首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the mechanism of interaction between chaperonin GroEL and substrate proteins, we studied the conformational changes; of the fifth domain of human beta(2)-glycoprotein I upon binding to GroEL. The fifth domain has a large flexible loop, containing several hydrophobic residues surrounded by positively charged residues, which has been proposed to be responsible for the binding of beta(2)-glycoprotein I to negatively charged phospholipid membranes. The reduction by dithiothreitol of the three intramolecular disulfide bonds of the fifth domain was accelerated in the presence of stoichiometric amounts of GroEL, indicating that the fifth domain was destabilized upon interaction with GroEL. To clarify the GroEL-induced destabilization at the atomic level, we performed H/(2)H exchange of amide protons using heteronuclear NMR spectroscopy. The presence of GroEL promoted the H/(2)H exchange of most of the protected amide protons, suggesting that, although the flexible loop of the fifth domain is likely to be responsible for the initiation of binding to GroEL, the interaction with GroEL destabilizes the overall conformation of the fifth domain.  相似文献   

2.
The enteropathogen Campylobacter jejuni has the ability to synthesize glycan structures that are similar to mammalian gangliosides within the core component of its lipooligosaccharide (LOS). Exposure to ganglioside mimics in some individuals results in the production of autoantibodies that deleteriously attack nerve surface gangliosides, precipitating the onset of Guillain-Barré and Fisher syndromes (GBS and FS). We have characterized the interaction of four monoclonal antibodies (mAbs), established by sensitization of mice with LOS isolated from GBS- and FS-associated C. jejuni strains, with chemoenzymatically synthesized gangliooligosaccharides. Surface plasmon resonance (SPR) measurements demonstrate that three of the mAbs interact specifically with derivatives corresponding to their targeted gangliosides, with dissociation constants ranging from 10 to 20 microM. Antibody binding to the gangliooligosaccharides was probed by saturation transfer difference (STD) NMR spectroscopy. STD signals, resulting from antibody/oligosaccharide interaction, were observed for each of the four mAbs. In two cases, differential saturation transfer rates to oligosaccharide resonances enabled detailed epitope mapping. The binding of GD1a-S-Phe with GB1 is characterized by close association of the immunoglobulin with sites that are distributed over several residues of the oligosaccharide. This contrasts sharply with the profile observed for the binding of both GD3-S-Phe and GT1a-S-Phe with FS1. The close antigenic contacts in these ganglioside derivatives are confined to the N-acetylmannosaminyl portion of the terminal N-acetylneuraminic acid (NeuAc) residue of the disialosyl moiety. Our characterization of FS1 provides insight, at an atomic level, into how a single antigenic determinant presented by the LOS of C. jejuni can give rise to antibodies with binding promiscuity to [alphaNeuAc-(2-8)-alphaNeuAc]-bound epitopes and demonstrates why sera from FS patients have antibodies that are often reactive with more than one disialylated ganglioside.  相似文献   

3.
The interaction of the P-beta-Cat(19-44) peptide, a 26 amino acid peptide (K(19)AAVSHWQQQSYLDpSGIHpSGATTTAP(44)) that mimics the phosphorylated beta-Catenin antigen, has been studied with its monoclonal antibody BC-22, by transferred nuclear Overhauser effect NMR spectroscopy (TRNOESY) and saturation transfer difference NMR (STD NMR) spectroscopy. This antibody is specific to diphosphorylated beta-Catenin and does not react with the non-phosphorylated protein. Phosphorylation of beta-Catenin at sites Ser33 and Ser37 on the DSGXXS motif is required for the interaction of beta-Catenin with the ubiquitin ligase SCF(beta-TrCP). beta-TrCP is involved in the ubiquitination and proteasome targeting of the oncogenic protein beta-Catenin, the accumulation of which has been implicated in various human cancers. The three-dimensional structure of the P-beta-Cat(19-44) in the bound conformation was determined by TRNOESY NMR experiments; the peptide adopts a compact structure in the presence of mAb with formation of turns around Trp25 and Gln26, with a tight bend created by the DpS(33)GIHpS(37) motif; the peptide residues (D32-pS37) forming this bend are recognized by the antibody as demonstrated by STD NMR experiments. STD NMR studies provide evidence for the existence of a conformational epitope containing tandem repeats of phosphoserine motifs. The peptide's epitope is predominantly located in the large bend and in the N-terminal segment, implicating bidentate association. These findings are in excellent agreement with a recently published NMR structure required for the interaction of beta-Catenin with the SCF(beta-TrCP) protein.  相似文献   

