首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A molecular dynamics simulation of a simple model membrane system composed of a single amphiphilic helical peptide (ace-K2GL16K2A-amide) in a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer was performed for a total of 1060 ps. The secondary structure of the peptide and its stability were described in terms of average dihedral angles, phi and psi, and the C alpha torsion angles formed by backbone atoms; by the average translation per residue along the helix axis; and by the intramolecular peptide hydrogen bonds. The results indicated that residues 6 through 15 remain in a stable right-handed alpha-helical conformation, whereas both termini exhibit substantial fluctuations. A change in the backbone dihedral angles for residues 16 and 17 is accompanied by the loss of two intramolecular hydrogen bonds, leading to a local but long-lived disruption of the helix. The dynamics of the peptide was characterized in terms of local and global helix motions. The local motions of the N-H bond angles were described in terms of the autocorrelation functions of P2[cos thetaNH(t, t + tau)] and reflected the different degrees of local peptide order as well as a variation in time scale for local motions. The chi1 and chi2 dihedral angles of the leucine side chains underwent frequent transitions between potential minima. No connection between the side-chain positions and their mobility was observed, however. In contrast, the lysine side chains displayed little mobility during the simulation. The global peptide motions were characterized by the tilting and bending motions of the helix. Although the peptide was initially aligned parallel to the bilayer normal, during the simulation it was observed to tilt away from the normal, reaching an angle of approximately 25 degrees by the end of the simulation. In addition, a slight bend of the helix was detected. Finally, the solvation of the peptide backbone and side-chain atoms was also investigated.  相似文献   

2.
We have performed molecular dynamics simulations of multiple copies of the lung-surfactant peptide SP-B1-25 in a palmitic acid (PA) monolayer. SP-B1-25 is a shorter version of lung-surfactant protein B, an important component of lung surfactant. Up to 30 ns simulations of 20 wt % SP-B1-25 in the PA monolayers were performed with different surface areas of PA, extents of PA ionization, and various initial configurations of the peptides. Starting with initial peptide orientation perpendicular to the monolayer, the predicted final tilt angles average 54 degrees approximately 62 degrees with respect to the monolayer normal, similar to those measured experimentally by Lee et al. (Biophysical Journal. 2001. Synchrotron x-ray study of lung surfactant-specific protein SP-B in lipid monolayers. 81:572-585). In their final conformations, hydrogen-bond analysis and amino acid mutation studies show that the peptides are anchored by hydrogen bond interactions between the cationic residues Arg-12 and Arg-17 and the hydrogen bond acceptors of the ionized PA headgroup, and the tilt angle is affected by the interactions of Tyr-7 and Gln-19 with the PA headgroup. Our work indicates that the factors controlling orientation of small peptides in lipid layers can now be uncovered through molecular dynamics simulations.  相似文献   

3.
Gastrin-releasing peptide (GRP) is a member of bombesin-like peptides and bombesin and neuromedin B are other members of this family. They act on receptors that belong to the GPCR superfamily and exert important physiological functions upon binding to their receptors. The biologically active C-terminal decapeptide of GRP (GRP10) was studied in explicit DMPC bilayers using molecular dynamics simulations. In the initial conformation, the peptide was placed perpendicular to the membrane plane and the peptide-membrane complex with approximately 20,000 atoms was simulated for a period of 8 ns. After a 5 ns simulation, GRP10 adopted a tilted orientation and the tilt angle with respect to the bilayer normal was approximately 60 masculine. Analysis of the interactions of individual residues indicated the role of histidine residues in maintaining a tilted orientation.  相似文献   

