we examined the ability of the mutant alpha(IIb)beta(3) to interact with talin in a solid phase binding assay. Both wild type and mutant alpha(IIb)beta(3), purified by RGD affinity chromatography, bound to a similar extent to immobilized talin. Additionally, purified talin failed to interact with peptides containing the AKWDTANNPLYK sequence indicating that the talin binding domain in the integrin beta(3) subunit does not reside in the NPLY motif. In contrast, specific binding of talin to peptides containing the membrane-proximal HDRKEFAKFEEERARAK sequence of the beta(3) cytoplasmic tail was observed, and this interaction was blocked by a recombinant protein fragment corresponding to the 47-kDa N-terminal head domain of talin (rTalin-N). In addition, RGD affinity purified platelet alpha(IIb)beta(3) bound dose-dependently to immobilized rTalin-N, indicating that an integrin-binding site is present in the talin N-terminal head domain. Collectively, these studies demonstrate that the NPLY beta-turn motif regulates post-ligand binding functions of alpha(IIb)beta(3) in a manner independent of talin interaction. Moreover, talin was shown to bind through its N-terminal head domain to the membrane-proximal sequence of the beta(3) cytoplasmic tail.  相似文献   

7.
There are only three human isoforms of the small GTPase Rac, which together regulate a variety of cellular processes, including those related to actin cytoskeletal reorganization. A role for Rac3 in integrin-mediated adhesion and spreading has not been defined. We here report that CIB, a protein that binds to the alpha(IIb)beta(3) fibrinogen receptor, interacts exclusively with activated (V12) Rac3 but not Rac1 or Rac2. Binding of V12Rac3 to CIB was mediated by the C-terminal end of Rac3 and by Rac3 membrane localization. Adhesion of cells on fibrinogen was accompanied by a specific increase in the levels of Rac3 but not Rac1 or Rac2 in the Triton-insoluble fraction of the cell. Also, CIB co-localized with active Rac3 to the periphery of cells adhering to fibrinogen. Expression of V12Rac3 and CIB stimulated alpha(IIb)beta(3)-mediated adhesion and spreading on fibrinogen. Moreover, adhesion through alpha(IIb)beta(3) caused a marked increase in the levels of endogenous GTP-bound Rac3 but not Rac1. These combined results strongly implicate Rac3 and CIB in integrin-associated cytoskeletal reorganization during alpha(IIb)beta(3)-mediated adhesion.  相似文献   

8.
Platelet adhesion to fibrinogen is important for platelet aggregation and thrombus growth. In this study we have examined the mechanisms regulating platelet adhesion on immobilized fibrinogen under static and shear conditions. We demonstrate that integrin alpha IIb beta 3 engagement of immobilized fibrinogen is sufficient to induce an oscillatory calcium response, necessary for lamellipodial formation and platelet spreading. Released ADP increases the proportion of platelets exhibiting a cytosolic calcium response but is not essential for calcium signaling or lamellipodial extension. Pretreating platelets with the Src kinase inhibitor PP2, the inositol 1,4,5-trisphosphate (IP3) receptor antagonist 2-aminoethoxydiphenyl borate (APB-2), or the phospholipase C (PLC) inhibitor U73122 abolished calcium signaling and platelet spreading, suggesting a major role for Src kinase-regulated PLC isoforms in these processes. Analysis of PLC gamma 2-/- mouse platelets revealed a major role for this isoform in regulating cytosolic calcium flux and platelet spreading on fibrinogen. Under flow conditions, platelets derived from PLC gamma 2-/- mice formed less stable adhesive interactions with fibrinogen, particularly in the presence of ADP antagonists. Our studies define an important role for PLC gamma 2 in integrin alpha IIb beta 3-dependent calcium flux, necessary for stable platelet adhesion and spreading on fibrinogen. Furthermore, they establish an important cooperative signaling role for PLC gamma 2 and ADP in regulating platelet adhesion efficiency on fibrinogen.  相似文献   

