首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
The SH3 domains are small protein modules of 60-85 amino acid residues that are found in many proteins involved in intracellular signal transduction. The SH3 domain of the p85alpha subunit of bovine phosphatidylinositol 3'-kinase (PI3-SH3) under acidic solution adopts a compact denatured state from which amyloid fibrils are readily formed. This aggregation process has been found to be modulated substantially by solution conditions. Here, we have analyzed the conformational features of the native and acid denatured states of PI3-SH3 by limited proteolysis experiments using proteinase K and pepsin, respectively. Moreover, we have analyzed the propensity of PI3-SH3 to be hydrolyzed by pepsin at different stages in the process of aggregation and amyloid formation at pH 1.2 and 2.0 and compared the sites of proteolysis under these conditions with the conformational features of both native and aggregated PI3-SH3. The results demonstrate that the denatured state of PI3-SH3 formed at low pH is relatively resistant to proteolysis, indicating that it is partially folded. The long loop connecting beta-strands b and c in the native protein is the region in this structure most susceptible to proteolysis. Remarkably, aggregates of PI3-SH3 that are formed initially from this denatured state in acid solution display enhanced susceptibility to proteolysis of the long loop, suggesting that the protein becomes more unfolded in the early stages of aggregation. By contrast, the more defined amyloid fibrils that are formed over longer periods of time are completely resistant to proteolysis. We suggest that the protein aggregates formed initially are relatively dynamic species that are able readily to reorganize their interactions to enable formation of very well ordered fibrillar structures. In addition, the disordered and non-native character of the polypeptide chains in the early aggregates could be important in determining the high cytotoxicity that has been revealed in previous studies of these species.  相似文献   

2.
Lorena Varela 《FEBS letters》2009,583(4):801-3810
We investigated the relationship between thermodynamic stability and amyloid aggregation propensity for a set of single mutants of the alpha-spectrin SH3 domain (Spc-SH3). Whilst mutations destabilizing the domain at position 56 did not enhance fibrillation, the N47A mutation increased the rate of amyloid fibril formation by 10-fold. Even under conditions of identical thermodynamic stability, the aggregation rate was much higher for the N47A mutant than for the WT domain. We conclude that the N47A mutation does not change the apparent mechanism of fibrillation or the morphology of the amyloid fibrils, and that its amyloidogenic property is due to its effect upon the rate of the conformational events leading to nucleation and not to its overall destabilizing effect.  相似文献   

3.
The SH3 domain of the p85alpha subunit of phosphatidylinositol 3 kinase has been found to form amyloid fibrils in vitro under acidic conditions. PI3-SH3 is peculiar due to a large insertion of 15 amino acid residues in the n-Src loop when compared with more canonical members of the family. Spectrin-SH3 (SPC-SH3) with a shorter loop does not form fibrils under any of our conditions tested. Thus, it could be that the longer loop could play a role in amyloid formation. To investigate this we have engineered two chimeras containing the common core of the PI3-SH3 and SPC-SH3 with an exchanged n-Src loop. Thermodynamic and kinetic analyses show that the two chimeras are less stable than the parent proteins, but useful for our comparative purposes they have similar stability. Neither stability, nor folding rates, or pH transition can be invoked as being responsible for the amyloid formation in the PI3-SH3 domain. Substitution of the long n-Src loop in PI3-SH3 by that of SPC-SH3 does not prevent fibril formation. The SPC-SH3 with the PI3-SH3 n-Src loop is in an A-state at low pH and forms beta-sheet amorphous aggregates, but not amyloid fibrils. Thus, we conclude that, for a protein to form ordered fibrils, a delicate balance between solubility of non-native states to allow efficient nucleation and the formation of amorphous aggregates, must be achieved. It is the amino acid residue sequence of the protein and probably its parts that play a determinant role in shifting this balance in one direction or the other.  相似文献   

4.
SH3 domains from the Src family of tyrosine kinases represent an interesting example of the delicate balance between promiscuity and specificity characteristic of proline-rich ligand recognition by SH3 domains. The development of inhibitors of therapeutic potential requires a good understanding of the molecular determinants of binding affinity and specificity and relies on the availability of high quality structural information. Here, we present the first high-resolution crystal structure of the SH3 domain of the c-Yes oncogen. Comparison with other SH3 domains from the Src family revealed significant deviations in the loop regions. In particular, the n-Src loop, highly flexible and partially disordered, is stabilized in an unusual conformation by the establishment of several intramolecular hydrogen bonds. Additionally, we present here the first report of amyloid aggregation by an SH3 domain from the Src family.  相似文献   