4.
The conformational preferences of a 22-amino acid peptide (LIDRLIERAEDpSGNEpSEGEISA) that mimics the phosphorylated HIV-1-encoded virus protein U (Vpu) antigen have been investigated by NMR spectroscopy. Degradation of HIV receptor CD4 by the proteasome, mediated by the HIV-1 protein Vpu, is crucial for the release of fully infectious virions. Phosphorylation of Vpu at sites Ser52 and Ser56 on the DSGXXS motif is required for the interaction of Vpu with the ubiquitin ligase SCF(beta)(-TrCP) which triggers CD4 degradation by the proteasome. This motif is conserved in several signaling proteins known to be degraded by the proteasome. The interaction of the P-Vpu(41-62) peptide with its monoclonal antibody has been studied by transferred nuclear Overhauser effect NMR spectroscopy (TRNOESY) and saturation transfer difference NMR (STD NMR) spectroscopy. The peptide was found to adopt a bend conformation upon binding to the antibody; the peptide residues (Asp51-pSer56) forming this bend are recognized by the antibody as demonstrated by STD NMR experiments. The three-dimensional structure of P-Vpu(41-62) in the bound conformation was determined by TRNOESY spectra; the peptide adopts a compact structure in the presence of mAb with formation of several bends around Leu45 and Ile46 and around Ile60 and Ser61, with a tight bend created by the DpS(52)GNEpS(56) motif. STD NMR studies provide evidence for the existence of a conformational epitope containing tandem repeats of phosphoserine motifs. The peptide's epitope is predominantly located in the large bend and in the N-terminal segment, implicating bidentale association. These findings are in excellent agreement with a recently published NMR structure required for the interaction of Vpu with the SCF(beta)(-TrCP) protein.  相似文献   

5.
Saturation transfer difference (STD) NMR spectroscopy is a promising tool for rapid screening, identifying ligands that interact with a target protein, and characterizing the epitopes of the ligands. Gibberellins (GAs) are a class of plant hormones and form a large family consisting of more than 120 members. A few of them, called "active" GAs, are considered to be perceptible to a receptor that remains unknown. We applied STD NMR spectroscopy to detect the binding activity and identify the binding epitope of gibberellin A(3) (GA(3)) that is recognized by monoclonal antibody 4-B8(8)/E9. This is one of the antibodies that can mimic a GA receptor in the manner of recognition of active GAs. The information on the binding epitope, obtained by STD NMR, was in good agreement with that shown by analyzing the crystal structure of the antibody-GA(4) complex. This suggests that STD NMR spectroscopy would be very useful to characterize the interaction between GAs and such binding proteins as GA-catabolic enzymes and receptors.  相似文献   

6.
CMP-Kdn synthetase catalyses the reaction of sialic acids (Sia) and cytidine-5'-triphosphate (CTP) to the corresponding activated sugar nucleotide CMP-Sia and pyrophosphate PP(i). STD NMR experiments of a recombinant nucleotide cytidine-5'-monophosphate-3-deoxy-d-glycero-d-galacto-nonulosonic acid synthetase (CMP-Kdn synthetase) were performed to map the binding epitope of the substrate CTP and the product CMP-Neu5Ac. The STD NMR analysis clearly shows that the anomeric proton of the ribose moiety of both investigated compounds is in close proximity to the protein surface and is likely to play a key role in the binding process. The relative rates of the enzyme reaction, derived from (1)H NMR signal integrals, show that Kdn is activated at a rate 2.5 and 3.1 faster than Neu5Ac and Neu5Gc, respectively. Furthermore, proton-decoupled (31)P NMR spectroscopy was successfully used to follow the enzyme reaction and clearly confirmed the appearance of CMP-Sia and the inorganic pyrophosphate by-product.  相似文献   

