首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
目的:研究炭疽致死毒素在巨噬细胞中引起细胞自噬现象以及细胞自噬对炭疽致死毒素毒性的影响。方法:采用电子显微镜观察、单丹磺酰尸胺(MDC)荧光染色、Western印迹检测研究炭疽致死毒素作用后的巨噬细胞;采用MTT法检测细胞自噬对炭疽致死毒素毒性的影响。结果:采用以上3种方法,在巨噬细胞J774A.1中均可检测到细胞自噬现象;通过诱导或抑制细胞自噬,分别提高或降低了炭疽致死毒素的半数致死浓度。结论:炭疽致死毒素在巨噬细胞内能引起细胞自噬现象;细胞自噬能减弱炭疽致死毒素对巨噬细胞的毒性。  相似文献   

2.
[目的]细胞自噬(Autophagy)是真核细胞用于清除胞内聚集物、损伤细胞器而维持其稳态平衡的一种溶酶体降解途径.细胞自噬不仅在细胞生长发育、成熟、分化等过程中起重要作用,且与病毒感染、细胞免疫密切相关.通过研究细胞自噬对乙肝病毒感染的Ⅰ型干扰素的影响,为进一步阐明乙肝病毒感染对机体天然免疫反应研究奠定基础.[方法]通过siRNA干扰Beclin1和Atg7表达,检测自噬小体形成,Real-TimePCR检测干扰素因子表达,分析了细胞自噬对乙肝病毒感染细胞中干扰素形成的影响.[结果]干扰Beclin1和Atg7均可抑制细胞自噬发生,抑制细胞自噬可降低干扰素因子的表达,而对细胞活力和细胞凋亡无明显影响.[结论]抑制细胞自噬,可降低HBV感染细胞中IFNβ和IFI27的表达,这在一定程度上意味着,HBV诱导的自噬具有增强感染细胞天然免疫反应的作用.  相似文献   

3.
【目的】明确磷酸腺苷激活的蛋白激酶(AMPK)在细胞自噬和凋亡中的作用。【方法】利用电镜、荧光显微镜、蛋白免疫杂交、siRNA干扰、流式细胞计数、MTS细胞活性检测等对曲格列酮(troglitazone,TZ)处理的HeLa细胞自噬和凋亡情况进行了检测。【结果】不同检测方法均表明TZ增加了HeLa细胞的自噬,这种自噬的发生伴随着AMPK的磷酸化的降低;抑制AMPK增加基础细胞自噬,而阻断了TZ引起的自噬标记物LC3-II的增加,同时也减少了TZ引起的凋亡分子PARP的切割;用自噬抑制剂3-MA和干扰细胞自噬基因,不仅PARP的切割明显地受到抑制,而且也部分阻断了TZ引起的细胞活性丧失。【结论】AMPK直接参与了TZ引起的HeLa细胞自噬过程,这种自噬发生促进了其诱导的细胞凋亡。  相似文献   

4.
乙肝病毒感染对细胞基本自噬的影响   总被引:4,自引:0,他引:4  
王娟  时迎娣  杨怀义 《微生物学报》2010,50(12):1651-1656
【目的】慢性乙肝病毒(Hepatitis B virus,HBV)感染在肝硬化和肝癌的发生过程中起着重要的作用,通过研究HBV感染对细胞基本自噬的影响,为HBV感染诱发肝癌以及HBV的免疫逃逸机理研究提供新的思路。【方法】本研究利用乙肝病毒表达质粒瞬时或稳定转染不同肝细胞,通过计数绿色荧光蛋白(greenfluorescent protein,GFP)聚集数目检测自噬小体形成,western blot检测LC3(microtubule-associated proteinlight chain 3,微管相关蛋白质轻链3)脂酰化和p62的降解,通过构建HBV B型和C型X蛋白(HBx)的表达质粒并瞬时转染肝癌细胞和正常肝细胞,对不同基因型X蛋白对细胞自噬的影响进行了分析。【结果】乙肝病毒感染后促进了LC3的脂酰化和p62的降解,增加了自噬小体的形成,增强了细胞的基本自噬。进一步研究发现,HBV感染增强的细胞基本自噬水平由HBx所引发,且C型HBx比B型对细胞基本自噬的增加更加显著。【结论】HBV通过HBx增强细胞的基本自噬,且不同基因型HBx对细胞基本自噬的增强程度不同,为进一步阐明HBV感染机理奠定了基础。  相似文献   