5.
We have characterized the thermodynamic stability of the SH3 domain from the Saccharomyces cerevisiae Abp1p protein and found it to be relatively low compared to most other SH3 domains, with a Tm of 60 degrees C and a deltaGu of 3.08 kcal/mol. Analysis of a large alignment of SH3 domains led to the identification of atypical residues at eight positions in the wild-type Abp1p SH3 domain sequence that were subsequently replaced by the residue seen most frequently at that position in the alignment. Three of the eight mutants constructed in this way displayed increases in Tm ranging from 8 to 15 degrees C with concomitant increases in deltaGu of up to 1.4 kcal/mol. The effects of these substitutions on folding thermodynamics and kinetics were entirely additive, and a mutant containing all three was dramatically stabilized with a Tm greater than 90 degrees C and a deltaGu more than double that of the wild-type domain. The folding rate of this hyperstable mutant was 10-fold faster than wild-type, while its unfolding rate was fivefold slower. All of the stabilized mutants were still able to bind a target peptide with wild-type affinity. We have analyzed the stabilizing amino acid substitutions isolated in this study and several other similar sequence alignment based studies. In approximately 25% of cases, increased stability can be explained by enhanced propensity of the substituted residue for the local backbone conformation at the mutagenized site.  相似文献   

6.
The thermal unfolding of three SH3 domains of the Tec family of tyrosine kinases was studied by differential scanning calorimetry and CD spectroscopy. The unfolding transition of the three protein domains in the acidic pH region can be described as a reversible two-state process. For all three SH3 domains maximum stability was observed in the pH region 4.5 < pH < 7.0 where these domains unfold at temperatures of 353K (Btk), 342K (Itk), and 344K (Tec). At these temperatures an enthalpy change of 196 kJ/mol, 178 kJ/mol, and 169 kJ/mol was measured for Btk-, Itk-, and Tec-SH3 domains, respectively. The determined changes in heat capacity between the native and the denatured state are in an usual range expected for small proteins. Our analysis revealed that all SH3 domains studied are only weakly stabilized and have free energies of unfolding which do not exceed 12–16 kJ/mol but show quite high melting temperatures. Comparing unfolding free energies measured for eukaryotic SH3 domains with those of the topologically identical Sso7d protein from the hyperthermophile Sulfolobus solfataricus, the increased melting temperature of the thermostable protein is due to a broadening as well as a significant lifting of its stability curve. However, at their physiological temperatures, 310K for mesophilic SH3 domains and 350K for Sso7d, eukaryotic SH3 domains and Sso7d show very similar stabilities. Proteins 31:309–319, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
The polyglutamine diseases are a family of nine proteins where intracellular protein misfolding and amyloid-like fibril formation are intrinsically coupled to disease. Previously, we identified a complex two-step mechanism of fibril formation of pathologically expanded ataxin-3, the causative protein of spinocerebellar ataxia type-3 (Machado-Joseph disease). Strikingly, ataxin-3 lacking a polyglutamine tract also formed fibrils, although this occurred only via a single-step that was homologous to the first step of expanded ataxin-3 fibril formation. Here, we present the first kinetic analysis of a disease-associated polyglutamine repeat protein. We show that ataxin-3 forms amyloid-like fibrils by a nucleation-dependent polymerization mechanism. We kinetically model the nucleating event in ataxin-3 fibrillogenesis to the formation of a monomeric thermodynamic nucleus. Fibril elongation then proceeds by a mechanism of monomer addition. The presence of an expanded polyglutamine tract leads subsequently to rapid inter-fibril association and formation of large, highly stable amyloid-like fibrils. These results enhance our general understanding of polyglutamine fibrillogenesis and highlights the role of non-poly(Q) domains in modulating the kinetics of misfolding in this family.  相似文献   

8.
We previously reported that under certain experimental conditions, many variants of the B1 domain of IgG-binding protein G from Streptococcus form fibrils reproducibly. The variant I6T53 was the focus of the present study because the lag phase in the kinetics of fibril formation by this variant is significantly longer than that of other variants. This lag phase is distinguished by changes in both intrinsic fluorescence intensity and in light scattering of the protein. NMR diffusion measurements suggest that the soluble protein during the lag phase is monomeric. The kinetic profiles of fibril formation are found to depend on experimental conditions. The first kinetic phase diminishes almost completely when the reaction is seeded with preformed amyloid fibrils.  相似文献   