4.
Cell-signaling peptides have been extensively used to transport functional molecules across the plasma membrane into living cells. These peptides consist of a hydrophobic sequence and a cationic nuclear localization sequence (NLS). It has been assumed that the hydrophobic region penetrates the hydrophobic lipid bilayer and delivers the NLS inside the cell. To better understand the transport mechanism of these peptides, in this study, we investigated the structure, orientation, tilt of the peptide relative to the bilayer normal, and the membrane interaction of two cell-signaling peptides, SA and SKP. Results from CD and solid-state NMR experiments combined with molecular dynamics simulations suggest that the hydrophobic region is helical and has a transmembrane orientation with the helical axis tilted away from the bilayer normal. The influence of the hydrophobic mismatch, between the hydrophobic length of the peptide and the hydrophobic thickness of the bilayer, on the tilt angle of the peptides was investigated using thicker POPC and thinner DMPC bilayers. NMR experiments showed that the hydrophobic domain of each peptide has a tilt angle of 15 +/- 3 degrees in POPC, whereas in DMPC, 25 +/- 3 degree and 30 +/- 3 degree tilts were observed for SA and SKP peptides, respectively. These results are in good agreement with molecular dynamics simulations, which predict a tilt angle of 13.3 degrees (SA in POPC), 16.4 degrees (SKP in POPC), 22.3 degrees (SA in DMPC), and 31.7 degrees (SKP in DMPC). These results and simulations on the hydrophobic fragment of SA or SKP suggest that the tilt of helices increases with a decrease in bilayer thickness without changing the phase, order, and structure of the lipid bilayers.  相似文献   

5.
In this review we discuss recent insights obtained from well-characterized model systems into the factors that determine the orientation and tilt angles of transmembrane peptides in lipid bilayers. We will compare tilt angles of synthetic peptides with those of natural peptides and proteins, and we will discuss how tilt can be modulated by hydrophobic mismatch between the thickness of the bilayer and the length of the membrane spanning part of the peptide or protein. In particular, we will focus on results obtained on tryptophan-flanked model peptides (WALP peptides) as a case study to illustrate possible consequences of hydrophobic mismatch in molecular detail and to highlight the importance of peptide dynamics for the experimental determination of tilt angles. We will conclude with discussing some future prospects and challenges concerning the use of simple peptide/lipid model systems as a tool to understand membrane structure and function.  相似文献   

6.
7.
Highly specific structures can be designed by inserting dehydro-residues into peptide sequences. The conformational preferences of branched beta-carbon residues are known to be different from other residues. As an implication it was expected that the branched beta-carbon dehydro-residues would also induce different conformations when substituted in peptides. So far, the design of peptides with branched beta-carbon dehydro-residues at (i + 1) position has not been reported. It may be recalled that the nonbranched beta-carbon residues induced beta-turn II conformation when placed at (i + 2) position while branched beta-carbon residues induced beta-turn III conformation. However, the conformation of a peptide with a nonbranched beta-carbon residue when placed at (i + 1) position was not found to be unique as it depended on the stereochemical nature of its neighbouring residues. Therefore, in order to induce predictably unique structures with dehydro-residues at (i + 1) position, we have introduced branched beta-carbon dehydro-residues instead of nonbranched beta-carbon residues and synthesized two peptides: (I) N-Carbobenzoxy-DeltaVal-Ala-Leu-OCH3 and (II) N-Carbobenzoxy-DeltaIle-Ala-Leu-OCH3 with DeltaVal and DeltaIle, respectively. The crystal structures of peptides (I) and (II) have been determined and refined to R-factors of 0.065 and 0.063, respectively. The structures of both peptides were essentially similar. Both peptides adopted type II beta-turn conformations with torsion angles; (I): phi1 = -38.7 (4) degrees, psi1 = 126.0 (3) degrees; phi2 = 91.6 (3) degrees, psi2 = -9.5 (4) degrees and (II): phi1 = -37.0 (6) degrees, psi1 = 123.6 (4) degrees, phi2 = 93.4 (4), psi2 = -11.0(4) degrees respectively. Both peptide structures were stabilized by intramolecular 4-->1 hydrogen bonds. The molecular packing in both crystal structures were stabilized in each by two identical hydrogen bonds N1...O1' (-x, y + 1/2, -z) and N2...O2' (-x + 1, y + 1/2, -z) and van der Waals interactions.  相似文献   

