首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of glycine and guanidinoacetate methyltransferases have been measured in various tissues of rats and hepatoma of rats induced by N-2-fluorenylacetamide. These enzyme activities existing in rat liver gradually decreased with the progress of hepatocarcinoma. However, the creatine levels in these tumor tissues are significantly increased, although guanidinoacetate methyltransferase activity was not detected.  相似文献   

2.
We have examined the uptake of creatine by cultured monolayers of human IMR-90 flbroblasts, human uterine smooth muscle cells, calf aortic smooth muscle cells, and myoblasts and myotubes of the L6E9 rat skeletal muscle cell line. Creatine uptake is dependent on temperature and sensitive to the presence of Na+ in the extracellular medium. It is saturable, apparently concentrative, and inhibited by ouabain and structural analogs of creatine. In these respects, it resembles the process of creatine uptake by isolated preparations of skeletal muscle and brain tissues. Lineweaver-Burk plots of the data for variation in rate of uptake with concentration of creatine in the medium are nonlinear, suggesting that the process of uptake may be heterogeneous. Assuming the operation of two saturable processes of uptake, we calculated two values for apparent Km and V for each cell line. Kinetic parameters of creatine uptake by the different cell types are similar. The lower values of Km (0.02–0.04 mm) are in the physiological range of creatine concentration in mammalian plasma.  相似文献   

3.
Summary In the heart of the adult rat, fibroblasts are mainly responsible for the synthesis and deposition of the collagenous matrix. Because these cells in vitro may serve as an important model system for studies of collagen metabolism in heart tissue, we have cultured and characterized rat-heart fibroblasts from young adult and old animals. Conditions included use of media of different compositions with and without addition of ascorbate. Cell used were either cultured directly from fresh tissues or thawed previously frozen cells. Cultured cells were studied with respect to growth properties, morphology and ultrastructure and patterns of collagen. Heart fibroblasts generally resembled fibroblasts cultured from other tissues, but were more like skeletal muscle fibroblasts in that they deposited, in addition to type I collagen, type IV collagen and laminin. The fibroblasts showed a typical appearance in phase-contrast microscopy and electron microscopy. In the case of cells grown with added ascorbate, aligned collagen fibrils in the extracellular matrix showed a periodicity typical of type I collagen. The deposition of type I collagen occurred only in medium supplemented with ascorbate, and in that circumstance increased as a function of time past confluence; this was independent of the age of the animal from which the cells were obtained or of other changes of medium composition studied. Immunofluorescence studies with specific antibodies revealed that the cells deposited types I and IV collagens, laminin and fibronectin. In contrast to the case of type I collagen, the deposition of type IV collagen occurred in cells grown either with or without ascorbate. Direct observation of type IV collagen is consistent with the previous finding of type IV mRNA in cardiac fibroblasts in situ and in freshly isolated populations of these cells.  相似文献   

4.
Formation of cartilage by non-chondrogenic cell types   总被引:5,自引:0,他引:5  
Freshly excised embryonic rat skeletal muscle has been shown to form hyaline cartilage when organ cultured upon demineralized rat bone (bone matrix). Since skeletal muscle is composed of fibrous connective tissue (C.T.) as well as muscle cells, the cartilage could arise from either of these sources. The object of this study was to determine whether cartilage arose from fibrous connective tissue or muscle cells, or both, and whether the ability to form cartilage is limited to tissues derived from somatic mesoderm. Control experiments demonstrated that 19-day embryonic rat skeletal muscle formed cartilage when organ cultured on bone matrix after dissociation and cultivation in vitro, and that 11-day embryonic chick muscle also formed cartilage, although less reproducibly (3 out of 10 cases). Fibroblasts and skeletal muscle were cloned from similar suspensions of dissociated muscle in order to test these purified cell types. Dermis, vascular tissue, and tendons were mechanically removed prior to dissociation in order to eliminate fibroblasts from contaminant sources. Cloned fibroblasts, derived from rat skeletal muscle, formed cartilage in three out of three cases. It was not possible to clone sufficient rat skeletal muscle to place an aggregate onto bone matrix. An aggregate of several hundred chick skeletal muscle clones formed cartilage on bone matrix. The freshly excised C.T. capsules of embryonic chick thyroid and lung were tested for the ability to form cartilage as nonskeletal C.T. derivatives. The epithelial rudiments of thyroid and lung were also tested as endodermal derivatives. Chick cornea was similarly tested as an ectodermal derivative. Of these tissues, only the C.T. capsules formed cartilage. The results demonstrate that various C.T. cell types may alter their phenotype well after that stage at which their differentiation is thought to be stabilized, and that the ability to differentiate as cartilage may be common to all C.T. cells. The option of differentiating along a certain variety of pathways may depend more upon local conditions than on a predetermined pattern.  相似文献   

