首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this study was to determine the survival of Campylobacter jejuni in chicken meat samples at frozen temperatures and given length of incubation and to determine the impact of aerobic bacteria on the survival of C. jejuni. The chicken meat samples were inoculated with C. jejuni NCTC 11351 suspensions and stored in bags at temperatures of -20°C and -70°C. The mean value of C. jejuni from meat samples decreased from 7.52 log10 CFU/g after 30 minutes of incubation at ambient temperature, to 3.87 log10 CFU/g on the eighth week of incubation at -20°C, and to 3.78 log10 CFU/g at incubation at -70°C after the same incubation period. Both freezing temperatures, -20°C and -70°C, decreased the number of campylobacters. The presence of aerobic mesophilic bacteria did not influence the survival of C. jejuni in chicken meet samples. Keeping poultry meat at freezing temperatures is important for the reduction of C. jejuni, which has a strong influence on the prevention of occurrence of campylobacteriosis in humans.  相似文献   

2.
Aho  Matti  Hirn  Jorma 《Acta veterinaria Scandinavica》1988,29(3-4):451-462
The prevalence of Campylobacter jejuni is 1.7 % (9/600) in the faeces of 4–5 week broiler chickens in Finland and 24 % (117/490) in the caeci of broiler chickens at slaughter. All waste waters at a processing plant, except water in a chlorinated (25 ppm) chilling tank, contained campylobacteria when a Campylobacter positive flock was slaughtered. Caeci contained mean logio 7.2 CFU campylobacteria/g. After chilling in a chlorinated ice–water tank there were still mean log10 4.5 CFU campylobacteria/carcass. Campylobacteria were detected from 7.0% (14/199) of deep–frozen broiler chicken carcasses at the market level. The concentration of C jejuni in naturally contaminated deep–frozen broiler chicken carcasses decreased by 2 log10 units in 4 weeks. All prevalence figures were lower than in other developed countries outside Scandinavia. In Finland one of the reasons for low prevalence may be the extensive use of Nurmi cultures in Salmonella prevention programs.  相似文献   

3.
Campylobacter jejuni is a major cause of diarrheal disease and food-borne gastroenteritis. The main reservoir of C. jejuni in poultry is the cecum, with an estimated content of 6 to 8 log10 CFU/g. If a flock is infected with C. jejuni, the majority of the birds in that flock will harbor the bacterium. Diagnostics at the flock level could thus be an important control point. The aim of the work presented here was to develop a complete quantitative PCR-based detection assay for C. jejuni obtained directly from cecal contents and fecal samples. We applied an approach in which the same paramagnetic beads were used both for cell isolation and for DNA purification. This integrated approach enabled both fully automated and quantitative sample preparation and a DNA extraction method. We developed a complete quantitative diagnostic assay through the combination of the sample preparation approach and real-time 5'-nuclease PCR. The assay was evaluated both by spiking the samples with C. jejuni and through the detection of C. jejuni in naturally colonized chickens. Detection limits between 2 and 25 CFU per PCR and a quantitative range of >4 log10 were obtained for spiked fecal and cecal samples. Thirty-one different poultry flocks were screened for naturally colonized chickens. A total of 262 (204 fecal and 58 cecal) samples were analyzed. Nineteen of the flocks were Campylobacter positive, whereas 12 were negative. Two of the flocks contained Campylobacter species other than C. jejuni. There was a large difference in the C. jejuni content, ranging from 4 to 8 log10 CFU/g of fecal or cecal material, for the different flocks tested. Some issues that have not yet promoted much attention are the prequantitative differences in the ability of C. jejuni to colonize poultry and the importance of these differences for causing human disease through food contamination. Understanding the colonization kinetics in poultry is therefore of great importance for controlling human infections by this bacterium.  相似文献   

4.
Campylobacter jejuni and Campylobacter-specific bacteriophage were enumerated from broiler chicken ceca selected from 90 United Kingdom flocks (n = 205). C. jejuni counts in the presence of bacteriophage (mean log10 5.1 CFU/g) were associated with a significant (P < 0.001) reduction compared to samples with Campylobacter alone (mean log10 6.9 CFU/g).  相似文献   