5.
自噬是广泛存在于真核细胞内的一种细胞分解自身构成成分的生命现象.细胞内的双层膜结构与溶酶体结合后其内包裹的受损、变形或衰老细胞器蛋白质等被水解酶类降解.细胞自噬具有多种生理功能,生命体借此维持蛋白质代谢平衡及细胞环境稳定,这一过程在细胞清除废物、结构重建、生长发育调节中发挥重要作用. 细胞自噬也与肿瘤的存活和死亡等过程密切相关. 近年来对细胞自噬的研究有了较大的深入,本文主要对自噬体的形态和发生过程及其分子机制、信号调节通路、自噬研究的检测方法,以及自噬与细胞凋亡和肿瘤发生的关系等方面进行概述,以期较全面地了解细胞自噬作用和最新研究动态.  相似文献   

6.
目的:研究脂多糖(LPS)促进氧化低密度脂蛋白(ox-LDL)诱导的泡沫细胞形成的机制。方法:人源性THP-1细胞的培养,经ox-LDL诱导形成泡沫细胞。采用油红O染色鉴定泡沫细胞的形成,免疫荧光和Western blot方法检测自噬活性,观察自噬作用对泡沫细胞脂质沉积的影响。结果:①经形态学观察,脂多糖可以促进ox-LDL诱导的泡沫细胞的形成。②脂多糖可以激活自噬作用,并且自噬活性在16h达到最强。③脂多糖可以增强自噬激活剂雷帕霉素(Rap)的促自噬作用(P0.05),并且削弱自噬抑制剂3-甲基腺嘌呤(3-MA)的作用。④Rap单独作用不能影响泡沫细胞中脂质的累积,然而脂多糖能够增强Rap的作用,显著促进脂滴在泡沫细胞中的累积(P0.05);3-MA可以抑制基础水平和脂多糖诱导后泡沫细胞中脂滴的积累。结论:脂多糖通过增强自噬作用促进泡沫细胞的形成。  相似文献   

7.
目的:考察PC12细胞内自噬发生与缺氧时间的关系,探讨自噬对缺氧细胞的影响作用。方法:以PC12细胞为模型,将对数生长期的细胞加入96孔培养板,37℃、5% CO2培养24 h后,放入0.5% O2、94.5% N2和5% CO2的培养箱缺氧1 h、3 h、6 h、9h、12 h、24 h、36 h和48 h,用MTT法检测细胞存活率,透射电镜观察细胞内自噬体,Westen blot法检测自噬相关蛋白(LC3B、Atg5和Beclin1)的表达,用试剂盒检测细胞内乳酸脱氢酶(LDH)活性、活性氧自由基(ROS)和线粒体膜电位(MNP)水平,探究缺氧不同时间自噬对PC12细胞的作用。结果:在缺氧3~12 h,PC12细胞自噬明显增加,自噬相关蛋白(LC3B、Atg5和Beclin1)表达增加,尤其是缺氧9 h,PC12细胞存活明显增加,表明短时间缺氧自噬对细胞起保护作用,而随着缺氧时间的延长细胞存活明显降低,自噬相关蛋白表达水平减少,细胞LHD和ROS水平明显增加。MMP水平显著下降,细胞凋亡明显增加。结论:在缺氧早期自噬对PC12细胞起保护作用,但缺氧时间较长,超过了细胞自身调节能力导致细胞死亡。  相似文献   