5.
[G-3H]Dopamine (3,4-dihydroxyphenethylamine) metabolism in human skin fibroblasts and rat hepatoma cells in culture was determined by high-pressure liquid-chromatographic analysis of both cell extract and uptake medium. Conjugated metabolites were selectively hydrolysed by incubation with arylsulphatase or beta-glucuronidase before analysis. The principal metabolites of dopamine in fibroblast cells are 3-methoxytyramine 4-O-sulphate and 3-methoxytyramine. No significant differences, either in the amounts of these metabolites or in the amount of dopamine metabolism, were observed in fibroblasts from both normal and homocystinuric individuals. In rat hepatoma cells, the major metabolite of dopamine was 3-methoxytyramine 4- or 3-O-glucuronide; lower concentrations of dopamine 4- or 3-O-glucuronide, 4-hydroxy-3-methoxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid and two unidentified glucuronide conjugates were also observed. Significant differences in the relative concentrations of these metabolites in cell and uptake medium were observed in both cell systems.  相似文献   

6.
Isolated rat hepatocytes exhibit an insulin-like anabolic response to hypoosmotic incubation and a glucagon-like catabolic response to hyperosmotic incubation. Recently, a distinct glycogenic response to hypoosmotic treatment was likewise reported for cultured rat myotubes. The present study examines the effects of anisoosmolar exposure on glucose metabolism in freshly isolated rat soleus muscle strips. Under the same experimental conditions as used for cultured myotubes, hypoosmolarity reduced net glycogen synthesis to 52%, while hyperosmolarity stimulated glycogen storage to 231% of isoosmolar control (nmol glucose incorporated into glycogen g(-1) x h(-1): hypoosmolar, 34+/-3; isoosmolar, 65+/-8; hyperosmolar, 150+/-11; p<0.01 each vs. isoosmolar). The responses of native skeletal muscle to anisoosmolarity are therefore in opposition to what has been described for hepatocytes and cultured myotubes. Further experiments on rat skeletal muscle revealed that the observed lack of a glycogenic response to hypoosmolarity persisted independent of medium composition, specifically with regard to prevailing glucose and K+ concentrations. In conclusion, hypoosmotic exposure inhibits glycogen synthesis in isolated rat soleus muscle, which clearly argues against the hypothesis that osmotic changes and cell swelling may be physiologically relevant stimulators of muscle glycogen synthesis.  相似文献   

7.
A simple multipulse sequence has been used to monitor creatine kinase kinetics in rat skeletal muscle in vivo. Using these procedures, the forward (ATP synthesis) and reverse fluxes (phosphocreatine synthesis) have been calculated to be 8.98 +/- 0.6 and 10.7 +/- 0.8 mumoles/g wet wt/s (n = 5) respectively. These results suggest that in resting skeletal muscle most of the gamma ATP observed in 31P NMR spectra is cytosolic and rapidly exchanging with phosphocreatine. The high flux rates reflect the high catalytic capacity of creatine kinase in skeletal muscle.  相似文献   

8.
Acid alpha-glucosidase (EC 3.2.1.20) was purified from human placenta and bovine testis by affinity chromatography using concanavalin A (conA) and Sephadex G 200. When added to the culture medium of human fibroblasts, the enzyme purified from bovine testis is taken up with a 200-fold higher efficiency than the enzyme from human placenta. Uptake of acid alpha-glucosidase from bovine testis is mediated by the mannose-6-phosphate receptor, whereas only a minor fraction of placental enzyme appears to be equipped with the mannose-6-phosphate recognition marker. Once internalized, both human and bovine acid alpha-glucosidase demonstrate a half-life of about 10 days in fibroblasts from control individuals and patients with different clinical forms of glycogenosis type II (Pompe's disease, acid alpha-glucosidase deficiency). Evidence is presented that the mannose-6-phosphate receptor is also present on the plasma membrane of the clonal myogenic skeletal muscle cell lines G8-1 and L6J1 (respectively from mouse and rat origin) and on cultured human skeletal muscle cells derived from a muscle biopsy. Addition of bovine testis acid alpha-glucosidase to skeletal muscle cell cultures from an adult patient with glycogenosis type II leads to complete correction of the enzyme deficiency.  相似文献   