9.
We present a verified computational model of the SH3 domain transition state (TS) ensemble. This model was built for three separate SH3 domains using experimental phi-values as structural constraints in all-atom protein folding simulations. While averaging over all conformations incorrectly considers non-TS conformations as transition states, quantifying structures as pre-TS, TS, and post-TS by measurement of their transmission coefficient ("probability to fold", or p(fold)) allows for rigorous conclusions regarding the structure of the folding nucleus and a full mechanistic analysis of the folding process. Through analysis of the TS, we observe a highly polarized nucleus in which many residues are solvent-exposed. Mechanistic analysis suggests the hydrophobic core forms largely after an early nucleation step. SH3 presents an ideal system for studying the nucleation-condensation mechanism and highlights the synergistic relationship between experiment and simulation in the study of protein folding.  相似文献   

10.
To investigate the relationships between sequence conservation, protein stability, and protein function, we have measured the thermodynamic stability, folding kinetics, and in vitro peptide-binding activity of a large number of single-site substitutions in the hydrophobic core of the Fyn SH3 domain. Comparison of these data to that derived from an analysis of a large alignment of SH3 domain sequences revealed a very good correlation between the distinct pattern of conservation observed at each core position and the thermodynamic stability of mutants. Conservation was also found to correlate well with the unfolding rates of mutants, but not to the folding rates, suggesting that evolution selects more strongly for optimal native state packing interactions than for maximal folding rates. Structural analysis suggests that residue-residue core packing interactions are very similar in all SH3 domains, which provides an explanation for the correlation between conservation and mutant stability effects studied in a single SH3 domain. We also demonstrate a correlation between stability and the in vivo activity of mutants, and between conservation and activity. However, the relationship between conservation and activity was very strong only for the three most conserved hydrophobic core positions. The weaker correlation between activity and conservation seen at the other seven core positions indicates that maintenance of protein stability is the dominant selective pressure at these positions. In general, the pattern of conservation at hydrophobic core positions appears to arise from conserved packing constraints, and can be effectively utilized to predict the destabilizing effects of amino acid substitutions.  相似文献   

11.
Aggregation of the SH3 domain of the PI3 kinase, both as a single domain and as a tandem repeat in which the C terminus of one domain is linked to the N terminus of another by a flexible linker of ten glycine/serine residues, has been studied under a range of conditions in order to investigate the mechanism of protein aggregation and amyloid formation. The tandem repeat was found to form amyloid fibrils much more readily than the single domain under the acidic conditions used here, and the fibrils themselves have higher morphological homogeneity. The folding-unfolding transition of the PI3-SH3 domain shows two-state behaviour and is pH dependent; at pH 3.6, which is near the pH mid-point for folding and only slightly below the isoelectric point of the protein, both the single domain and the tandem repeat spontaneously form broad distributions of soluble oligomers without requirement for nucleation. Under prolonged incubation under these conditions, the oligomers convert into thin, curly fibrils that interact with thioflavin-T, suggesting that they contain an organised beta-sheet structure. Under more acidic conditions (pH 2.0) where the proteins are fully denatured and carry a positive net charge, long, straight fibrils are formed in a process having a pronounced lag phase. The latter was found to be reduced dramatically by the addition of oligomers exceeding a critical size of approximately 20 molecules. The results suggest that the process of aggregation of these SH3 domains can take place by a variety of mechanisms, ranging from downhill formation of relatively amorphous species to nucleated formation of highly organised structures, the relative importance of which varies greatly with solution conditions. Comparison with the behaviour of other amyloidogenic systems suggests that the general mechanistic features outlined here are likely to be common to at least a wide variety of peptides and proteins.  相似文献   

12.
The SH3 domain folding transition state structure contains two well-ordered turn regions, known as the diverging turn and the distal loop. In the Src SH3 domain transition state, these regions are stabilized by a hydrogen bond between Glu30 in the diverging turn and Ser47 in the distal loop. We have examined the effects on folding kinetics of amino acid substitutions at the homologous positions (Glu24 and Ser41) in the Fyn SH3 domain. In contrast to most other folding kinetics studies which have focused primarily on non-disruptive substitutions with Ala or Gly, here we have examined the effects of substitutions with diverse amino acid residues. Using this approach, we demonstrate that the transition state structure is generally tolerant to amino acid substitutions. We also uncover a unique role for Ser at position 41 in facilitating folding of the distal loop, which can only be replicated by Asp at the same position. Both these residues appear to accelerate folding through the formation of short-range side-chain to backbone hydrogen bonds. The folding of the diverging turn region is shown to be driven primarily by local interactions. The diverging turn and distal loop regions are found to interact in the transition state structure, but only in the context of particular mutant backgrounds. This work demonstrates that studying the effects of a variety of amino acid substitutions on protein folding kinetics can provide unique insights into folding mechanisms which cannot be obtained by standard Phi value analysis.  相似文献   

