首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The success of the cutaneous immune system reflects its ability to rapidly and efficiently recruit leukocytes to areas of trauma and infection. Skin-homing memory T cells expressing cutaneous lymphocyte-associated Ag tether on the walls of postcapillary venules in inflamed skin via interaction with endothelial E-selectin and roll in response to the shear stress imparted by flowing blood. Rolling cells sample the vascular surface for chemoattractant compounds (e.g., thymus- and activation-regulated chemokine/CCL17 interacting with CCR4 on the leukocyte surface) and, if successfully stimulated, progress to firm arrest and transmigration mediated by LFA-1 and vascular ICAM-1. Although it is established that this sequence of events draws T cells into inflamed skin, the mechanisms directing trafficking of T cells to noninflamed skin are less well characterized. We hypothesized that basal expression and colocalization of E-selectin, chemokine (e.g., CCL17), and ICAM-1 in dermal vessels could serve to recruit T cells to noninflamed human skin. Immunohistochemical staining for E-selectin and CD31 demonstrated E-selectin expression in a restricted subset of dermal vessels in noninflamed human skin from three different sites. Confocal multicolor immunofluorescence imaging revealed a nonuniform distribution of E-selectin in dermal vessels as well as colocalization of E-selectin with CCL17 and ICAM-1. Coexpression of these molecules on blood vessels in noninflamed skin provides the basis for a model of cutaneous immunosurveillance system active in the absence of pathologic inflammation.  相似文献   

2.
CD4+CD25+ T regulatory cells (Treg) are thought to be important in the peripheral tolerance. Recent evidence suggests that human peripheral blood CD4+CD25+ T cells are heterogeneous and contain both CD4+CD25(high) T cells with potent regulatory activity and many more CD4+CD25(low/med) nonregulatory T cells. In this study, we found that virtually all peripheral blood CD4+CD25(high)Foxp3+ Treg expressed high levels of the chemokine receptor CCR4. In addition, 80% of Treg expressed cutaneous lymphocyte Ag (CLA) and 73% expressed CCR6. These molecules were functional, as CLA+ Treg showed CD62E ligand activity and demonstrable chemotactic responses to the CCR4 ligands CCL22 and CCL17 and to the CCR6 ligand CCL20. The phenotype and chemotactic response of these Treg were significantly different from those of CD4+CD25(med) nonregulatory T cells. We further demonstrated that blood CLA+ Treg inhibited CD4+CD25- T cell proliferation induced by anti-CD3. Based on homing receptor profile, CLA+ Treg should enter normal skin. We next isolated CD4+CD25(high) T cells directly from normal human skin; these cells suppressed proliferation of skin CD4+CD25- T cells. Therefore, the majority of true circulating Treg express functional skin-homing receptors, and human Treg may regulate local immune responses in normal human skin.  相似文献   

3.
Th1- and Th2-polarized immune responses are crucial in the defense against pathogens but can also promote autoimmunity and allergy. The chemokine receptors CXCR3 and CCR4 have been implicated in differential trafficking of IFN-gamma- and IL-4-producing T cells, respectively, but also in tissue and inflammation-specific homing independent of cytokine responses. Here, we tested whether CD4+ T cells isolated from murine tissues under homeostatic or inflammatory conditions exhibit restricted patterns of chemotactic responses that correlate with their production of IFN-gamma, IL-4, or IL-10. In uninfected mice, IL-4-producing T cells preferentially migrated to the CCR4 ligand, CCL17, whereas IFN-gamma-expressing T cells as well as populations of IL-4+ or IL-10+ T cells migrated to the CXCR3 ligand, CXCL9. All cytokine-producing T cell subsets strongly migrated to the CXCR4 ligand, CXCL12. We assessed chemotaxis of T cells isolated from mice infected with influenza A virus or the nematode Nippostrongylus brasiliensis, which induce a strong Th1 or Th2 response in the lung, respectively. Unexpectedly, the chemotactic responses of IL-4+ T cells and T cells expressing the immunosuppressive cytokine IL-10 were influenced not only by the strongly Th1- or Th2-polarized environments but also by their anatomical localization, i.e., lung or spleen. In contrast, IFN-gamma+ T cells exhibited robust chemotaxis toward CXCL9 and had the most consistent migration pattern in both infection models. The results support a model in which the trafficking responses of many effector and regulatory T cells are regulated as a function of the infectious and tissue environments.  相似文献   