5.
Colonization of broiler chickens by the enteric pathogen Campylobacter jejuni is widespread and difficult to prevent. Bacteriophage therapy is one possible means by which this colonization could be controlled, thus limiting the entry of campylobacters into the human food chain. Prior to evaluating the efficacy of phage therapy, experimental models of Campylobacter colonization of broiler chickens were established by using low-passage C. jejuni isolates HPC5 and GIIC8 from United Kingdom broiler flocks. The screening of 53 lytic bacteriophage isolates against a panel of 50 Campylobacter isolates from broiler chickens and 80 strains isolated after human infection identified two phage candidates with broad host lysis. These phages, CP8 and CP34, were orally administered in antacid suspension, at different dosages, to 25-day-old broiler chickens experimentally colonized with the C. jejuni broiler isolates. Phage treatment of C. jejuni-colonized birds resulted in Campylobacter counts falling between 0.5 and 5 log10 CFU/g of cecal contents compared to untreated controls over a 5-day period postadministration. These reductions were dependent on the phage-Campylobacter combination, the dose of phage applied, and the time elapsed after administration. Campylobacters resistant to bacteriophage infection were recovered from phage-treated chickens at a frequency of <4%. These resistant types were compromised in their ability to colonize experimental chickens and rapidly reverted to a phage-sensitive phenotype in vivo. The selection of appropriate phage and their dose optimization are key elements for the success of phage therapy to reduce campylobacters in broiler chickens.  相似文献   

6.
Campylobacter jejuni is prevalent in poultry, but the effect of combined refrigerated and frozen storage on its survival, conditions relevant to poultry processing and storage, has not been evaluated. Therefore, the effects of refrigeration at 4 degrees C, freezing at -20 degrees C, and a combination of refrigeration and freezing on the survival of C. jejuni in ground chicken and on chicken skin were examined. Samples were enumerated using tryptic soy agar containing sheep's blood and modified cefoperazone charcoal deoxycholate agar. Refrigerated storage alone for 3 to 7 days produced a reduction in cell counts of 0.34 to 0.81 log10 CFU/g in ground chicken and a reduction in cell counts of 0.31 to 0.63 log10 CFU/g on chicken skin. Declines were comparable for each sample type using either plating medium. Frozen storage, alone and with prerefrigeration, produced a reduction in cell counts of 0.56 to 1.57 log10 CFU/g in ground chicken and a reduction in cell counts of 1.38 to 3.39 log10 CFU/g on chicken skin over a 2-week period. The recovery of C. jejuni following freezing was similar on both plating media. The survival following frozen storage was greater in ground chicken than on chicken skin with or without prerefrigeration. Cell counts after freezing were lower on chicken skin samples that had been prerefrigerated for 7 days than in those that had been prerefrigerated for 0, 1, or 3 days. This was not observed for ground chicken samples, possibly due to their composition. C. jejuni survived storage at 4 and -20 degrees C with either sample type. This study indicates that, individually or in combination, refrigeration and freezing are not a substitute for safe handling and proper cooking of poultry.  相似文献   

7.
Campylobacter jejuni in fresh chilled chicken meat is known to be a major risk factor for human gastrointestinal disease. In the present study, the survival under chilled conditions of different C. jejuni strains exposed to different gas mixtures usually used for gas packaging of food was examined. Bolton broth and fresh, skinless chicken fillets were inoculated with six and four strains, respectively, and exposed to the gas mixtures 70/30% O(2)/CO(2), 70/30% N(2)/CO(2), and 100% N(2) (the latter only investigated in broth) at refrigeration temperature (4-5 degrees C). In broth culture, the strains survived significantly longer when exposed to 100% N(2) and 70/30% N(2)/CO(2) than in the oxygen-containing gas mixture, 70/30% O(2)/CO(2) (P<0.0001). For the two anaerobic gas mixtures, the reductions only reached 0.3-0.8 log(10) CFU mL(-1) within the same period. In the presence of oxygen, the numbers of C. jejuni were reduced by a minimum of 4.6 log(10) CFU mL(-1) over 21 days. When inoculated onto chicken fillets, the C. jejuni strains also died significantly faster in the oxygen-containing gas mixture, 70/30% O(2)/CO(2) (P<0.0001), reaching reductions of 2.0-2.6 log(10) CFU g(-1) after 8 days. In the gas mixture without oxygen (70/30% N(2)/CO(2)), no reductions were observed.  相似文献   