9.
Calcium- and integrin-binding protein 1 (CIB1) is involved in the process of platelet aggregation by binding the cytoplasmic tail of the alpha(IIb) subunit of the platelet-specific integrin alpha(Iib)beta(3). Although poorly understood, it is widely believed that CIB1 acts as a global signaling regulator because it is expressed in many tissues that do not express integrin alpha(Iib)beta(3). We report the structure of human CIB1 to a resolution of 2.3 A, crystallized as a dimer. The dimer interface includes an extensive hydrophobic patch in a crystal form with 80% solvent content. Although the dimer form of CIB1 may not be physiologically relevant, this intersub-unit surface is likely to be linked to alpha(IIb) binding and to the binding of other signaling partner proteins. The C-terminal domain of CIB1 is structurally similar to other EF-hand proteins such as calmodulin and calcineurin B. Despite structural homology to the C-terminal domain, the N-terminal domain of CIB1 lacks calcium-binding sites. The structure of CIB1 revealed a complex with a molecule of glutathione in the reduced state bond to the N-terminal domain of one of the two subunits poised to interact with the free thiol of C35. Glutathione bound in this fashion suggests CIB1 may be redox regulated. Next to the bound GSH, the orientation of residues C35, H31, and S48 is suggestive of a cysteine-type protein phosphatase active site. The potential enzymatic activity of CIB1 is discussed and suggests a mechanism by which it regulates a wide variety of proteins in cells in addition to platelets.  相似文献   

10.
The affinity of integrin alpha(IIb)beta(3) for fibrinogen is controlled by inside-out signals that are triggered by agonists like thrombin. Agonist treatment of platelets also activates Rap1b, a small GTPase known to promote integrin-dependent adhesion of other cells. Therefore, we investigated the role of Rap1b in alpha(IIb)beta(3) function by viral transduction of GFP-Rap1 chimeras into murine megakaryocytes, which exhibit inside-out signaling similar to platelets. Expression of constitutively active GFP-Rap1b (V12) had no effect on unstimulated megakaryocytes, but it greatly augmented fibrinogen binding to alpha(IIb)beta(3) induced by a PAR4 thrombin receptor agonist (p < 0.01). The Rap1b effect was cell-autonomous and was prevented by pre-treating cells with cytochalasin D or latrunculin A to inhibit actin polymerization. Rap1b-dependent fibrinogen binding to megakaryocytes was blocked by POW-2, a novel monovalent antibody Fab fragment specific for high affinity murine alpha(IIb)beta(3). In contrast to GFP-Rap1b (V12), expression of GFP-Rap1GAP, which deactivates endogenous Rap1, inhibited agonist-induced fibrinogen binding (p < 0.01), as did dominant-negative GFP-Rap1b (N17) (p < 0.05). None of these treatments affected surface expression of alpha(IIb)beta(3). These studies establish that Rap1b can augment agonist-induced ligand binding to alpha(IIb)beta(3) through effects on integrin affinity, possibly by modulating alpha(IIb)beta(3) interactions with the actin cytoskeleton.  相似文献   

11.
ICAM-4 (LW blood group glycoprotein) is an erythroid-specific membrane component that belongs to the family of intercellular adhesion molecules and interacts in vitro with different members of the integrin family, suggesting a potential role in adhesion or cell interaction events, including hemostasis and thrombosis. To evaluate the capacity of ICAM-4 to interact with platelets, we have immobilized red blood cells (RBCs), platelets, and ICAM-Fc fusion proteins to a plastic surface and analyzed their interaction in cell adhesion assays with RBCs and platelets from normal individuals and patients, as well as with cell transfectants expressing the alpha(IIb)beta(3) integrin. The platelet fibrinogen receptor alpha(IIb)beta(3) (platelet GPIIb-IIIa) in a high affinity state following GRGDSP peptide activation was identified for the first time as the receptor for RBC ICAM-4. The specificity of the interaction was demonstrated by showing that: (i) activated platelets adhered less efficiently to immobilized ICAM-4-negative than to ICAM-4-positive RBCs, (ii) monoclonal antibodies specific for the beta(3)-chain alone and for a complex-specific epitope of the alpha(IIb)beta(3) integrin, and specific for ICAM-4 to a lesser extent, inhibited platelet adhesion, whereas monoclonal antibodies to GPIb, CD36, and CD47 did not, (iii) activated platelets from two unrelated type-I glanzmann's thrombasthenia patients did not bind to coated ICAM-4. Further support to RBC-platelet interaction was provided by showing that dithiothreitol-activated alpha(IIb)beta(3)-Chinese hamster ovary transfectants strongly adhere to coated ICAM-4-Fc protein but not to ICAM-1-Fc and was inhibitable by specific antibodies. Deletion of individual Ig domains of ICAM-4 and inhibition by synthetic peptides showed that the alpha(IIb)beta(3) integrin binding site encompassed the first and second Ig domains and that the G65-V74 sequence of domain D1 might play a role in this interaction. Although normal RBCs are considered passively entrapped in fibrin polymers during thrombus, these studies identify ICAM-4 as the first RBC protein ligand of platelets that may have relevant physiological significance.  相似文献   