4.
CCR4 is purported to be a Th type 2 (Th2) cell-biased receptor but its functional role is unclear. Recent studies suggest that chemokine receptor expression and function are more complex in vivo and raise doubts regarding restricted CCR4 expression by Th2 cells. To address these issues, we analyzed the role of CCR4 in highly polarized models of Th type 1 (Th1) and Th2 cell-mediated pulmonary granulomas, respectively, elicited by i.v. challenge of primed mice with either mycobacterial purified protein derivative or schistosomal egg Ag-coated beads. CCR4 agonists were expressed during both responses, correlating with a shift of CCR4+ CD4+ T cells from blood to lungs. CCL22 dominated in draining nodes during the Th1 response. Analysis of CD4+ effector T cells revealed CCR4 expression and CCR4-mediated chemotaxis by both IFN-gamma and IL-4 producers. Studies of CCR4 knockout (CCR4(-/-)) mice showed partial impairment of the local type-2 cytokine response and surprisingly strong impairment of the Th1 response with abrogated IFN-gamma production during secondary but not primary challenge. Adoptive transfer indicated CCR4(-/-)CD4+ Th1 cell function was defective but this could not be reconstituted with wild-type (CCR4(+/+)) CD4+ T cells indicating involvement of another CCR4+ population. Coculture of CCR4(+/+)CD4+ T cells and CCR4(-/-) dendritic cells revealed intact IL-2 but impaired IFN-gamma production, pointing to a role for CCR4+ dendritic cells in effector cell expression. Therefore, CCR4 is not Th2-restricted and was required for sustenance and expression of the Th1 effector/memory response to mycobacterial Ags.  相似文献   

5.
We have investigated the chemokine receptor expression and migratory behavior of a new subset of nickel-specific skin-homing regulatory CD4(+) T cells (Th(IL-10)) releasing high levels of IL-10, low IFN-gamma, and undetectable IL-4. These cells inhibit in a IL-10-dependent manner the capacity of dendritic cells to activate nickel-specific Tc1 and Th1 lymphocytes. RNase protection assay and FACS analysis revealed the expression of a vast repertoire of chemokine receptors on resting Th(IL-10), including the Th1-associated CXCR3 and CCR5, and the Th2-associated CCR3, CCR4, and CCR8, the latter at higher levels compared with Th2 cells. The most active chemokines for resting Th(IL-10), in terms of calcium mobilization and in vitro migration, were in order of potency: CCL2 (monocyte chemoattractant protein-1, CCR2 ligand), CCL4 (macrophage-inflammatory protein-1beta, CCR5 ligand), CCL3 (macrophage-inflammatory protein-1alpha, CCR1/5 ligand), CCL17 (thymus and activation-regulated chemokine, CCR4 ligand), CCL1 (I-309, CCR8 ligand), CXCL12 (stromal-derived factor-1, CXCR4), and CCL11 (eotaxin, CCR3 ligand). Consistent with receptor expression down-regulation, activated Th(IL-10) exhibited a reduced or absent response to most chemokines, but retained a significant migratory capacity to I-309, monocyte chemoattractant protein-1, and thymus and activation-regulated chemokine. I-309, which was ineffective on Th1 lymphocytes, attracted more efficiently Th(IL-10) than Th2 cells. I-309 and CCR8 mRNAs were not detected in unaffected skin and were up-regulated at the skin site of nickel-allergic reaction, with an earlier expression kinetics compared with IL-10 and IL-4. Results indicate that skin-homing regulatory Th(IL-10) lymphocytes coexpress functional Th1- and Th2-associated chemokine receptors, and that CCR8/I-309-driven recruitment of both resting and activated Th(IL-10) cells may be critically involved in the regulation of Th1-mediated skin allergic disorders.  相似文献   