8.
This is the first report on the use of a normally lethal dose of ciprofloxacin in a Campylobacter agar medium to kill all ciprofloxacin-sensitive Campylobacter spp. but allow the selective isolation and quantitation of naturally occurring presumptive ciprofloxacin-resistant Campylobacter CFU in rinses from retail raw chicken carcasses (RTCC). Thermophilic-group total Campylobacter CFU and total ciprofloxacin-resistant Campylobacter CFU (irrespective of species) were concurrently quantified in rinses from RTCC by direct plating of centrifuged pellets from 10 or 50 ml out of 400-ml rinse subsamples concurrently on Campylobacter agar and ciprofloxacin-containing Campylobacter agar at 42 degrees C (detection limit = 0.90 log(10) CFU/carcass). For 2001, 2002, and 2003, countable Campylobacter CFU were recovered from 85%, 96%, and 57% of RTCC, while countable ciprofloxacin-resistant Campylobacter CFU were recovered from 60%, 59%, and 17.5% of RTCC, respectively. Total Campylobacter CFU loads in RTCC rinses ranged from 0.90 to 4.52, 0.90 to 4.58, and 0.90 to 4.48 log(10) CFU/carcass in 2001, 2002, and 2003, respectively. Total ciprofloxacin-resistant Campylobacter CFU loads in RTCC rinses ranged from 0.90 to 4.06, 0.90 to 3.95, and 0.90 to 3.04 log(10) CFU/carcass in 2001, 2002, and 2003, respectively. Overall, total Campylobacter loads of 0.90 to 2.0, 2 to 3, 3 to 4, 4 to 5 log(10) CFU/carcass, respectively, were recovered from 16%, 32%, 26%, and 5% of RTCC tested over the 2-year sampling period. For the same period, total ciprofloxacin-resistant Campylobacter loads of 0.90 to 2.0, 2 to 3, 3 to 4, and 4 to 5 log(10) CFU/carcass, respectively, were recovered from 24%, 11%, 7%, and 0.2% of RTCC tested. There was a steady decline in total Campylobacter and total ciprofloxacin-resistant Campylobacter loads in RTCC rinses from 2001/2002 to 2003.  相似文献   

9.
Campylobacters and Campylobacter-specific bacteriophages were isolated and enumerated during the rearing cycle of free-range (56 days) and organic chickens (73 days) at 3-day intervals from hatching until slaughter. In both flocks Campylobacter jejuni was the initial colonizer but Campylobacter coli was detected more frequently from 5 weeks of age. The diversity of the Campylobacter isolates was examined by pulsed-field gel electrophoresis of SmaI-digested genomic DNA and antimicrobial resistance typing. Bacteriophages were isolated from 51% (19 of 37 birds) of Campylobacter-positive organic birds (log10 2.5 to log10 5.7 PFU/g of cecal contents). The bacteriophages were all typical group III Campylobacter bacteriophages in terms of genomic size but could be characterized in terms of their host range and placed into five different groups. In contrast to the organic birds, anti-Campylobacter activity (bacteriocin-like) was observed in 26% (10 of 38 birds) of Campylobacter-positive free-range birds, and only one bacteriophage was isolated. Appearance of either bacteriophages or anti-Campylobacter activity was associated with changes in the levels of colonization and the predominant genotypes and species isolated. The frequency and potential influence of naturally occurring bacteriophages and/or inhibitory substances on the diversity and fluctuations of populations of campylobacters have not previously been reported in either free-range or organic chickens.  相似文献   

10.
One hundred and forty-four samples of chilled turkey meat from six flocks, taken directly from the slaughterhouse, and 100 samples of turkey meat retail products were examined. Over one-quarter (29.2%) of the tested samples from the slaughterhouse were Campylobacter positive, showing high variability in the flocks. The lowest percentage of Campylobacter-positive samples was found in flocks I and III (8.3%), whereas, in flock VI, 91.7% of the samples were Campylobacter positive. Turkey meat retail products showed a prevalence of 34% for Campylobacter. Heat-treated meat was negative for Campylobacter. Quantitative studies of the samples taken at the slaughterhouse revealed a mean log range of 1.9-2.5 CFU g(-1)Campylobacter spp. Results from the quantification of retail products gave a mean log value of 2.1 CFU g(-1).  相似文献   