9.
Newly hatched chicks fed a commercial diet containing 1% cyclocreatine (1-carboxymethyl-2-iminoimidazolidine) rapidly accumulate in breast muscle a derivative of cyclocreatine; within a few days concentrations up to 35 mumol of this derivative/g fresh weight of muscle are attained. The following evidence suggests that this derivative is N-phosphorylated cyclocreatine. (a) The derivative is adsorbed by Dowex 1 resin and eluted near phosphocreatine. (b) The derivative present in muscle is converted to free cyclocreatine either by homogenization of muscle in water at room temperature, conditions under which endogenous creatine kinase is active, or by heating a cold acidic muscle extract at 65 degrees for 45 min. (c) The isolated derivative reacts in vitro with the specific reagents crystalline creatine kinase and MgADP to give cyclocreatine. Essentially all of breast muscle cyclocreatine appears to be in the form of P-cyclocreatine, which persists in muscle long after cyclocreatine is removed from the diet. Long term conservation of P-cyclocreatine in muscle is aided by the fact that, unlike P-creatine, P-cyclocreatine is not continuously degraded to an inactive cyclic lactam. It is suggested that the maximal concentrations of P-cyclocreatine2- (and P-creatine2-) attained in sarcoplasm not only affect the phosphorylation potential of muscle cells, but also can account for more than half of the normal inorganic cation concentration of muscle sarcoplasm, and hence play an important role in muscle function. Other chick tissues active in accumulation of cyclocreatine are heart (up to 20 mumol/g fresh weight within 11 days on the diet) and brain (up to 10 mumol/g fresh weight after 30 days on the diet). Addition of 1% creatine to the diet of cyclocreatine-fed chicks does not prevent accumulation of cyclocreatine in muscle. Chicks fed cyclocreatine do not grow as rapidly as those on control diets, but they appear healthy, and mortality is very low when oxytetracycline is added to the drinking water. Cyclocreatine is also taken up by rat muscle, heart, and brain. A sensitive and specific assay for cyclocreatine has been developed. Cyclocreatine reacts with an aged aqueous solution of Na3[Fe(CN)8NH3] under alkaline conditions to give a blue product with a molar absorption coefficient (epsilon) of 4,400 M(-1) cm(? at 605 nm. The following compounds give an epsilon605 in this assay of less than 4 M%? cm(% N-phosphorylcyclocreatine, creatine, P-creatine, creatinine, 1-carboxymethyl-2-iminohexahydropyrimidine, guanidinoacetate, 3-guanidinopropionate, and arginine. Cyclocreatine does not interfere with the diacetyl-alpha-naphthol assay for creatine.  相似文献   

10.
S-adenosylmethionine, formed by the adenylation of methionine via S-adenosylmethionine synthase, is the methyl donor in virtually all known biological methylations. These methylation reactions produce a methylated substrate and S-adenosylhomocysteine, which is subsequently metabolized to homocysteine. The methylation of guanidinoacetate to form creatine consumes more methyl groups than all other methylation reactions combined. Therefore, we examined the effects of increased or decreased methyl demand by these physiological substrates on plasma homocysteine by feeding rats guanidinoacetate- or creatine-supplemented diets for 2 wk. Plasma homocysteine was significantly increased (~50%) in rats maintained on guanidinoacetate-supplemented diets, whereas rats maintained on creatine-supplemented diets exhibited a significantly lower (~25%) plasma homocysteine level. Plasma creatine and muscle total creatine were significantly increased in rats fed the creatine-supplemented or guanidinoacetate-supplemented diets. The activity of kidney L-arginine:glycine amidinotransferase, the enzyme catalyzing the synthesis of guanidinoacetate, was significantly decreased in both supplementation groups. To examine the role of the liver in mediating these changes in plasma homocysteine, isolated rat hepatocytes were incubated with methionine in the presence and absence of guanidinoacetate and creatine, and homocysteine export was measured. Homocysteine export was significantly increased in the presence of guanidinoacetate. Creatine, however, was without effect. These results suggest that homocysteine metabolism is sensitive to methylation demand imposed by physiological substrates.  相似文献   

11.
A heat stable serum factor of low molecular weight maintains the myosin ATPase activity of cultured rat heart cells. Its action is directly on the heart cells and it does not act by selection of heart muscle cells. It has no effect on heart muscle creatine phosphokinase or lactic dehydrogenase nor on myosin in skeletal muscle cultures.  相似文献   