8.
目的:研究自噬在大鼠海马神经元缺血缺氧/再灌注过程中的表达及自噬在神经元缺血缺氧/再灌注损伤中的作用。方法:原代培养的大鼠海马神经元经2 h的氧糖剥夺和不同时段的再灌注处理,MTT法检测细胞活性,透射电镜下检测自噬的特异性结构,免疫荧光化学法检测自噬特异性蛋白微管相关蛋白1轻链3(LC3B)的表达。应用自噬抑制剂3-甲基腺嘌呤(3-MA)检测神经元的活性。结果:经氧糖剥夺/再灌注后,海马神经元的活性比未经氧糖剥夺/再灌注组显著地降低。透射电镜和免疫荧光检测,未经氧糖剥夺/再灌注的神经元自噬的发生率极低,氧糖剥夺后和再灌注的不同时间段,均有自噬的发生。应用自噬抑制剂3-MA阻断自噬后,神经元的存活率显著降低。结论:缺血缺氧/再灌注能激活海马神经元的自噬,并可能在缺血缺氧/再灌注过程中起对抗损伤的作用。  相似文献   

9.
细胞自噬是真核生物中高度保守的一类亚细胞降解途径。它通过降解细胞内组分维持细胞内生理平衡并帮助细胞度过逆境。细胞自噬在生物体生长发育、免疫防御、细胞程序性死亡、肿瘤抑制、预防神经退行性病变等方面有非常重要的作用。酵母是目前细胞自噬研究最充分的模式生物,其中分子机制及其他方面的研究成果对整个真核生物细胞自噬的研究有很关键的作用。本综述旨在对近年来酵母中关于细胞自噬的研究进展和常用检测手段作一概括总结。  相似文献   

10.
细胞自噬的研究是目前生物医学领域热点之一,广泛参与各种生理和病理过程.目前普遍采用的自噬检测方法包括电镜、免疫荧光、蛋白质印迹等方法检测自噬体及其标志蛋白.研究的深入对自噬的检测方法也提出了更高的要求,自噬功能障碍包括自噬体形成和降解障碍,因此,准确全面地评估自噬不仅包括自噬体的检测,还包括动态观察整个自噬性降解的过程是否顺畅(即自噬潮分析).另外,通过药物或基因干预技术来人为地调控自噬以观察其在体内体外模型中的作用也是自噬分析的重要内容.需要注意的是,任何一种方法单独应用均不能作为自噬的依据,对任何方法得到的结果进行解释时必须慎重,特别是不能将自噬体的增多减少或自噬相关蛋白表达的高低等同于自噬的增强或减弱.  相似文献   

11.
BackgroundMacroautophagy is a cellular response to starvation wherein superfluous and damaged cytoplasmic constituents are degraded to provide energy for survival and to maintain cellular homeostasis. Dysfunctional autophagy is attributed to disease progression in several pathological conditions and therefore, autophagy has appeared as a potential pharmacological target for such conditions.ObjectiveIn search of potential drugs that modulate autophagy, identifying small molecule effectors of autophagy is the primary step. The conventional autophagy assays have a limitation that they cannot be scaled down to a high throughput format, therefore, novel sensitive assays are needed to discover new candidate molecules. Keeping this rationale in mind, a dual luciferase based assay was developed in the yeast S. cerevisiae that could measure both selective and general autophagy in real time.MethodsFirefly and Renilla luciferase reporter genes were cloned under POT-1 promoter. Using fatty acid medium the promoter was induced and the luciferase cargo was allowed to build up. The cells were then transferred to starvation conditions to stimulate autophagy and the degradation of luciferase markers was followed with time.Results and conclusionThe assay was more sensitive than conventional assays and could be scaled down to a 384 well format using an automated system. A good Z-factor score indicated that the assay is highly suitable for High Throughput Screening (HTS) of small molecule libraries. Screening of a small molecule library with our assay identified several known and novel modulators of autophagy.  相似文献   

12.
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.  相似文献   

13.
《Autophagy》2013,9(4):445-544
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.  相似文献   