13.
A number of the chimeric constructs with spectrin SH3 domain were designed for structural and thermodynamic studies of protein self-assembly and protein-ligand interactions. SH3 domains, components of many regulatory proteins, operate through weak interactions with proline-rich regions of polypeptide chains. The recombinant construct (WT-CIIA) studied in this work was constructed by linking the peptide ligand PPPVPPYSAG to the domain C-terminus via a long 12-residue linker to increase the affinity of this ligand for the spectrin domain, thereby ensuring a stable positioning of the polyproline helix to the conserved ligand-binding site in orientation II, which is regarded as untypical of the interaction between this domain and oligopeptides. A comparison of fluorescence spectra of the initial domain and the recombinant protein WT-CIIA suggests that the ligand sticks to the conservative binding site. However, analysis of the equilibrium urea-induced unfolding has demonstrated that this is an unstable contact, which leads to a two-stage unfolding of the chimeric protein. The protein WT-CIIA was crystallized; a set of X-ray diffraction data with a resolution of 1.75 Å was recorded from individual crystals. A preliminary analysis of these diffraction data has demonstrated that the crystals belong to space group P32 with the following unit cell parameters: a = b = 36.39, c = 112.17 Å, a = β = 90.0, and γ = 120.0.  相似文献   

14.
alpha-Synuclein is a pre-synaptic protein, the function of which is not completely understood, but its pathological form is involved in neurodegenerative diseases. In vitro, alpha-synuclein spontaneously forms amyloid fibrils. Here, we report that alphaB-crystallin, a molecular chaperone found in Lewy bodies that are characteristic of Parkinson's disease (PD), is a potent in vitro inhibitor of alpha-synuclein fibrillization, both of wild-type and the two mutant forms (A30P and A53T) that cause familial, early onset PD. In doing so, large irregular aggregates of alpha-synuclein and alphaB-crystallin are formed implying that alphaB-crystallin redirects alpha-synuclein from a fibril-formation pathway towards an amorphous aggregation pathway, thus reducing the amount of physiologically stable amyloid deposits in favor of easily degradable amorphous aggregates. alpha-Synuclein acts as a molecular chaperone to prevent the stress-induced, amorphous aggregation of target proteins. Compared to wild-type alpha-synuclein, both mutant forms have decreased chaperone activity in vitro against the aggregation of reduced insulin at 37 degrees C and the thermally induced aggregation of betaL-crystallin at 60 degrees C. Wild-type alpha-synuclein abrogates the chaperone activity of alphaB-crystallin to prevent the precipitation of reduced insulin. Interaction between these two chaperones and formation of a complex are also indicated by NMR spectroscopy, size-exclusion chromatography and mass spectrometry. In summary, alpha-synuclein and alphaB-crystallin interact readily with each other and affect each other's properties, in particular alpha-synuclein fibril formation and alphaB-crystallin chaperone action.  相似文献   

15.
Serum amyloid A1 (SAA1) is an apolipoprotein that binds to the high‐density lipoprotein (HDL) fraction of the serum and constitutes the fibril precursor protein in systemic AA amyloidosis. We here show that HDL binding blocks fibril formation from soluble SAA1 protein, whereas internalization into mononuclear phagocytes leads to the formation of amyloid. SAA1 aggregation in the cell model disturbs the integrity of vesicular membranes and leads to lysosomal leakage and apoptotic death. The formed amyloid becomes deposited outside the cell where it can seed the fibrillation of extracellular SAA1. Our data imply that cells are transiently required in the amyloidogenic cascade and promote the initial nucleation of the deposits. This mechanism reconciles previous evidence for the extracellular location of deposits and amyloid precursor protein with observations the cells are crucial for the formation of amyloid.  相似文献   