7.
Saturation–transfer–difference NMR spectroscopy (STD NMR) is used to delineate noncovalent enzyme–substrate interactions of β-glycosidases from Pyrococcus furiosus and Aspergillus fumigatus under binding-only conditions at low temperatures, and during catalysis. Glucopyranosyl and galactopyranosyl moieties display a distinct pattern of multiple contacts with each active site, revealing enzyme-specific elements of recognition and portraying the global binding effect caused by single-site modification of the substrate, at carbon 4. The glucopyranose leaving group of cellobiose or lactose shows small relative STD effects except for the anomeric carbon, particularly in the -form. Its replacement in β-glucosides by an alcohol leaving group strongly affects sugar binding in the proximal enzyme subsite. A combination of STD effects of substrate and product, produced by the catalytic event or added exogenously, characterizes subsite binding during cellobiose hydrolysis.  相似文献   

8.
Electrostatic interactions with positively charged regions of membrane-associated proteins such as myristoylated alanine-rich C kinase substrate (MARCKS) may have a role in regulating the level of free phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in plasma membranes. Both the MARCKS protein and a peptide corresponding to the effector domain (an unstructured region that contains 13 basic residues and 5 phenylalanines), MARCKS-(151-175), laterally sequester the polyvalent lipid PI(4,5)P2 in the plane of a bilayer membrane with high affinity. We used high resolution magic angle spinning NMR to establish the location of MARCKS-(151-175) in membrane bilayers, which is necessary to understand the sequestration mechanism. Measurements of cross-relaxation rates in two-dimensional nuclear Overhauser enhancement spectroscopy NMR experiments show that the five Phe rings of MARCKS-(151-175) penetrate into the acyl chain region of phosphatidylcholine bilayers containing phosphatidylglycerol or PI(4,5)P2. Specifically, we observed strong cross-peaks between the aromatic protons of the Phe rings and the acyl chain protons of the lipids, even for very short (50 ms) mixing times. The position of the Phe rings implies that the adjacent positively charged amino acids in the peptide are close to the level of the negatively charged lipid phosphates. The deep location of the MARCKS peptide in the polar head group region should enhance its electrostatic sequestration of PI(4,5)P2 by an "image charge" mechanism. Moreover, this location has interesting implications for membrane curvature and local surface pressure effects and may be relevant to a wide variety of other proteins with basic-aromatic clusters, such as phospholipase D, GAP43, SCAMP2, and the N-methyl-d-aspartate receptor.  相似文献   

9.
We have investigated the use of multilayer films of polyelectrolytes as selective surfaces to analyze protein interactions with a self-assembled SPR wavelength-shift sensor. Charged arrays were prepared by alternating adsorption of the charged polyelectrolytes, poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS). Multilayer formation was monitored with the SPR wavelength-shift sensor and a Spreeta SPR sensor. Protein immobilization on the charged surfaces, which was also analyzed by the SPR sensors, was dependent on the pI of the proteins. Tissue transglutaminase (tTGase) and beta-galactosidase (pIs, 5.1 and 5.3, respectively) were preferentially bound to the positively charged PDDA surface, whereas lysozyme (pI, 11.0) was selectively bound to the negatively charged PSS surface. Immobilization of tTGase on the PDDA surface was also dependent on the buffer pH. The interaction of tTGase with RhoA(V14), a constitutively active form of Rho, could be detected on the charged arrays with the wavelength-shift sensor. The arrays could be reutilized at least 5 times. Thus, it is likely that charged surfaces, assembled by the layer-by-layer method using polyelectrolytes, will prove useful for preparing selective protein arrays.  相似文献   