8.
The crystal structures of two diastereomeric alpha,beta-dehydrobutyrine peptides Ac-Pro-(Z)-DeltaAbu-NHMe (I) and Ac-Pro-(E)-DeltaAbu-NHMe (II) have been determined. Both dehydropeptides adopt betaI-turn conformation characterized by the pairs of (phi(i+1), psi(i+1)) and (phi(i+2), psi(i+2)) angles as -66, -19, -97, 11 degrees for I and -59, -27, -119, 29 degrees for II. In each peptide, the betaI turn is stabilized by (i + 3) --> i intramolecular hydrogen bonds with N...O distance of 3.12 A for I and 2.93 A for II. These structures have been compared to the crystal structures of homologous peptides Ac-Pro-DeltaVal-NHMe and Ac-Pro-DeltaAla-NHMe. Theoretical analyses by DFT/B3LYP/6-31 + G** method of conformers formed by these four peptides and by the saturated peptide Ac-Pro-Ala-NHMe revealed that peptides with a (Z) substituent at the C(beta) (i+2) atom of dehydroamino acid, i.e. Ac-Pro-DeltaVal-NHMe and Ac-Pro-(Z)-DeltaAbu-NHMe, predominantly form beta turns, both in vacuo and in polar environment. The tendency to adopt beta-turn conformation is much weaker for the peptides lacking the (Z) substituent, Ac-Pro-(E)-DeltaAbu-NHMe and Ac-Pro-DeltaAla-NHMe. The latter adopts a semi-extended or an extended conformation in every polar environment, including a weakly polar solvent. The saturated peptide Ac-Pro-Ala-NHMe in vacuo prefers a beta-turn conformation, but in polar environment the differences between various conformers are small. The role of pi-electron correlation and intramolecular hydrogen bonds interaction in stabilizing the hairpin structures are discussed.  相似文献   

9.
A molecular dynamics (MD) simulation of a fully hydrated, liquid-crystalline dimyristoylphosphatidylcholine (DMPC)-Chol bilayer membrane containing approximately 22 mol% Chol was carried out for 4.3 ns. The bilayer reached thermal equilibrium after 2.3 ns of MD simulation. A 2.0-ns trajectory generated during 2.3-4.3 ns of MD simulation was used for analyses to determine the effects of Chol on the membrane/water interfacial region. In this region, 70% of Chol molecules are linked to DMPC molecules via short-distance interactions, where the Chol hydroxyl group (OH-Chol) is 1) charge paired to methyl groups of the DMPC choline moiety ( approximately 34%), via the hydroxyl oxygen atom (Och); 2) water bridged to carbonyl ( approximately 19%) and nonester phosphate ( approximately 14%) oxygen atoms, via both Och and the hydroxyl hydrogen atom (Hch); and 3) directly hydrogen (H) bonded to carbonyl ( approximately 11%) and nonester phosphate ( approximately 5%) oxygen atoms, via Hch ( approximately 17% of DMPC-Chol links are multiple). DMPC's gamma-chain carbonyl oxygen atom is involved in 44% of water bridges and 51% of direct H bonds formed between DMPC and Chol. On average, a Chol molecule forms 0.9 links with DMPC molecules, while a DMPC molecule forms 2.2 and 0.3 links with DMPC and Chol molecules, respectively. OH-Chol makes hydrogen bonds with 1.1 water molecules, preferentially via Hch. The average number of water molecules H bonded to the DMPC headgroup is increased by 7% in the presence of Chol. These results indicate that inclusion of Chol decreases interlipid links and increases hydration in the polar region of the membrane.  相似文献   

10.
Tryptophans in membrane proteins display strong preference for the lipid membrane interface and are important for anchoring proteins at the proper longitudinal level. Linear dichroism spectroscopy on indoles in shear-deformed liposomes has been used to show that this positioning is accompanied by an intrinsically adopted orientation, also observed for tryptophans in membrane-bound peptides. Similarities in orientation of different indoles suggest that tryptophan will adopt this orientation independent of the protein it is part of. From the orientation of indole electronic transition moments L(a), L(b) and B(b), a binding model is proposed where the indole long axis is approximately 60-65 degrees from the membrane normal and the indole plane is at an oblique angle. We propose that dipole-dipole interactions and steric constraints in the membrane hydrocarbon region determine positioning and orientation of tryptophans whereas hydrogen bonding and cation-pi interactions with lipid head-groups, though contributing to the membrane affinity of indoles, are less important.  相似文献   

11.
Kim S  Cross TA 《Biophysical journal》2002,83(4):2084-2095
Protein environments substantially influence the balance of molecular interactions that generate structural stability. Transmembrane helices exist in the relatively uniform low dielectric interstices of the lipid bilayer, largely devoid of water and with a very hydrophobic distribution of amino acid residues. Here, through an analysis of bacteriorhodopsin crystal structures and the transmembrane helix structure from M2 protein of influenza A, some helices are shown to be exceptionally uniform in hydrogen bond geometry, peptide plane tilt angle, and backbone torsion angles. Evidence from both the x-ray crystal structures and solid-state NMR structure suggests that the intramolecular backbone hydrogen bonds are shorter than their counterparts in water-soluble proteins. Moreover, the geometry is consistent with a dominance of electrostatic versus covalent contributions to these bonds. A comparison of structure as a function of resolution shows that as the structures become better characterized the helices become much more uniform, suggesting that there is a possibility that many more uniform helices will be observed, even among the moderate resolution membrane protein structures that are currently in the Protein Data Bank that do not show such features.  相似文献   