6.
CCR4, a chemokine receptor for macrophage-derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC), has been implicated as a preferential marker for Th2 lymphocytes. Following in vitro polarization protocols, most Th2 lymphocytes express CCR4 and respond to its ligands TARC and MDC, whereas Th1 lymphocytes express CXC chemokine receptor 3 and CCR5 (but not CCR4). We show in this study that CCR4 is a major receptor for MDC and TARC on T lymphocytes, as anti-CCR4 mAbs significantly inhibit the migration of these cells to MDC and TARC. CCR4 is also highly expressed in most single-positive CD4(+) thymocytes and on a major fraction of blood nonintestinal (alpha(4)beta(7)(-)) memory CD4 lymphocytes, including almost all skin memory CD4(+) cells expressing the cutaneous lymphocyte Ag (CLA), but weakly or not expressed in other subsets in thymus and blood. Interestingly, major fractions of circulating CCR4(+) memory CD4 lymphocytes coexpress the Th1-associated receptors CXC chemokine receptor 3 and CCR5, suggesting a potential problem in using these markers for Th1 vs Th2 lymphocyte cells. Moreover, although production of Th2 cytokines in blood T cells is associated with CCR4(+) CD4 lymphocytes, significant numbers of freshly isolated circulating CCR4(+) memory CD4 lymphocytes (including both CLA(+) and CLA(-) fractions) readily express the Th1 cytokine IFN-gamma after short-term stimulation. Our results are consistent with a role for CCR4 as a major trafficking receptor for systemic memory T cells, and indicate that the patterns and regulation of chemokine receptor expression in vivo are more complex than indicated by current in vitro models of Th1 vs Th2 cell generation.  相似文献   

7.
It is a question of interest whether Th17 cells express trafficking receptors unique to this Th cell lineage and migrate specifically to certain tissue sites. We found several Th17 cell subsets at different developing stages in a human secondary lymphoid organ (tonsils) and adult, but not in neonatal, blood. These Th17 cell subsets include a novel in vivo-stimulated tonsil IL17+ T cell subset detected without any artificial stimulation in vitro. We investigated in depth the trafficking receptor phenotype of the Th17 cell subsets in tonsils and adult blood. The developing Th17 cells in tonsils highly expressed both Th1- (CCR2, CXCR3, CCR5, and CXCR6) and Th2-associated (CCR4) trafficking receptors. Moreover, Th17 cells share major non-lymphoid tissue trafficking receptors, such as CCR4, CCR5, CCR6, CXCR3, and CXCR6, with FOXP3+ T regulatory cells. In addition, many Th17 cells express homeostatic chemokine receptors (CD62L, CCR6, CCR7, CXCR4, and CXCR5) implicated in T cell migration to and within lymphoid tissues. Expression of CCR6 and CCR4 by some Th17 cells is not a feature unique to Th17 cells but shared with FOXP3+ T cells. Interestingly, the IL17+IFN-gamma+ Th17 cells have the features of both IL17-IFN-gamma+ Th1 and IL17+IFN-gamma- Th17 cells in expression of trafficking receptors. Taken together, our results revealed that Th17 cells are highly heterogeneous, in terms of trafficking receptors, and programmed to share major trafficking receptors with other T cell lineages. These findings have important implications in their distribution in the human body in relation to other regulatory T cell subsets.  相似文献   

8.
9.
Intracranial infection of C57BL/6 mice with mouse hepatitis virus (MHV) results in an acute encephalomyelitis followed by a demyelinating disease similar in pathology to the human disease multiple sclerosis (MS). CD4(+) T cells are important in amplifying demyelination by attracting macrophages into the central nervous system (CNS) following viral infection; however, the mechanisms governing the entry of these cells into the CNS are poorly understood. The role of chemokine receptor CCR5 in trafficking of virus-specific CD4(+) T cells into the CNS of MHV-infected mice was investigated. CD4(+) T cells from immunized CCR5(+/+) and CCR5(-/-) mice were expanded in the presence of the immunodominant epitope present in the MHV transmembrane (M) protein encompassing amino acids 133 to 147 (M133-147). Adoptive transfer of CCR5(+/+)-derived CD4(+) T cells to MHV-infected RAG1(-/-) mice resulted in CD4(+)-T-cell entry into the CNS and clearance of virus from the brain. These mice also displayed robust demyelination correlating with macrophage accumulation within the CNS. Conversely, CD4(+) T cells from CCR5(-/-) mice displayed an impaired ability to traffic into the CNS of MHV-infected RAG1(-/-) recipients, which correlated with increased viral titers, diminished macrophage accumulation, and limited demyelination. Analysis of chemokine receptor mRNA expression by M133-147-expanded CCR5(-/-)-derived CD4(+) T cells revealed reduced expression of CCR1, CCR2, and CXCR3, indicating that CCR5 signaling is important in increased expression of these receptors, which aid in trafficking of CD4(+) T cells into the CNS. Collectively these results demonstrate that CCR5 signaling is important to migration of CD4(+) T cells to the CNS following MHV infection.  相似文献   