10.
J D O'Neil  B D Sykes 《Biochemistry》1989,28(2):699-707
Backbone amide hydrogen exchange measurements are an important source of information about the internal dynamics of proteins. Before such measurements can be interpreted unambiguously, contributions to hydrogen exchange rates from the chemical and physical environment of the amides must be taken into account. Membrane proteins are often solubilized in detergents, yet there have not been any systematic investigations of the possible effects detergents may have on the amide hydrogen exchange rates of proteins. To address this question, we have measured individual backbone and carboxyl-terminal amide exchange rates for the amphipathic tripeptide Leu-Val-Ile-amide dissolved in water and dodecyl sulfate micelles. 1H NMR spectroscopy was used to measure exchange using the direct exchange-out into D2O technique at 5 degrees C and using an indirect steady-state saturation-transfer technique at 25 degrees C. The broadening effect of micelle-incorporated spin-labeled fatty acid (12-doxylstearate) on the 1H NMR spectra of both the detergent and the peptide resonances was used to demonstrate that the tripeptide is intimately associated with the micelle. The resonance from formate ion, which is excluded from the micelle, was unperturbed by the spin label. The detergent did not retard the exchange rates of either the primary (terminal) or secondary (backbone) amides of the tripeptide. This suggests that the micelle/peptide interaction does not restrict access of charged catalysts and water to these amides and shows that the peptide amides are not hydrogen bonded. However, the pH for the exchange minima of these amides in detergent was increased between 1.2 and 1.7 units compared to exchange in water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
E Tüchsen  P E Hansen 《Biochemistry》1988,27(23):8568-8576
The carbonyl region of the natural abundance 13C nuclear magnetic resonance (NMR) spectrum of basic pancreatic trypsin inhibitor is examined, and 65 of the 66 expected signals are characterized at varying pH and temperature. Assignments are reported for over two-thirds of the signals, including those of all buried backbone amide groups with slow proton exchange and all side-chain carbonyl groups. This is the first extensively assigned carbonyl spectrum for any protein. A method for carbonyl resonance assignments utilizing amide proton exchange and isotope effects on nuclear shielding is described in detail. The assignments are made by establishing kinetic correlation between effects of amide proton exchange observed in the carbonyl 13C region with development of isotope effects and in the amide proton region with disappearance of preassigned resonances. Several aspects of protein structure and dynamics in solution may be investigated by carbonyl 13C NMR spectroscopy. Some effects of side-chain primary amide group hydrolysis are described. The main interest is on information about intramolecular hydrogen-bond energies and changes in the protein due to amino acid replacements by chemical modification or genetic engineering.  相似文献   

12.
The α-1,3-glucosyltransferase WaaG is involved in the synthesis of the core region of lipopolysaccharides in E. coli. A fragment-based screening for inhibitors of the WaaG glycosyltrasferase donor site has been performed using NMR spectroscopy. Docking simulations were performed for three of the compounds of the fragment library that had shown binding activity towards WaaG and yielded 3D models for the respective complexes. The three ligands share a hetero-bicyclic ring system as a common structural motif and they compete with UDP-Glc for binding. Interestingly, one of the compounds promoted binding of uridine to WaaG, as seen from STD NMR titrations, suggesting a different binding mode for this ligand. We propose these compounds as scaffolds for the design of selective high-affinity inhibitors of WaaG. Binding of natural substrates, enzymatic activity and donor substrate selectivity were also investigated by NMR spectroscopy. Molecular dynamics simulations of WaaG were carried out with and without bound UDP and revealed structural changes compared to the crystal structure and also variations in flexibility for some amino acid residues between the two WaaG systems studied.  相似文献   

13.
The interaction of bovine alpha-lactalbumin (BLA) with negatively charged phospholipid bilayers was studied by NMR monitored 1H exchange to characterize the conformational transition that enables a water-soluble protein to associate with and partially insert into a membrane. BLA was allowed to exchange in deuterated buffer in the absence (reference) and the presence (membrane-bound) of acidic liposomes at pH 4.5, experimental conditions that allow efficient protein-membrane interaction. After adjusting the pH to 6.0, to dissociate the protein from the membrane, reference and membrane-released samples of BLA were analysed by (F1) band-selective homonuclear decoupled total correlation spectroscopy in the alphaH-NH region. The overall exchange behaviour of the membrane-bound state is molten globule-like, suggesting an overall destabilization of the polypeptide. Nevertheless, the backbone amide protons of residues R10, L12, C77, K94, K98, V99 and W104 show significant protection against solvent exchange in the membrane-bound protein. We propose a mechanism for the association of BLA with negatively charged membranes that includes initial protonation of acidic side-chains at the membrane interface, and formation of an interacting site with the membrane which involves helixes A and C. In the next step these helices would slide away from each other, adopting a parallel orientation to the membrane, and would rotate to maximize the interaction between their hydrophobic residues and the lipid bilayer.  相似文献   