16.
The folding thermodynamics and kinetics of the alpha-spectrin SH3 domain with a redesigned hydrophobic core have been studied. The introduction of five replacements, A11V, V23L, M25V, V44I and V58L, resulted in an increase of 16% in the overall volume of the side-chains forming the hydrophobic core but caused no remarkable changes to the positions of the backbone atoms. Judging by the scanning calorimetry data, the increased stability of the folded structure of the new SH3-variant is caused by entropic factors, since the changes in heat capacity and enthalpy upon the unfolding of the wild-type and mutant proteins were identical at 298 K. It appears that the design process resulted in an increase in burying both the hydrophobic and hydrophilic surfaces, which resulted in a compensatory effect upon the changes in heat capacity and enthalpy. Kinetic analysis shows that both the folding and unfolding rate constants are higher for the new variant, suggesting that its transition state becomes more stable compared to the folded and unfolded states. The phi(double dagger-U) values found for a number of side-chains are slightly lower than those of the wild-type protein, indicating that although the transition state ensemble (TSE) did not change overall, it has moved towards a more denatured conformation, in accordance with Hammond's postulate. Thus, the acceleration of the folding-unfolding reactions is caused mainly by an improvement in the specific and/or non-specific hydrophobic interactions within the TSE rather than by changes in the contact order. Experimental evidence showing that the TSE changes globally according to its hydrophobic content suggests that hydrophobicity may modulate the kinetic behaviour and also the folding pathway of a protein.  相似文献   

17.
The three-dimensional structure of the N-terminal SH3 domain (residues 583–660) of murine Vav, which contains a tetra-proline sequence (Pro 607-Pro 610), was determined by NMR. The solution structure of the SH3 domain shows a typical SH3 fold, but it exists in two conformations due to cis-trans isomerization at the Gly614-Pro615 bond. The NMR structure of the P615G mutant, where Pro615 is replaced by glycine, reveals that the tetra-proline region is inserted into the RT-loop and binds to its own SH3 structure. The C-terminal SH3 domain of Grb2 specifically binds to the trans form of the N-terminal SH3 domain of Vav. The surface of Vav N-terminal SH3 which binds to Grb2 C-terminal SH3 was elucidated by chemical shift mapping experiments using NMR. The surface does not involve the tetra-proline region but involves the region comprising the n-src loop, the N-terminal and the C-terminal regions. This surface is located opposite to the tetra-proline containing region, consistent with that of our previous mutagenesis studies.  相似文献   

18.
  1. Download : Download high-res image (329KB)
  2. Download : Download full-size image
  相似文献   

19.
The goal of this study was to examine fibril formation by the heterodimeric eukaryotic histones (H2A-H2B and H3-H4) and homodimeric archaeal histones (hMfB and hPyA1). The histone fold dimerization motif is an obligatorily domain-swapped structure comprised of two fused helix:β-loop:helix motifs. Domain swapping has been proposed as a mechanism for the evolution of protein oligomers as well as a means to form precursors in the formation of amyloid-like fibrils. Despite sharing a common fold, the eukaryotic histones of the core nucleosome and archaeal histones fold by kinetic mechanisms of differing complexity with transient population of partially folded monomeric and/or dimeric species. No relationship was apparent between fibrillation propensity and equilibrium stability or population of kinetic intermediates. Only H3 and H4, as isolated monomers and as a heterodimer, readily formed fibrils at room temperature, and this propensity correlates with the significantly lower solubility of these polypeptides. The fibrils were characterized by ThT fluorescence, FTIR, and far-UV CD spectroscopies and electron microscopy. The helical histone fold comprises the protease-resistant core of the fibrils, with little or no protease protection of the poorly structured N-terminal tails. The highly charged tails inhibit fibrillation through electrostatic repulsion. Kinetic studies indicate that H3 and H4 form a co-fibril, with simultaneous incorporation of both histones. The potential impact of H3 and H4 fibrillation on the cytotoxicity of extracellular histones and α-synuclein-mediated neurotoxicity and fibrillation is considered.  相似文献   

20.
Ribonuclease Sa and two charge-reversal variants can be converted into amyloid in vitro by the addition of 2,2,2-triflouroethanol (TFE). We report here amyloid fibril formation for these proteins as a function of pH. The pH at maximal fibril formation correlates with the pH dependence of protein solubility, but not with stability, for these variants. Additionally, we show that the pH at maximal fibril formation for a number of well-characterized proteins is near the pI, where the protein is expected to be the least soluble. This suggests that protein solubility is an important determinant of fibril formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号