14.
BackgroundOur previous study showed that human omental adipose-derived stem cells (ADSCs) promote ovarian cancer growth and metastasis. In this study, the role of autophagy in the ovarian cancer-promoting effects of omental ADSCs was further determined.MethodsThe growth and invasion of ovarian cancer cells were detected by CCK-8 and Transwell assays, respectively. The autophagy of ovarian cancer cells transfected with MRFP-GFP-LC3 adenoviral vectors was evaluated by confocal microscopy and western blot assay. Transfection of STAT3 siRNA was used to inhibit the expression of STAT3.ResultsOur results show that autophagy plays a vital role in ovarian cancer and is promoted by ADSCs. Specifically, we show that proliferation and invasion are correlated with autophagy induction by ADSCs in two ovarian cancer cell lines under hypoxic conditions. Mechanistically, ADSCs activate the STAT3 signalling pathway, thereby promoting autophagy. Knockdown of STAT3 expression using siRNA decreased hypoxia-induced autophagy and decreased the proliferation and metastasis of ovarian cancer cells.ConclusionTaken together, our data indicate that STAT3-mediated autophagy induced by ADSCs promotes ovarian cancer growth and metastasis.  相似文献   

15.
Macroautophagy/autophagy is a fundamental cellular degradation mechanism that maintains cell homeostasis, regulates cell signaling, and promotes cell survival. Its role in promoting tumor cell survival in stress conditions is well characterized, and makes autophagy an attractive target for cancer therapy. Emerging research indicates that autophagy also influences cancer metastasis, which is the primary cause of cancer-associated mortality. However, data demonstrate that the regulatory role of autophagy in metastasis is multifaceted, and includes both metastasis-suppressing and -promoting functions. The metastasis-suppressing functions of autophagy, in particular, have important implications for autophagy-based treatments, as inhibition of autophagy may increase the risk of metastasis. In this review, we discuss the mechanisms and context underlying the role of autophagy in metastasis, which include autophagy-mediated regulation of focal adhesion dynamics, integrin signaling and trafficking, Rho GTPase-mediated cytoskeleton remodeling, anoikis resistance, extracellular matrix remodeling, epithelial-to-mesenchymal transition signaling, and tumor-stromal cell interactions. Through this, we aim to clarify the context-dependent nature of autophagy-mediated metastasis and provide direction for further research investigating the role of autophagy in cancer metastasis.  相似文献   

16.
Autophagy is an adaptive response for cell survival in which cytoplasmic components and organelles are degraded in bulk under normal and stress conditions. Trichomonas vaginalis is a parasite highly adaptable to stress conditions such as iron (IR) and glucose restriction (GR). Autophagy can be traced by detecting a key autophagy protein (Atg8) anchored to the autophagosome membrane by a lipid moiety. Our goal was to perform a morphological and cellular study of autophagy in T. vaginalis under GR, IR, and Rapamycin (Rapa) treatment using TvAtg8 as a putative autophagy marker. We cloned tvatg8a and tvatg8b and expressed and purified rTvAtg8a and rTvAtg8b to produce specific polyclonal antibodies. Autophagy vesicles were detected by indirect immunofluorescence assays and confirmed by ultrastructural analysis. The biogenesis of autophagosomes was detected, showing intact cytosolic cargo. TvAtg8 was detected as puncta signal with the anti‐rTvAtg8b antibody that recognized soluble and lipid‐associated TvAtg8b by Western blot assays in lysates from stress‐inducing conditions. The TvAtg8b signal co‐localized with the CytoID and lysotracker labeling (autolysosomes) that accumulated after E‐64d treatment in GR parasites. Our data suggest that autophagy induced by starvation in T. vaginalis results in the formation of autophagosomes for which TvAtg8b could be a putative autophagy marker.  相似文献   