12.
Ding FX  Xie H  Arshava B  Becker JM  Naider F 《Biochemistry》2001,40(30):8945-8954
The structures of seven synthetic transmembrane domains (TMDs) of the alpha-factor receptor (Ste2p) from Saccharomyces cerevisiae were studied in phospholipid multilayers by transmission Fourier transform infrared (FTIR) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies. Peptide conformation assumed in multilayers depended on the method of sample preparation. Amide proton H/D exchange experiments showed that 60-80% of the NH bonds in these TMDs did not exchange with bulk water in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) multilayers. FTIR results showed that peptides corresponding to TMDs one, two, and seven were mostly alpha-helical in DMPC multilayers. Peptides corresponding to TMDs three and six assumed predominantly beta-sheet structures, whereas those corresponding to TMDs four and five were a mixture of alpha-helices and beta-sheets. ATR-FTIR showed that in DMPC the alpha-helices of TMDs two and five oriented with tilt angles of 34 degrees and 32 degrees, respectively, with respect to the multilayer normal. Similar results were obtained for six of the transmembrane domains in DMPC/DMPG (4:1) multilayers. In a mixture [POPC/POPE/POPS/PI/ergosterol (30:20:5:20:25)] which mimicked the lipid composition of the S. cerevisiae cell membrane, the percentage of alpha-helical structures found for TMDs one and five increased compared to those in DMPC and DMPC/DMPG (4:1) multilayers, and TMD six exhibited a mixture of beta-sheet ( approximately 60%) and alpha-helical ( approximately 40%) structure. These experiments provide biophysical evidence that peptides representing the seven transmembrane domains in Ste2p assume different structures and tilt angles within a membrane multilayer.  相似文献   

13.
The oblique insertion of type 1 viral fusion peptides into the cell membrane of the host cell has been shown previously to be an essential element of viral fusion. The actual physical explanation of the cause of the oblique insertion has been the subject of speculation. In this study the physical properties of the fusion peptide surface have been determined computationally and compared to the tilt angles determined both experimentally and by the use of molecular dynamics. It has been shown that the relationship between the distribution of lipophilic potential over the peptide surface and the peptide geometry control the tilt angle of the peptide in a biomimetic DMPC bilayer whereas the depth of penetration into the bilayer appears to be determined by the electrostatic potential and hydrogen bonding at the C-terminus.  相似文献   

14.
Polypeptides have been prepared by solid-phase peptide synthesis and labelled with 15N at single sites to be used for static or magic angle spinning solid-state NMR spectroscopy. After reconstitution into oriented membranes, the alignment of polypeptide alpha-helices with respect to the bilayer surface is accessible by proton-decoupled 15N solid-state NMR spectroscopy. In addition, limiting values of rotational diffusion coefficients are obtained. The effects of membrane inserted peptides on the bilayer phospholipids have been investigated by 2H and 31P solid-state NMR spectroscopy. Long hydrophobic peptides such as the channel-forming domains of Vpu of HIV-1 or M2 of influenza A adopt stable alignments approximately parallel to the bilayer normal in agreement with models suggesting transmembrane helical bundle formation. The 15N chemical shift data agree with tilt angles of approximately 20 degrees and 33 degrees, respectively. In contrast, multi-charged amphipathic alpha-helices adopt stable orientations parallel to the bilayer surface. In the presence of these peptides, decreased order parameters of the fatty acyl chains, membrane thinning, and the loss of long-range order are observed. Peptides that change topology in a pH dependent manner are more potent in antibiotic assays under experimental conditions where they show in-plane alignments. This result suggests that their detergent-like properties, rather than the formation of transmembrane helical bundles, are responsible for their cell-killing activities. Topological equilibria are also observed within proteins or for polypeptides that do not match the hydrophobic thickness of the bilayer.  相似文献   