12.
Integrin alpha IIb beta 3 (platelet glycoprotein IIb-IIIa) is a prototype of integrins involved in cellular adhesive functions. As part of a structure-function analysis of this molecule, we constructed a mutant, designated alpha IIb beta 3 (beta 1-2), by replacing 6 amino acids within a putative ligand binding domain of the beta 3 subunit with sequences derived from beta 1. The alteration did not affect the capacity of beta 3(beta 1-2) to combine with transfected alpha IIb, nor did it cause it to combine with endogenous alpha 5. Integrin alpha IIb beta 3(beta 1-2) was in a "resting" state on Chinese hamster ovary cells as judged by minimal binding of an activation-specific anti-alpha IIb beta 3, PAC1. Nevertheless, cells expressing alpha IIb beta 3(beta 1-2) spontaneously bound fibrinogen with low affinity (Ka = (4.85 +/- 0.84) x 10(6) M-1). Activation with an anti-beta 3 antibody (monoclonal antibody 62) resulted in a 10-fold increase in fibrinogen binding affinity (Ka = (4.55 +/- 0.77) x 10(7) M-1), which was 3-fold greater than fibrinogen binding to activated wild type alpha IIb beta 3 (Ka = (1.66 +/- 0.33) x 10(7) M-1, F = 7.46, p = 0.008). The mutant receptor also bound fibrinogen mimetic peptide ligands with enhanced affinity as measured by the conformation-specific antibody, anti-LIBS1. This indicates that the increased affinity for fibrinogen was caused by enhanced interaction of alpha IIb beta 3(beta 1-2) with known recognition sequences in fibrinogen. Thus, this gain of function mutant augments ligand binding function, supporting a role for this region of the beta subunit in ligand binding to integrins.  相似文献   

13.
To analyze the basis of affinity modulation of integrin function, we studied cloned stable Chinese hamster ovary cell lines expressing recombinant integrins of the beta 3 family (alpha IIb beta 3 and alpha v beta 3). Antigenic and peptide recognition specificities of the recombinant receptors resembled those of the native receptors found in platelets or endothelial cells. The alpha IIb beta 3-expressing cell line (A5) bound RGD peptides and immobilized fibrinogen (Fg) but not soluble fibrinogen or the activation-specific monoclonal anti-alpha IIb beta 3 (PAC1), indicating that it was in the affinity state found on resting platelets. Several platelet agonists failed to alter the affinity state of ("activate") recombinant alpha IIb beta 3. The binding of soluble Fg and PAC1, however, was stimulated in both platelets and A5 cells by addition of IgG papain-digestion products (Fab) fragments of certain beta 3-specific monoclonal antibodies. These antibodies stimulated PAC1 binding to platelets fixed under conditions rendering them unresponsive to other agonists. Addition of these antibodies to detergent-solubilized alpha IIb beta 3 also stimulated specific Fg binding. These data demonstrate that certain anti-beta 3 antibodies activate alpha IIb beta 3 by acting directly on the receptor, possibly by altering its conformation. Furthermore, they indicate that the activation state of alpha IIb beta 3 is a property of the receptor itself rather than of the surrounding cell membrane microenvironment.  相似文献   

14.
Activation or ligand binding induces conformational changes in alpha IIb beta3, resulting in exposure of neoepitopes named ligand-induced binding sites. We reported here a novel monoclonal antibody developed by using Chinese hamster ovary (CHO) cells expressing an activated alpha IIb beta3 mutant (CHO alpha IIb beta3Delta717) as the immunogen. This IgG 2b kappa named 3C7 was specific for the complex of alpha IIb beta3 as demonstrated by flow cytometry, immunoprecipitation, and EDTA chelating. The binding of 3C7 to platelets increased significantly when platelets were activated by ADP/thrombin or occupied by RGDS peptides, fibrinogen, or PAC-1, suggesting that 3C7 was an anti-ligand-induced binding site antibody. The antibody failed to bind to the CHO cells expressing another alpha IIb beta3 mutant (beta3Y178A) suggesting that the Cys177-Cys184 loop of beta3 was likely the epitope for 3C7. 3C7 inhibited platelet aggregation, which was initiated by ADP or thrombin in a dose-dependent manner (IC50s of 5.6 and 0.05 microg/ml, respectively). The antibody also inhibited platelet adhesion to immobilized fibrinogen but not to fibronectin or collagen. These findings suggested that 3C7 was a potent antagonist of integrin alpha IIb beta3 and a potential anti-thrombotic agent.  相似文献   