10.
Using noncompetitive methodologies comparing CD43(+/+) and CD43(-/-) mice, it has been reported that CD43(-/-) leukocytes exhibit reduced recruitment efficiency to sites of inflammation. More recent analyses demonstrate that CD43 on activated T cells can function as an E-selectin ligand (E-SelL) in vitro, suggesting that CD43 might promote rolling interactions during recruitment of leukocytes and account for the reported recruitment deficits in CD43(-/-) T cells and neutrophils in vivo. Internally controlled competitive in vivo methods using fluorescent tracking dyes were applied to compare recruitment efficiency of CD43(+/+) vs CD43(-/-) activated T cells to inflamed skin and of peripheral blood neutrophils to inflamed peritoneum. A simple CFSE perfusion method was developed to distinguish arterial/venous vasculature and confirm appropriate extravasation through venules in a Con A-induced cutaneous inflammation model. In vivo recruitment of peripheral blood neutrophils to inflamed peritoneum was core 2 GlcNAcT-I dependent, but recruitment efficiency was not influenced by absence of CD43. There were also no significant differences in core 2 GlcNAcT-I-dependent, selectin-dependent, cutaneous recruitment of activated T cells from CD43(+/+) and congenic CD43(-/-) mice in either B6 or P-selectin(-/-) recipients despite biochemical confirmation that a CD43-specific E-SelL was present on activated T cells. We conclude that recruitment of neutrophils and activated T cells in these in vivo models is not influenced by CD43 expression and that if CD43 on activated T cells performs an E-SelL function in vivo, it contributes in a limited physiological context.  相似文献   

11.
The role of Th17 cells in cancer patients remains unclear and controversial. In this study, we have analyzed the phenotype of in vitro primed Th17 cells and further characterized their function on the basis of CCR4 and CCR6 expression. We show a novel function for a subset of IL-17-secreting CD4(+) T cells, namely, CCR4(+)CCR6(+)Th17 cells. When cultured together, CCR4(+)CCR6(+)Th17 cells suppressed the lytic function, proliferation, and cytokine secretion of both Ag-specific and CD3/CD28/CD2-stimulated autologous CD8(+) T cells. In contrast, CCR4(-)CCR6(+) CD4(+) T cells, which also secrete IL-17, did not affect the CD8(+) T cells. Suppression of CD8(+) T cells by CCR4(+)CCR6(+)Th17 cells was partially dependent on TGF-β, because neutralization of TGF-β in cocultures reversed their suppressor function. In addition, we also found an increase in the frequency of CCR4(+)CCR6(+), but not CCR4(-)CCR6(+) Th17 cells in peripheral blood of hepatocellular carcinoma patients. Our study not only underlies the importance of analysis of subsets within Th17 cells to understand their function, but also suggests Th17 cells as yet another immune evasion mechanism in hepatocellular carcinoma. This has important implications when studying the mechanisms of carcinogenesis, as well as designing effective immunotherapy protocols for patients with cancer.  相似文献   