15.
The design, synthesis, conformational, crystallographic, and ion transport studies of 30-membered, proline containing depsipeptides that incorporate the rigid low molecular weight lipophilic adamantane (Adm) building blocks are reported. The adamantyl groups provide the desired membrane permeability and conformational constraint for efficient transport in lipid membranes. The novel cyclic depsipeptides are: c[--Adm--C(O)--Pro-- O--CH(2)-- CHR--NH--C(O)--Pro--C(O)-- Adm--C(O)--Pro--C(O)--NH--CHR--CH(2)-- O--Pro--C(O)--] where R==H for A and R==CONH--Adm for B. Crystal structure analysis of A established that the two peptide segments are identical in formula and in conformation and that the peptides are bonded to the interleaving Adm at the 1 and 3 positions. However, the complete ring is highly asymmetric in shape since bonds for both Peptide-Adm-Peptide segments have the syn-anti motif. Torsional angles for the connecting bonds to Adm are -162 degrees , +71 degrees and -169 degrees , -48 degrees . The irregular clamshell shape of the molecule has three internal C==O moieties directed in a manner that could provide three Na(+)--O ligands. While A exhibited negligible transport of Na(+) ions across membranes, peptide B endowed with two additional adamantanes in the periphery did transport Na(+) ions from outside to inside.  相似文献   

16.
The roles of branched beta-carbon dehydro-residues in the design of peptide conformations have not been systematically explored so far. In order to determine the effects of branched beta-carbon dehydro-residues on the peptide conformations, two N-protected tetrapeptides containing new combinations of DeltaVal and DeltaPhe in (a) N-(benzyloxycarbonyl)-DeltaVal-Leu-DeltaPhe-Leu-OCH(3) and DeltaIle and DeltaPhe in (b) N-(benzyloxycarbonyl)-DeltaIle-Ala-DeltaPhe-Ala-OCH(3) were synthesized by solution procedure. The crystal structures of these peptides were determined by X-ray diffraction methods. Single crystals of both peptides were grown by slow evaporation method from their solutions in acetone-water mixtures (80 : 20) at 25 degrees C. The crystals of these peptides belong to the orthorhombic space group P2(1)2(1)2(1) with cell dimensions of a = 12.342(1) A, b = 15.659(1) A, c = 18.970(1) A for peptide (a) and a = 8.093(1) A, b = 15.791(1) A, c = 23.816(1) A for peptide (b) having Z = 4 in the unit cells of both peptides. The structures were refined by full-matrix least-squares procedure to R-factors of 0.076 and 0.052 respectively. Both peptides adopt the right-handed 3(10)-helical conformations stabilized by two intramolecular (i + 3-->i) hydrogen bonds between the CO of N-terminal benzyloxycarbonyl (Cbz) group and the NH of residue at position 3, and between the CO of residue at position 1 and NH of the residue at position 4. The two consecutive 10-membered rings formed by the hydrogen bonds have dihedral angles corresponding to the standard values for type III beta-turns. DeltaVal and DeltaIle in peptides (a) and (b) respectively are located at the (i + 1) position of the first beta-turn while DeltaPhe is located at the (i + 2) position of the second beta-turn. In the crystals, the molecules are linked head to tail by intermolecular hydrogen bonds to form long helical chains. The axes of helices are parallel to the b-axes while the neighbouring helices run in the opposite directions. The crystal packings are further stabilized by van der Waals forces between the columns of molecular packings.  相似文献   

17.
We introduce here a novel Monte Carlo simulation method for studying the interactions of hydrophobic peptides with lipid membranes. Each of the peptide's amino acids is represented as two interaction sites: one corresponding to the backbone alpha-carbon and the other to the side chain, with the membrane represented as a hydrophobic profile. Peptide conformations and locations in the membrane and changes in the membrane width are sampled using the Metropolis criterion, taking into account the underlying energetics. Using this method we investigate the interactions between the hydrophobic peptide M2delta and a model membrane. The simulations show that starting from an extended conformation in the aqueous phase, the peptide first adsorbs onto the membrane surface, while acquiring an ordered helical structure. This is followed by formation of a helical-hairpin and insertion into the membrane. The observed path is in agreement with contemporary understanding of peptide insertion into biological membranes. Two stable orientations of membrane-associated M2delta were obtained: transmembrane (TM) and surface, and the value of the water-to-membrane transfer free energy of each of them is in agreement with calculations and measurements on similar cases. M2delta is most stable in the TM orientation, where it assumes a helical conformation with a tilt of 14 degrees between the helix principal axis and the membrane normal. The peptide conformation agrees well with the experimental data; average root-mean-square deviations of 2.1 A compared to nuclear magnetic resonance structures obtained in detergent micelles and supported lipid bilayers. The average orientation of the peptide in the membrane in the most stable configurations reported here, and in particular the value of the tilt angle, are in excellent agreement with the ones calculated using the continuum-solvent model and the ones observed in the nuclear magnetic resonance studies. This suggests that the method may be used to predict the three-dimensional structure of TM peptides.  相似文献   