15.
Integrin alpha(IIb)beta(3) activation is critical for platelet physiology and is controlled by signal transduction through kinases and phosphatases. Compared with kinases, a role for phosphatases in platelet integrin alpha(IIb)beta(3) signaling is less understood. We report that the catalytic subunit of protein phosphatase 2A (PP2Ac) associates constitutively with the integrin alpha(IIb)beta(3) in resting platelets and in human embryonal kidney 293 cells expressing alpha(IIb)beta(3). The membrane proximal KVGFFKR sequence within the cytoplasmic domain of integrin alpha(IIb) is sufficient to support a direct interaction with PP2Ac. Fibrinogen binding to alpha(IIb)beta(3) during platelet adhesion decreased integrin-associated PP2A activity and increased the phosphorylation of a PP2A substrate, vasodilator associated phosphoprotein. Overexpression of PP2Ac(alpha) in 293 cells decreased alpha(IIb)beta(3)-mediated adhesion to immobilized fibrinogen. Conversely, small interference RNA mediated knockdown of endogenous PP2Ac(alpha) expression in 293 cells, enhanced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and accelerated alpha(IIb)beta(3) adhesion to fibrinogen and von Willebrand factor. Inhibition of ERK1/2, but not p38 activation, abolished the increased adhesiveness of PP2Ac (alpha)-depleted 293 cells to fibrinogen. Furthermore, knockdown of PP2A(calpha) expression in bone marrow-derived murine megakaryocytes increased soluble fibrinogen binding induced by protease-activated receptor 4-activating peptide. These studies demonstrate that PP2Ac (alpha) can negatively regulate integrin alpha(IIb)beta(3) signaling by suppressing the ERK1/2 signaling pathway.  相似文献   

16.
In response to agonist stimulation, the alphaIIbbeta3 integrin on platelets is converted to an active conformation that binds fibrinogen and mediates platelet aggregation. This process contributes to both normal hemostasis and thrombosis. Activation of alphaIIbbeta3 is believed to occur in part via engagement of the beta3 cytoplasmic tail with talin; however, the role of the alphaIIb tail and its potential binding partners in regulating alphaIIbbeta3 activation is less clear. We report that calcium and integrin binding protein 1 (CIB1), which interacts directly with the alphaIIb tail, is an endogenous inhibitor of alphaIIbbeta3 activation; overexpression of CIB1 in megakaryocytes blocks agonist-induced alphaIIbbeta3 activation, whereas reduction of endogenous CIB1 via RNA interference enhances activation. CIB1 appears to inhibit integrin activation by competing with talin for binding to alphaIIbbeta3, thus providing a model for tightly controlled regulation of alphaIIbbeta3 activation.  相似文献   

17.
Previous evidence suggests that interactions between integrin cytoplasmic domains regulate integrin activation. We have constructed and validated recombinant structural mimics of the heterodimeric alpha(IIb)beta(3) cytoplasmic domain. The mimics elicited polyclonal antibodies that recognize a combinatorial epitope(s) formed in mixtures of the alpha(IIb) and beta(3) cytoplasmic domains but not present in either isolated tail. This epitope(s) is present within intact alpha(IIb)beta(3), indicating that interaction between the tails can occur in the native integrin. Furthermore, the combinatorial epitope(s) is also formed by introducing the activation-blocking beta(3)(Y747A) mutation into the beta(3) tail. A membrane-distal heptapeptide sequence in the alpha(IIb) tail ((997)RPPLEED) is responsible for this effect on beta(3). Membrane-permeant palmitoylated peptides, containing this alpha(IIb) sequence, specifically blocked alpha(IIb)beta(3) activation in platelets. Thus, this region of the alpha(IIb) tail causes the beta(3) tail to resemble that of beta(3)(Y747A) and suppresses activation of the integrin.  相似文献   