12.
Xenogeneic antisera raised in rabbits have been used to detect compositional changes at the cell surfaces of differentiating embryonic chick skeletal muscle. In this report, we present the serological characterization of antiserum (Anti-M-24) against muscle tissue and developmental stage-specific cell surface antigens of the prefusion myoblast. Cells from primary cultures of 12-d-old embryonic chick hindlimb muscle were injected into rabbits, and the resulting antisera were selectively absorbed to obtain immunological specificity. Cytotoxicity and immunohistochemical assays were used to test this antiserum. Absorption with embryonic or adult chick heart, brain, retina, liver, erythrocytes, or skeletal muscle fibroblasts failed to remove all reactivity of Anti-M-24 for myogenic cells at all stages of development. After absorption with embryonic myotubes, however, Anti-M-24 no longer reacted with differentiated myofibers, but did react with prefusion myoblasts. The myoblast surface antigens detected with Anti-M-24 are components of the muscle cell membrane: (a) these macromolecules are free to diffuse laterally within the myoblast membrane; (b) Anti-M-24, in the presence of complement, induced lysis of the muscle cell membrane; and (c) intact monolayers of viable myoblasts completely absorbed reactivity of Anti-M-24 for myoblasts. These antigens are not loosely adsorbed culture medium components or an artifact of tissue culture because: (a) absorption of Anti-M-24 with homogenized embryonic muscle removed all antibodies to cultured myoblasts; (b) Anti-M-24 reacted with myoblast surfaces in vivo; and (c) absorption of Anti-M-24 with culture media did not affect the titer of this antiserum for myoblasts. We conclude that myogenic cells at all stages of development possess externally exposed antigens which are undetected on other embryonic and adult chick tissues. In addition, myoblasts exhibit surface antigenic determinants that are either masked, absent, or present in very low concentrations on skeletal muscle fibroblasts, embryonic myotubes, or adult myofibers. These antigens are free to diffuse laterally within the myoblast membrane and may be modulated in response to appropriate environmental cues during myodifferentiation.  相似文献   

13.
A satellite cell mitogen from crushed adult muscle   总被引:16,自引:0,他引:16  
Single fiber-satellite cell units from skeletal muscle of adult rats were used to study the regulation of satellite cell proliferation. The satellite cells remained quiescent during culture in serum-containing medium but could be induced to enter the cell cycle by exposure to a saline extract of crushed adult muscle. The activity in the extract has a molecular weight greater than 30K and is heat and trypsin sensitive. The mitogenic activity does not result from transferrin. Little or no activity was obtained from crushed extracts of heterologous tissues. Proliferation of myogenic cells from rat embryos was also stimulated by the muscle mitogen but growth of muscle fibroblasts was not enhanced. The time response of satellite cell proliferation after exposure to the muscle mitogen showed that the cells enter DNA synthesis after a lag period of 18 hr and proliferate with a generation time of 12 hr. This confirms that satellite cells in adult muscle are in G0, or an extended G1. The mitogen is also effective in stimulating muscle growth and myoblast fusion in vivo when injected into 1-week-old rat pups. These experiments suggest that muscle regeneration is initiated by the release of an endogenous mitogen from traumatized muscle.  相似文献   

14.
Xestospongin B, a macrocyclic bis-1-oxaquinolizidine alkaloid extracted from the marine sponge Xestospongia exigua, was highly purified and tested for its ability to block inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release. In a concentration-dependent manner xestospongin B displaced [(3)H]IP(3) from both rat cerebellar membranes and rat skeletal myotube homogenates with an EC(50) of 44.6 +/- 1.1 microM and 27.4 +/- 1.1 microM, respectively. Xestospongin B, depending on the dose, suppressed bradykinin-induced Ca(2+) signals in neuroblastoma (NG108-15) cells, and also selectively blocked the slow intracellular Ca(2+) signal induced by membrane depolarization with high external K(+) (47 mM) in rat skeletal myotubes. This slow Ca(2+) signal is unrelated to muscle contraction, and involves IP(3) receptors. In highly purified isolated nuclei from rat skeletal myotubes, Xestospongin B reduced, or suppressed IP(3)-induced Ca(2+) oscillations with an EC(50) = 18.9 +/- 1.35 microM. In rat myotubes exposed to a Ca(2+)-free medium, Xestospongin B neither depleted sarcoplasmic reticulum Ca(2+) stores, nor modified thapsigargin action and did not affect capacitative Ca(2+) entry after thapsigargin-induced depletion of Ca(2+) stores. Ca(2+)-ATPase activity measured in skeletal myotube homogenates remained unaffected by Xestospongin B. It is concluded that xestospongin B is an effective cell-permeant, competitive inhibitor of IP(3) receptors in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells.  相似文献   