18.
Simulated annealing was performed to model parallel dimers of alpha-helical transmembrane peptides with the sequence L(11)XL(12), predicting left-handed coiled coil geometry in all cases. Insertion of peptides containing threonine, asparagine, alanine, phenylalanine, and leucine in position 12 into realistic model membranes showed these structures were stable for 20 ns of molecular dynamics simulation time. Threonine could participate in intermolecular hydrogen bonds, but predominantly formed hydrogen bonds to the backbone of the helix it resided on. These hydrogen bonds, although infrequent, appeared to promote closer association of polyleucine helices. Asparagine participated in multiple, rapidly fluctuating intermolecular and intramolecular hydrogen bonds, and may have slightly destabilized optimum van der Waals packing in favor of optimum hydrogen bonding. Coordinated rotations of transmembrane helices about their axes were observed, indicating helices may rotate around one another during the folding of membrane proteins or other processes. These rotations were inhibited by phenylalanine, suggesting a role for bulky residues in modulating membrane protein dynamics.  相似文献   

19.
We used solid-state deuterium NMR spectroscopy and an approach involving geometric analysis of labeled alanines (GALA method) to examine the structure and orientation of a designed synthetic hydrophobic, membrane-spanning alpha-helical peptide in phosphatidylcholine (PC) bilayers. The 19-amino-acid peptide consists of an alternating leucine and alanine core, flanked by tryptophans that serve as interfacial anchors: acetyl-GWW(LA)(6)LWWA-ethanolamine (WALP19). A single deuterium-labeled alanine was introduced at different positions within the peptide. Peptides were incorporated in oriented bilayers of dilauroyl- (di-C12:0-), dimyristoyl- (di-C14:0-), or dioleoyl- (di-C18:1(c)-) phosphatidylcholine. The NMR data fit well to a WALP19 orientation characterized by a distinctly nonzero tilt, approximately 4 degrees from the membrane normal, and rapid reorientation about the membrane normal in all three lipids. Although the orientation of WALP19 varies slightly in the different lipids, hydrophobic mismatch does not seem to be the dominant factor causing the tilt. We suggest rather that the peptide itself has an inherently preferred tilted orientation, possibly related to peptide surface characteristics or the disposition of tryptophan indole anchors relative to the lipids, the peptide backbone, and the membrane/water interface. Additionally, the data allow us to define more precisely the local alanine geometry in this membrane-spanning alpha-helix.  相似文献   

20.
The membrane-disruptive antimicrobial peptide PGLa is found to change its orientation in a dimyristoyl-phosphatidylcholine bilayer when its concentration is increased to biologically active levels. The alignment of the alpha-helix was determined by highly sensitive solid-state NMR measurements of (19)F dipolar couplings on CF(3)-labeled side chains, and supported by a nonperturbing (15)N label. At a low peptide/lipid ratio of 1:200 the amphiphilic peptide resides on the membrane surface in the so-called S-state, as expected. However, at high peptide concentration (>/=1:50 molar ratio) the helix axis changes its tilt angle from approximately 90 degrees to approximately 120 degrees , with the C-terminus pointing toward the bilayer interior. This tilted "T-state" represents a novel feature of antimicrobial peptides, which is distinct from a membrane-inserted I-state. At intermediate concentration, PGLa is in exchange between the S- and T-state in the timescale of the NMR experiment. In both states the peptide molecules undergo fast rotation around the membrane normal in liquid crystalline bilayers; hence, large peptide aggregates do not form. Very likely the obliquely tilted T-state represents an antiparallel dimer of PGLa that is formed in the membrane at increasing concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号