11.
Campylobacter jejuni and C. coli were quantified and typed, using multilocus sequence typing (MLST), from fecal samples collected from a mixed cattle and sheep farm during summer. Cattle had a significantly higher prevalence than sheep (21.9% [74/338] and 14.0% [30/214], respectively), but both decreased over time. There were no differences in the average Campylobacter concentrations shed by cattle (600 CFU g(-1)) and sheep (820 CFU g(-1)), although sheep did show a significant temporal reduction in the number of Campylobacter organisms shed in their feces. A total of 21 different sequence types (STs) (97.7% C. jejuni, 2.3% C. coli) were isolated from cattle, and 9 different STs were isolated from sheep (40.6% C. jejuni, 59.4% C. coli). The Campylobacter population in cattle was relatively stable, and the frequencies of genotypes isolated showed little temporal variation. However, the composition of subtypes isolated from sheep did show significant temporal differences. The cattle and sheep consistently showed significant differences in their carriage of Campylobacter species, STs, and CCs despite the fact that both were exposed to the same farming environment. This work has highlighted the patterns of a Campylobacter population on a ruminant farm by identifying the existence of both temporal and between-host variations.  相似文献   

12.
The polymerase chain reaction (PCR) after a short enrichment culture was used to detect Campylobacter spp. in chicken products. After the 16S rRNA gene sequence of Campylobacter jejuni was determined and compared with known sequences from other enterobacteria, a primer and probe combination was selected from the region before V3 and the variable regions V3 and V5. With this primer set and probe, 426-bp fragments from C. jejuni, Campylobacter coli, and Campylobacter lari could be amplified. The detection limit of the PCR was 12.5 CFU. Chicken samples inoculated with 25 CFU of Campylobacter spp. per g were PCR positive after an 18-h enrichment, which resulted in 500 CFU/ml of culture broth. This PCR-culture assay was compared with the conventional method on naturally infected chicken products. Both methods detected the same number of positive and negative samples; however, the results of the PCR-culture assay were available within 48 h.  相似文献   

13.
The polymerase chain reaction (PCR) after a short enrichment culture was used to detect Campylobacter spp. in chicken products. After the 16S rRNA gene sequence of Campylobacter jejuni was determined and compared with known sequences from other enterobacteria, a primer and probe combination was selected from the region before V3 and the variable regions V3 and V5. With this primer set and probe, 426-bp fragments from C. jejuni, Campylobacter coli, and Campylobacter lari could be amplified. The detection limit of the PCR was 12.5 CFU. Chicken samples inoculated with 25 CFU of Campylobacter spp. per g were PCR positive after an 18-h enrichment, which resulted in 500 CFU/ml of culture broth. This PCR-culture assay was compared with the conventional method on naturally infected chicken products. Both methods detected the same number of positive and negative samples; however, the results of the PCR-culture assay were available within 48 h.  相似文献   

14.
An assay to detect Campylobacter jejuni in foods that uses a short selective enrichment culture, a simple and rapid isolation procedure, NASBA amplification of RNA, and a nonradioactive in solution hybridization was studied. The presence of high numbers of indigenous flora affected the sensitivity of the assay. However, detection of C. jejuni was possible up to a ratio of indigenous flora to C. jejuni of 10,000:1. Interference by food components was eliminated by centrifugation following the enrichment step. Fourteen food samples artificially inoculated with C. jejuni (1 to 1,000 CFU/10 g) were analyzed with the NASBA assay and the conventional culture method with Campylobacter charcoal differential agar (CCDA). A few false-negative results were obtained by both NASBA (1.42%) and CCDA (2.86%) isolation. Yet the use of enrichment culture and NASBA shortened the analysis time from 6 days to 26 h. The relative simplicity and rapidity of the NASBA assay make it an attractive alternative for detection of C. jejuni in food samples.  相似文献   