14.
Saturation transfer difference (STD) NMR experiments on Escherichia coli and Drosophila melanogaster succinic semialdehyde dehydrogenase (SSADH, EC1.2.1.24) suggest that only the aldehyde forms and not the gem-diol forms of the specific substrate succinic semialdehyde (SSA), of selected aldehyde substrates, and of the inhibitor 3-tolualdehyde bind to these enzymes. Site-directed mutagenesis of the active site cysteine311 to alanine in D. melanogaster SSADH leads to an inactive product binding both SSA aldehyde and gem-diol. Thus, the residue cysteine311 is crucial for their discrimination. STD experiments on SSADH and NAD+/NADP+ indicate differential affinity in agreement with the respective cosubstrate properties. Epitope mapping by STD points to a strong interaction of the NAD+/NADP+ adenine H2 proton with SSADH. Adenine H8, nicotinamide H2, H4, and H6 also show STD signals. Saturation transfer to the ribose moieties is limited to the anomeric protons of E. coli SSADH suggesting that the NAD+/NADP+ adenine and nicotinamide, but not the ribose moieties are important for the binding of the coenzymes.  相似文献   

15.
We demonstrated a simple and efficient strategy, which based on the enzymatically biocatalytic precipitates amplified antibody-antigen interaction, for improving the response signals of surface plasmon resonance (SPR) immunosensing. The antibody-antigen-alkaline phosphatase (AP) labeled secondary antibody sandwich were successfully prepared and characterized by SPR, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The SPR signal amplification was accomplished through probing resonance angle shift and Faradaic electron impedance of [Fe(CN)(6)](3-/4-) redox pair after the enzymatically biocatalytic products precipitating on the immunosensing electrode surface. As a result, the accumulation of the enzymatically biocatalytic precipitates leads to significantly resonance angle shift and increase of electron transfer impedance of [Fe(CN)(6)](3-/4-) probe. The precipitates-enhanced sandwich SPR immunoassay for mouse immunoglobulin G (m-IgG) can easily detect solution protein concentrations in the linear range of 0.02-40 ng mL(-1) and with a detection limit of 200 fg mL(-1), which is more than four-orders and 10 times better compared with the values using streptavidin-biotinylated protein complex and biotinylated HRP biocatalyzation amplification methods. Moreover, this method is generally applicable to other sandwich immunoassays and also can be expanded to monitor other antibody-antigen interaction for immunosensing detection at low concentrations.  相似文献   

16.
To measure the interactions of diacylglycerol acyltransferase (DGAT) by surface plasmon resonance (SPR), we immobilized Saccharomyces cerevisiae DGAT2 encoded by DGA1 on a BIACORE sensor chip surface. We used N-terminally truncated Dga1p with a FLAG tag at the C-terminus, which was purified to apparent homogeneity, maintaining significant DGAT activity (Kamisaka et al., Appl. Microbiol. Biotechnol., 88, 105-115 (2010)). Truncated Dga1p with a FLAG tag was immobilized with an anti-FLAG antibody that had been coupled with an L1 chip surface consisting of a carboxymethyl dextran matrix with additional hydrophobic alkane groups. The Dga1p-immobilized chip surface was analyzed for interactions of Dga1p with oleoyl-CoA, its substrate, and anti-Dga1p IgG, its interacting protein, by SPR. The binding of these analytes with the Dga1p-immobilized chip surface was specific, because butyryl-CoA, which cannot be used as a substrate for DGAT, and anti-glyceraldehyde-3-phosphate dehydrogenase IgG, did not induce any signals on SPR. Furthermore, injection of organic compounds such as xanthohumol, a DGAT inhibitor, into the Dga1p-immobilized chip surface induced significant SPR signals, probably due to interaction with DGAT. Another DGAT inhibitor, piperine, did not induce SPR signals on application, but induced them due to piperine on application together with oleoyl-CoA, in which piperine can be incorporated into the micelles of oleoyl-CoA. The results indicate that the Dga1p-immobilized L1 chip surface recognized DGAT inhibitors. Taking all this together, SPR measurement using the Dga1p-immobilized L1 chip surface provided a useful system to elucidate the structure-function relationships of DGAT and screen DGAT inhibitors.  相似文献   