12.
We have previously studied B cells, from people and mice, that express rotavirus-specific surface immunoglobulin (RV-sIg) by flow cytometry with recombinant virus-like particles that contain green fluorescent protein. In the present study we characterized circulating B cells with RV-sIg in children with acute and convalescent infection. During acute infection, circulating RV-sIgD(-) B cells are predominantly large, CD38(high), CD27(high), CD138(+/-), CCR6(-), alpha4beta7(+), CCR9(+), CCR10(+), cutaneous lymphocyte antigen-negative (CLA(-)), L-selectin(int/-), and sIgM(+), sIgG(-), sIgA(+/-) lymphocytes. This phenotype likely corresponds to gut-targeted plasma cells and plasmablasts. During convalescence the phenotype switches to small and large lymphocytes, CD38(int/-), CD27(int/-), CCR6(+), alpha4beta7(+/-), CCR9(+/-) and CCR10(-), most likely representing RV-specific memory B cells with both gut and systemic trafficking profiles. Of note, during acute RV infection both total and RV-specific murine IgM and IgA antibody-secreting cells migrate efficiently to CCL28 (the CCR10 ligand) and to a lesser extent to CCL25 (the CCR9 ligand). Our results show that CCR10 and CCR9 can be expressed on IgM as well as IgA antibody-secreting cells in response to acute intestinal infection, likely helping target these cells to the gut. However, these intestinal infection-induced plasmablasts lack the CLA homing receptor for skin, consistent with mechanisms of differential CCR10 participation in skin T versus intestinal plasma cell homing. Interestingly, RV memory cells generally lack CCR9 and CCR10 and instead express CCR6, which may enable recruitment to diverse epithelial sites of inflammation.  相似文献   

13.
CCR8 was initially described as a Th2 cell-restricted receptor, but this has not been fully tested in vivo. The present study used ex vivo and in vivo approaches to examine the distribution and functional significance of CCR8 among CD4+ T cells. Populations of cytokine-secreting CD4+ T cells were generated in primed mice with Th1 or Th2 cell-mediated pulmonary granulomas, respectively elicited by i.v. challenge with either Mycobacteria bovis purified protein derivative- or Schistosoma mansoni egg Ag (SEA)-coated beads. Cytokine-producing CD4+ T cells were isolated from Ag-stimulated draining lymph node cultures by positive selection. Quantitative analysis of cytokine mRNA indicated enriched populations of IFN-gamma-, IL-4-, and IL-10-producing cells. Analysis of chemokine receptor mRNA indicated that IL-10+ cells selectively expressed CCR8 in the SEA bead-elicited type 2 response. The IL-10+CCR8+ populations were CD25+ and CD44+ but lacked enhanced Foxp3 expression. Adoptive transfer to naive recipients indicated that IL-10+ T cells alone could not transfer type 2 inflammation. Analysis of SEA bead-challenged CCR8-/- mice indicated significantly impaired IL-10 production as well as reductions in granuloma eosinophils. Adoptive transfer of CD4+CCR8+/+ T cells corrected cytokine and inflammation defects, but the granuloma eosinophil recruitment defect persisted when donor cells were depleted of IL-10+ cells. Accordingly, local IL-10 production correlated with CCR8 ligand (CCL1) expression and the appearance of CCR8+ cells in granulomatous lungs. Thus, IL-10-producing, CCR8+CD4+CD25+CD44+ T cells are generated during SEA challenge, which augment the Th2-mediated eosinophil-rich response to the parasite Ags.  相似文献   