15.
Conventional detection and confirmation methods for Campylobacter jejuni are lengthy and tedious. A rapid hybridization protocol in which a 1,475-bp chromogen-labelled DNA probe (pDT1720) and Campylobacter strains filtered and grown on 0.22-micron-pore-size hydrophobic grid membrane filters (HGMFs) are used was developed. Among the environmental and clinical isolates of C. jejuni, Campylobacter coli, Campylobacter jejuni subsp. doylei, Campylobacter lari, and Arcobacter nitrofigilis and a panel of 310 unrelated bacterial strains tested, only C. jejuni and C. jejuni subsp. doylei isolates hybridized with the probe under stringent conditions. The specificity of the probe was confirmed when the protocol was applied to spiked skim milk and chicken rinse samples. Based on the nucleotide sequence of pDT1720, a pair of oligonucleotide primers was designed for PCR amplification of DNA from Campylobacter spp. and other food pathogens grown overnight in selective Mueller-Hinton broth with cefoperazone and growth supplements. All C. jejuni strains tested, including DNase-producing strains and C. jejuni subsp. doylei, produced a specific 402-bp amplicon, as confirmed by restriction and Southern blot analysis. The detection range of the assay was as low as 3 CFU per PCR to as high as 10(5) CFU per PCR for pure cultures. Overnight enrichment of chicken rinse samples spiked initially with as little as approximately 10 CFU/ml produced amplicons after the PCR. No amplicon was detected with any of the other bacterial strains tested or from the chicken background microflora. Since C. jejuni is responsible for 99% of Campylobacter contamination in poultry, PCR and HGMF hybridization were performed on naturally contaminated chicken rinse samples, and the results were compared with the results of conventional cultural isolation on Preston agar. All samples confirmed to be culture positive for C. jejuni were also identified by DNA hybridization and PCR amplification, thus confirming that these DNA-based technologies are suitable alternatives to time-consuming conventional detection methods. DNA hybridization, besides being sensitive, also has the potential to be used in direct enumeration of C. jejuni organisms in chicken samples.  相似文献   

16.
Bacteriophage specific for Campylobacter were isolated from chicken excreta collected from established free-range layer breed stock. Bacteriophage were either propagated on a Campylobacter jejuni host with broad susceptibility to bacteriophage (NCTC 12662) or on Campylobacter isolates from the same samples. Campylobacters were confirmed as being C. jejuni and or C. coli, using a combination of standard biochemical tests and PCR analysis with genus and species specific primers. The bacteriophage displayed differential patterns of susceptibility against reference NCTC strains and contemporary C. jejuni /C. coli isolates from chicken excreta. Electron microscopy demonstrated that the phage possessed icosahedral heads and rigid contractile tails. Pulsed-field gel electrophoresis revealed the bacteriophage genomes to be double stranded DNA in the range of 140 kb in size and the restriction enzyme patterns of the DNAs indicate they are genetically related members of the Myoviridae family. This study showed that Campylobacter bacteriophage could easily be isolated from free-range chickens and form part of their normal microbiological biota of environmentally exposed birds.  相似文献   

17.
AIM: To investigate how many Campylobacter bacteria are present on the surface and inside chicken breast fillets, with a focus on generating data distributions which can be used in risk assessments for this pathogen-commodity combination. METHODS AND RESULTS: We analysed 100 fresh retail chicken breast fillets (skinless and deboned) by means of a rinse sample for surface and 55 fillets for internal pathogen contamination using 10 g meat and a most probable number technique. Prevalence was 87% on the surface and 20% in the deep tissue. The mean number of Campylobacter on the surface of the fillets was 1903 CFU, with a median of 537 CFU and a maximum of 38,905 CFU. Campylobacter counts inside the tissue were <1 CFU g(-1) meat (mean = 0.24 CFU, median = 0.15 CFU, maximum = 0.74 CFU). In addition, we investigated the influence of the type of package on the occurrence of the pathogen. Data provide an indication of less favourable conditions for survival of the pathogen on chicken meat packed under a modified atmosphere of carbon dioxide in nitrogen, in comparison with ambient air or vacuumed packages. CONCLUSIONS: Given the high numbers of the pathogen on the chicken meat surface in comparison with low levels of internal contamination, it can be concluded that cross-contamination during the preparation of contaminated chicken is a more important pathway for consumers' exposure to Campylobacter than the consumption of undercooked meat. Significance AND IMPACT OF THE STUDY: The detailed quantitative data on the occurrence of C. jejuni and C. coli on the surface and inside chicken meat presented here can be useful for future probabilistic exposure assessments.  相似文献   