18.
Integrin alpha(IIb)beta(3) plays a critical role in platelet function, promoting a broad range of functional responses including platelet adhesion, spreading, aggregation, clot retraction, and platelet procoagulant function. Signaling events operating downstream of this receptor (outside-in signaling) are important for these responses; however the mechanisms negatively regulating integrin alpha(IIb)beta(3) signaling remain ill-defined. We demonstrate here a major role for the Src homology 2 domain-containing inositol 5-phosphatase (SHIP1) and Src family kinase, Lyn, in this process. Our studies on murine SHIP1 knockout platelets have defined a major role for this enzyme in regulating integrin alpha(IIb)beta(3)-dependent phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) accumulation, necessary for a cytosolic calcium response and platelet spreading. SHIP1 phosphorylation and PtdIns(3,4,5)P(3) metabolism is partially regulated through Lyn kinase, resulting in an enhanced calcium flux and spreading response in Lyn-deficient mouse platelets. Analysis of platelet adhesion dynamics under physiological blood flow conditions revealed an important role for SHIP1 in regulating platelet adhesion on fibrinogen. Specifically, SHIP1-dependent PtdIns(3,4,5)P(3) metabolism down-regulates the stability of integrin alpha(IIb)beta(3)-fibrinogen adhesive bonds, leading to a decrease in the proportion of platelets forming shear-resistant adhesion contacts. These studies define a major role for SHIP1 and Lyn as negative regulators of integrin alpha(IIb)beta(3) adhesive and signaling function.  相似文献   

19.
Integrin cytoplasmic tails regulate integrin activation that is required for high affinity binding with ligands. The interaction of the integrin beta subunit tail with a cytoplasmic protein, talin, largely contributes to integrin activation. Here we report the cooperative interaction of the beta3 membrane-proximal and -distal residues in regulation of talin-mediated alpha IIb beta3 activation. Because a chimeric integrin, alpha IIb beta3/beta1, in which the beta3 tail was replaced with the beta1 tail was constitutively active, we searched for the residues responsible for integrin activation among the residues that differed between the beta3 and beta1 tails. Single amino acid substitutions of Ile-719 and Glu-749 in the beta3 membrane-proximal and -distal regions, respectively, with the corresponding beta1 residues or alanine rendered alphaIIbbeta3 constitutively active. The I719M/E749S double mutant had the same ligand binding activity as alpha IIb beta3/beta1. These beta3 mutations also induced alphaVbeta3 activation. Conversely, substitution of Met-719 or Ser-749 in the beta1 tail with the corresponding beta3 tail residue (M719I or S749E) inhibited alpha IIb beta3/beta1 activation, and the M719I/S749E double mutant inhibited ligand binding to a level comparable with that of the wild-type alpha IIb beta3. Knock down of talin by short hairpin RNA inhibited the I719M- and E749S-induced alpha IIb beta3 activation. These results suggest that the beta3 membrane-proximal and -distal residues cooperatively regulate talin-mediated alpha IIb beta3 activation.  相似文献   

20.
Binding of von Willebrand factor (VWF) to GP Ib-IX mediates initial platelet adhesion and increases the subsequent adhesive function of alpha(IIb)beta(3). Because these responses are promoted most effectively by large VWF multimers, we hypothesized that receptor clustering modulates GP Ib-IX function. To test this, GP IX was fused at its cytoplasmic tail to tandem repeats of FKBP, and GP Ib-IX(FKBP)(2) and alpha(IIb)beta(3) were expressed in Chinese hamster ovary cells. Under flow conditions at wall shear rates of up to 2000 s(-1), GP Ib-IX(FKBP)(2) mediated cell tethering to immobilized VWF, just as in platelets. Conditional oligomerization of GP Ib-IX(FKBP)(2) by AP20187, a cell-permeable FKBP dimerizer, caused a decrease in cell translocation velocities on VWF (p < 0.001). Moreover, clustering of GP Ib-IX(FKBP)(2) by AP20187 led to an increase in alpha(IIb)beta(3) function, manifested under static conditions by increased cell adhesion to fibrinogen (p < 0.01) and under flow by increased stable cell adhesion to VWF (p < 0.04). Clustering of GP Ib-IX(FKBP)(2) also stimulated rapid tyrosine phosphorylation of ectopically expressed Syk, a putative downstream effector of GP Ib-IX in platelets. These studies establish that GP Ib-IX oligomerization, per se, affects the interaction of this receptor with VWF and its ability to influence the adhesive function of alpha(IIb)beta(3). By extrapolation, GP Ib-IX clustering in platelets may promote thrombus formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号