14.
A CD30 ligand (CD30L, CD153) is a type II membrane-associated glycoprotein belonging to the TNF family. To illustrate the potential role of CD30L in CD4(+) Th1 cell responses, we investigated the fate of Ag-specific CD4(+) T cells in CD30L-deficient (CD30L(-/-)) mice after Mycobacterium bovis bacillus Calmette-Guérin (BCG) infection. The number of bacteria was significantly higher in organs of CD30L(-/-) mice than in wild-type (WT) mice 4 wk postinfection. The numbers of purified protein derivative- or Ag85B-specific-IFN-gamma-producing-CD4(+) T cells in spleen, lung, or peritoneal exudate cells were significantly fewer in CD30L(-/-) mice than in WT mice. During the infection, CD30L was expressed mainly by CD44(+)CD3(+)CD4(+) T cells but not by CD3(+)CD8(+) T cells, B cells, dendritic cells, or macrophages. Costimulation with agonistic anti-CD30 mAb or coculturing with CD30L-transfected P815 cells restored IFN-gamma production by CD4(+) T cells from BCG-infected CD30L(-/-) mice. Coculturing with CD30L(+/+)CD4(+) T cells from BCG-infected WT mice also restored the number of IFN-gamma(+)CD30L(-/-)CD4(+) T cells. When transferred into the CD30L(+/+) mice, Ag-specific donor CD30L(-/-) CD4(+) T cells capable of producing IFN-gamma were restored to the compared level seen in CD30L(+/+) CD4(+) T cells on day 10 after BCG infection. When naive CD30L(+/+) T cells were transferred into CD30L(-/-) mice, IFN-gamma-producing-CD4(+) Th1 cells of donor origin were normally generated following BCG infection, and IFN-gamma-producing-CD30L(-/-)CD4(+) Th1 cells of host origin were partly restored. These results suggest that CD30L/CD30 signaling executed by CD30(+) T-CD30L(+) T cell interaction partly play a critical role in augmentation of Th1 response capable of producing IFN-gamma against BCG infection.  相似文献   

15.
CD4+ T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4+ T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4+ T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4+ T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.  相似文献   

16.
The coordinated expression of chemokines and receptors may be important in the directed migration of alloreactive T cells during graft-vs-host disease (GVHD). Recent work demonstrated in a murine model that transfer of CCR5-deficient (CCR5(-/-)) donor cells to nonconditioned haploidentical recipients resulted in reduced donor cell infiltration in liver and lymphoid tissues compared with transfer of CCR5(+/+) cells. To investigate the function of CCR5 during GVHD in conditioned transplant recipients, we transferred CCR5(-/-) or wild-type C57BL/6 (B6) T cells to lethally irradiated B6D2 recipients. Unexpectedly, we found an earlier time to onset and a worsening of GVHD using CCR5(-/-) T cells, which was associated with significant increases in the accumulation of alloreactive CD4(+) and CD8(+) T cells in liver and lung. Conversely, the transfer of CCR5(-/-) donor cells to nonirradiated recipients led to reduced infiltration of target organs, confirming previous studies and demonstrating that the role of CCR5 on donor T cells is dependent on conditioning of recipients. Expression of proinflammatory chemokines in target tissues was dependent on conditioning of recipients, such that CXCL10 and CXCL11 were most highly expressed in tissues of irradiated recipients during the first week post-transplant. CCR5(-/-) T cells were shown to have enhanced migration to CXCL10, and blocking this ligand in vivo improved survival in irradiated recipients receiving CCR5(-/-) T cells. Our data indicate that the effects of inhibiting CCR5/ligand interaction on donor T cells during GVHD differ depending on conditioning of recipients, a finding with potentially important clinical significance.  相似文献   

17.
Herpes simplex virus (HSV) infections of humans are characterized by intermittent, lytic replication in epithelia. Circulating HSV-specific CD4 T cells express lower levels of preformed cutaneous lymphocyte-associated antigen (CLA), a skin-homing receptor, than do circulating HSV-specific CD8 T cells but, paradoxically, move into infected skin earlier than CD8 cells. Memory CD4 T cells develop strong and selective expression of CLA and E-selectin ligand while responding to HSV antigen in vitro. We now show that interleukin-12, type I interferon, and transforming growth factor beta are each involved in CLA expression by memory HSV type 2 (HSV-2)-specific CD4 T cells in peripheral blood mononuclear cells (PBMC). A reduction of the number of monocytes and dendritic cells from PBMC reduces CLA expression by HSV-2-responsive CD4 lymphoblasts, while their reintroduction restores this phenotype, identifying these cells as possible sources of CLA-promoting cytokines. Plasmacytoid dendritic cells are particularly potent inducers of CLA on HSV-reactive CD4 T cells. These observations are consistent with cooperation between innate and acquired immunity to promote a pattern of homing receptor expression that is physiologically appropriate for trafficking to infected tissues.  相似文献   