17.
The cellular recycling process of autophagy has been extensively characterized with standard assays in yeast and mammalian cell lines. In multicellular organisms, numerous external and internal factors differentially affect autophagy activity in specific cell types throughout the stages of organismal ontogeny, adding complexity to the analysis of autophagy in these metazoans. Here we summarize currently available assays for monitoring the autophagic process in the nematode C. elegans. A combination of measuring levels of the lipidated Atg8 ortholog LGG-1, degradation of well-characterized autophagic substrates such as germline P granule components and the SQSTM1/p62 ortholog SQST-1, expression of autophagic genes and electron microscopy analysis of autophagic structures are presently the most informative, yet steady-state, approaches available to assess autophagy levels in C. elegans. We also review how altered autophagy activity affects a variety of biological processes in C. elegans such as L1 survival under starvation conditions, dauer formation, aging, and cell death, as well as neuronal cell specification. Taken together, C. elegans is emerging as a powerful model organism to monitor autophagy while evaluating important physiological roles for autophagy in key developmental events as well as during adulthood.  相似文献   

18.
Due to the involvement of macroautophagy/autophagy in different pathophysiological conditions such as infections, neurodegeneration and cancer, identification of novel small molecules that modulate the process is of current research and clinical interest. In this work, we developed a luciferase-based sensitive and robust kinetic high-throughput screen (HTS) of small molecules that modulate autophagic degradation of peroxisomes in the budding yeast Saccharomyces cerevisiae. Being a pathway-specific rather than a target-driven assay, we identified small molecule modulators that acted at key steps of autophagic flux. Two of the inhibitors, Bay11 and ZPCK, obtained from the screen were further characterized using secondary assays in yeast. Bay11 inhibited autophagy at a step before fusion with the vacuole whereas ZPCK inhibited the cargo degradation inside the vacuole. Furthermore, we demonstrated that these molecules altered the process of autophagy in mammalian cells as well. Strikingly, these molecules also modulated autophagic flux in a novel model plant, Aponogeton madagascariensis. Thus, using small molecule modulators identified by using a newly developed HTS autophagy assay, our results support that macroautophagy is a conserved process across fungal, animal and plant kingdoms.  相似文献   

19.
Numerous microRNAs participate in regulating the pathological process of atherosclerosis. We have found miR-130a is one of the most significantly down-regulated microRNAs in arteriosclerosis obliterans. Our research explored the function of miR-130a in regulating proliferation by controlling autophagy in arteriosclerosis obliterans development. A Gene Ontology (GO) enrichment analysis of miR-130a target genes indicated a correlation between miR-130a and cell proliferation. Thus, cell cycle, CCK-8 assays and Western blot analysis were performed, and the results indicated that miR-130a overexpression in vascular smooth muscle cells (VSMCs) significantly attenuated cell proliferation, which was validated by an in vivo assay in a rat model. Moreover, autophagy is thought to be involved in the regulation of proliferation. As our results indicated, miR-130a could inhibit autophagy, and ATG2B was predicted to be a target of miR-130a. The autophagy inhibition effect of miR-130a overexpression was consistent with the effect of ATG2B knockdown. The results that ATG2B plasmids and miR-130a mimics were cotransfected in VSMCs further confirmed our conclusion. In addition, by using immunohistochemistry, the positive results of LC3 II/I and ATG2B in the rat model and artery vascular tissues from the patient were in accordance with in vitro data. In conclusion, our data demonstrate that miR-130a inhibits VSMCs proliferation via ATG2B, which indicates that miR-130a could be a potential therapeutic target that regulates autophagy in atherosclerosis obliterans.  相似文献   

20.
Much recent and ongoing research is focused on understanding the mechanisms and regulation of autophagy, a cellular self-degradation pathway with many links to human health. Although many assays exist to measure the total magnitude of autophagy, electron microscopy remains the tool of choice for the determination of the size and the number of autophagosomes formed in a given mutant or under given induction conditions. Here we present a detailed protocol for measuring autophagic bodies in the yeast Saccharomyces cerevisiae by electron microscopy. Furthermore, we present an improved mathematical method for estimating body size and a new method for estimating body number. Finally, we include a discussion of the merits and limitations of these methods and an example of their application to autophagic bodies formed in the ume6∆ strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号