18.
This study reports on the use of PCR to directly detect and distinguish Campylobacter species in bovine feces without enrichment. Inhibitors present in feces are a major obstacle to using PCR to detect microorganisms. The QIAamp DNA stool minikit was found to be an efficacious extraction method, as determined by the positive amplification of internal control DNA added to bovine feces before extraction. With nested or seminested multiplex PCR, Campylobacter coli, C. fetus, C. hyointestinalis, and C. jejuni were detected in all fecal samples inoculated at approximately 10(4) CFU g(-1), and 50 to 83% of the samples inoculated at approximately 10(3) CFU g(-1) were positive. At approximately 10(2) CFU g(-1), C. fetus, C. hyointestinalis, and C. jejuni (17 to 50% of the samples) but not C. coli were detected by PCR. From uninoculated bovine feces, a total of 198 arbitrarily selected isolates of Campylobacter were recovered on four commonly used isolation media incubated at three temperatures. The most frequently isolated taxa were C. jejuni (152 isolates) and C. lanienae (42 isolates), but isolates of C. fetus subsp. fetus, Arcobacter butzleri, and A. skirrowii also were recovered (相似文献   

19.
AIMS: To investigate the survival of two animal isolates of Campylobacter jejuni on beef trimmings during freezing and frozen storage. METHODS AND RESULTS: Meat packs inoculated with 10(3) or 10(6) cfu g(-1) of either strain of C. jejuni were frozen to -18 degrees C, and sampled at regular intervals over 112 d storage to determine Campylobacter numbers and sublethal injury. For both strains and inoculation levels the numbers of Campylobacter decreased in the first 7 d of storage by ca. 0.6-2.2 log cfu g(-1) and then remaining constant over the remainder of the storage trial, with neither isolate exhibiting sublethal injury. CONCLUSIONS: Despite an initially significant decrease in number, these pathogens were able to survive standard freezing conditions in meat, but did not exhibit sublethal injury. SIGNIFICANCE AND IMPACT OF THE STUDY: Strict hygiene and/or the implementation of decontamination technologies are recommended as a means to assure the safety of meat with respect to this pathogen.  相似文献   

20.
Campylobacter species are fastidious to culture, and the ability to directly quantify biomass in microbiologically complex substrates using real-time quantitative (RTQ) PCR may enhance our understanding of their biology and facilitate the development of efficacious mitigation strategies. This study reports the use of nested RTQ-PCR to directly quantify Campylobacter jejuni and Campylobacter lanienae in cattle feces. For C. jejuni, the single-copy mapA gene was selected. For C. lanienae, the three-copy 16S rRNA gene was targeted. RTQ-PCR primers were tested alone or they were nested with species-specific primers, and amplification products were detected using the intercalating dye SYBR Green. Nesting did not increase the specificity or sensitivity of C. jejuni quantification, and the limit of quantification was 19 to 25 genome copies ( approximately 3 x 10(3) CFU/g of feces). In contrast, nested RTQ-PCR was necessary to confer specificity on C. lanienae by targeting the 16S rRNA gene. The limit of quantification was 1.8 genome copies ( approximately 250 CFU/g of feces), and there was no discernible difference between the two C. lanienae secondary primer sets evaluated. Detection and quantification of C. jejuni in naturally infested cattle feces by RTQ-PCR were comparable to the results of culture-based methods. In contrast, culturing did not detect C. lanienae in 6 of 10 fecal samples positive for the bacterium and substantially underestimated cell densities relative to nested RTQ-PCR. The results of this study illustrate that RTQ-PCR can be used to directly quantify campylobacters, including very fastidious species, in a microbiologically and chemically complex substrate. Furthermore, targeting of a multicopy universal gene provided highly sensitive quantification of C. lanienae, but nested RTQ-PCR was necessary to confer specificity. This method will facilitate subsequent studies to elucidate the impact of this group of bacteria within the gastrointestinal tracts of livestock and studies of the factors that influence colonization success and shedding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号