18.
The effector/memory T cell pool branches in homing subsets selectively trafficking to organs such as gut or skin. Little is known about the critical factors in the generation of skin-homing CD8+ T cells, although they are crucial effectors in skin-restricted immune responses such as contact hypersensitivity and melanoma defense. In this study, we show that intracutaneous, but not i.v. injection of bone marrow-derived dendritic cells induced skin-homing CD8+ T cells with up-regulated E-selectin ligand expression and effector function in contact hypersensitivity. The skin-homing potential and E-selectin ligand expression remained stable in memory phase without further Ag contact. In contrast, i.p. injection induced T cells expressing the gut-homing integrin alpha(4)beta(7). Although differential expression of these adhesion molecules was strictly associated with the immunization route, the postulated skin-homing marker CCR4 was transiently up-regulated in all conditions. Interestingly, dendritic cells from different tissues effectively induced the corresponding homing markers on T cells in vitro. Our results suggest a crucial role for the tissue microenvironment and dendritic cells in the instruction of T cells for tissue-selective homing and demonstrate that Langerhans cells are specialized to target T cells to inflamed skin.  相似文献   

19.
Some pathways of T cell differentiation are associated with characteristic patterns of chemokine receptor expression. A new lineage of effector/memory CD4+ T cells has been identified whose signature products are IL-17 cytokines and whose differentiation requires the nuclear receptor, RORgammat. These Th17 cells are critical effectors in mouse models of autoimmune disease. We have analyzed the association between chemokine receptor expression and IL-17 production for human T cells. Activating cord blood (naive) CD4+ T cells under conditions driving Th17 differentiation led to preferential induction of CCR6, CCR9, and CXCR6. Despite these data, we found no strong correlation between the production of IL-17 and expression of CCR9 or CXCR6. By contrast, our analyses revealed that virtually all IL-17-producing CD4+ T cells, either made in our in vitro cultures or found in peripheral blood, expressed CCR6, a receptor found on approximately 50% of CD4+ memory PBL. Compared with CD4+CD45RO+CCR6- cells, CD4+CD45RO+CCR6+ cells contained at least 100-fold more IL-17A mRNA and secreted 100-fold more IL-17 protein. The CCR6+ cells showed a similar enrichment in mRNA for RORgammat. CCR6 was likewise expressed on all IL-17-producing CD8+ PBL. CCR6 has been associated with the trafficking of T, B, and dendritic cells to epithelial sites, but has not been linked to a specific T cell phenotype. Our data reveal a fundamental feature of IL-17-producing human T cells and a novel role for CCR6, suggesting both new directions for investigating IL-17-related immune responses and possible targets for preventing inflammatory injury.  相似文献   

20.
During human immunodeficiency virus (HIV) infection, enhanced migration of infected cells to lymph nodes leads to efficient propagation of HIV-1. The selective chemokine receptors, including CXCR4 and CCR7, may play a role in this process, yet the viral factors regulating chemokine-dependent T cell migration remain relatively unclear. The functional cooperation between the CXCR4 ligand chemokine CXCL12 and the CCR7 ligand chemokines CCL19 and CCL21 enhances CCR7-dependent T cell motility in vitro as well as cell trafficking into the lymph nodes in vivo. In this study, we report that a recombinant form of a viral CXCR4 ligand, X4-tropic HIV-1 gp120, enhanced the CD4 T cell response to CCR7 ligands in a manner dependent on CXCR4 and CD4, and that this effect was recapitulated by HIV-1 virions. HIV-1 gp120 significantly enhanced CCR7-dependent CD4 T cell migration from the footpad of mice to the draining lymph nodes in in vivo transfer experiments. We also demonstrated that CXCR4 expression is required for stable CCR7 expression on the CD4 T cell surface, whereas CXCR4 signaling facilitated CCR7 ligand binding to the cell surface and increased the level of CCR7 homo- as well as CXCR4/CCR7 hetero-oligomers without affecting CCR7 expression levels. Our findings indicate that HIV-evoked CXCR4 signaling promotes CCR7-dependent CD4 T cell migration by up-regulating CCR7 function, which is likely to be induced by increased formation of CCR7 homo- and CXCR4/CCR7 hetero-oligomers on the surface of CD4 T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号