17.
The interaction between the bovine prion protein (bPrP) and a monoclonal antibody, 1E5, was studied with high-mass matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and surface plasmon resonance (SPR). In the case of MS a cross-linking stabilization was used prior to the analysis, whereas for SPR the antibody was immobilized and bPrP was injected. We compared the determination of parameters such as the epitope, the kinetics and binding strength, and the capacity of the antigen to bind two different antibodies. The two methods are highly complementary. SPR measurements require a lower amount of sample but are more time-consuming due to all of the necessary side steps (e.g., immobilization, regeneration). High-mass MALDI MS needs a higher overall amount of sample and cannot give direct access to the kinetic constants, but the analysis is faster and easier compared with SPR.  相似文献   

18.
Saturation transfer difference NMR (STD NMR) spectroscopy is one of the most powerful NMR techniques for detection and characterization of transient (fast) receptor–ligand interactions in solution. By observing the signals of a small molecule (ligand) with spectroscopic properties suitable for high-resolution studies, irrespective of receptor size, STD NMR enables quantitative structural and affinity information to be obtained about the molecular recognition process under study. Approximately one decade after its introduction, the technique has reached maturity, and is highly robust and useful. The objective of this article is to review the current status of this powerful technique, with particular emphasis on quantitative applications, within the framework of the (bio-)chemistry of molecular recognition.  相似文献   

19.
We report a novel in vitro high-throughput (HTP) kinase assay using surface plasmon resonance (SPR). In vitro tyrosine phosphorylation was performed in a microtiter plate, after which the substrate was captured with an antibody on a sensor chip and phosphotyrosine (pTyr) was detected with an anti-pTyr antibody. The capture and pTyr detection steps were performed using a Biacore A100, which is a sensitive and high-performance flow-cell-based SPR biosensor. This system allowed multiple sample processing (1000 samples/day) and high-quality data sampling. We compared the abilities of the HTP-SPR method and a standard radioisotope assay by measuring the phosphorylation of several substrate proteins by the Fyn tyrosine kinase. Similar results were obtained with both methods, suggesting that the HTP-SPR method is reliable. Therefore, the HTP-SPR method described in this study can be a powerful tool for a variety of screening analyses, such as kinase activity screening, kinase substrate profiling, and kinase HTP screening of kinase inhibitors.  相似文献   

20.
Yeast ubiquitin hydrolase 1 (YUH1), a cysteine protease that catalyzes the removal of ubiquitin C-terminal adducts, is important for the generation of monomeric ubiquitin. Heteronuclear NMR spectroscopy has been utilized to map the YUH1 binding surface on ubiquitin. When YUH1 was titrated into a sample of ubiquitin, approximately 50% of the (1)H-(15)N correlation peaks of ubiquitin were affected to some degree, as a result of binding to YUH1. It is noteworthy that the amide resonances of the basic residues (Arg42, Lys48, Arg72, and Lys74) were highly perturbed. These positively charged basic residues may be involved in direct interactions with the negatively charged acidic residues on YUH1. In addition to the electrostatic surface, the hydrophobic surfaces on ubiquitin (Leu8, Ile44, Phe45, Val70, Leu71, and Leu73) and YUH1 are also likely to contribute to the binding interaction. Furthermore, the amide resonances of Ile13, Leu43, Leu50, and Leu69, the side chains of which are not on the surface, were also highly perturbed, indicating substrate-induced changes in the environments of these residues as well. These large changes, observed from residues located throughout the five-stranded beta-sheet surface and the C-terminus, suggest that substrate recognition by YUH1 involves a wider area on ubiquitin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号