15.
Immunoblot analyses with antibodies against the peroxisomal beta-oxidation enzymes from rat liver showed the presence of these enzymes in rat and human liver and kidney and rat adrenal gland. The bifunctional protein could not be detected in muscle tissues or cultured muscle cells. Acyl-CoA oxidase was detected in rat heart and cultured human muscle cells. 3-Ketoacyl-CoA thiolase was also detected in human and rat heart and skeletal muscle; however, this enzyme was not detectable in skeletal muscle of Zellweger patients, in agreement with the absence of peroxisomal fatty acid oxidation.  相似文献   

16.
We have developed a new method for the rapid isolation of tropomyosin-containing microfilaments from cultured cells using anti-tropomyosin monoclonal antibodies. Anti-tropomyosin monoclonal antibodies induce the bundle formation of microfilaments, which can be easily collected by low speed centrifugation. Electron microscopic studies of the isolated microfilaments show periodic localization of tropomyosin along the microfilaments of nonmuscle cells with a 33-34 nm repeat. Furthermore, the isolated microfilaments have the ability to activate the Mg2+-ATPase activity of skeletal muscle myosin to almost the same extent as skeletal muscle F-actin (filamentous actin). This microfilament isolation method is applicable to a variety of cell types, including REF-52 cells (an established rat embryo line), L6 myoblasts, 3T3 fibroblasts, Chinese hamster ovary cells, baby hamster kidney (BHK-21) cells, mouse neuroblastoma cells, gerbil fibroma cells, and chicken embryo fibroblasts. Sodium dodecyl sulfate-polyacrylamide gel analysis shows that, in addition to actin, microfilaments isolated from REF-52 cells contain five species of tropomyosin with apparent Mr = 40,000, 36,500, 35,000, 32,400, and 32,000, alpha-actinin, and as yet unknown proteins with apparent Mr = 83,000 and 37,000. The molar ratio of total tropomyosin (dimer) to actin in the isolated microfilaments is 1:8. The patterns of these multiple forms of tropomyosin were found to change when REF-52 cells were transformed with SV40 or adenovirus type 5.  相似文献   

17.
The expression of myostatin mRNA was examined in regenerating skeletal muscle of the rat. Skeletal muscle regeneration was induced by injecting bupivacaine or hypertonic saline solution into the femoral muscle, and the tissues were collected 48 h after the treatment. In situ hybridization analysis revealed that the cells positive for myostatin message were localized in the regenerating area of the bupivacaine-treated tissues, where a numerous number of mononucleated cells were present. The myostatin-positive mononucleated cells contained both myogenic and nonmyogenic cells, as revealed by immunohistochemical staining for desmin and vimentin. Bupivacaine treatment to the testes resulted in no myostatin message expression in the testicular vimentin-positive cells, suggesting that the expression of myostatin message in vimentin-positive cells is a skeletal muscle-specific phenomenon. Furthermore, crushed muscle extract prepared from regenerating skeletal muscle had induced myostatin mRNA expression in skeletal muscle-derived fibroblasts in a dose-dependent manner. These results indicated that myostatin is expressed during skeletal muscle regeneration both in myogenic and nonmyogenic cells, and suggested that some factor(s) capable of inducing myostatin expression in fibroblasts are present in regenerating skeletal muscle.  相似文献   

18.
The proteoglycans synthesized by primary chick skeletal muscle during in vitro myogenesis were compared with those of muscle-specific fibroblasts. Cultures of skeletal muscle cells and muscle fibroblasts were separately labeled using [35S] sulfate as a precursor. The proteoglycans of the cell layer and medium were separately extracted and isolated by ion-exchange chromatography on DEAE-Sephacel followed by gel filtration chromatography on Sepharose CL-2B. Two cell layer-associated proteoglycans synthesized both by skeletal muscle cells and muscle fibroblasts were identified. The first, a high molecular weight proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.07 and contained exclusively chondroitin sulfate chains with an average molecular weight greater than 50,000. The second, a relatively smaller proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.61 and contained primarily heparan sulfate chains with an average molecular weight of 16,000. Two labeled proteoglycans were also found in the medium of both skeletal muscle and muscle fibroblasts. A high molecular weight proteoglycan was found with virtually identical properties to that of the high molecular weight chondroitin sulfate proteoglycan of the cell layer. A second, smaller proteoglycan had a similar monomer size (Kav of 0.63) to the cell layer heparan sulfate proteoglycan, but differed from it in that this molecule contained primarily chondroitin sulfate chains with an average molecular weight of 32,000. Studies on the distribution of these proteoglycans in muscle cells during in vitro myogenesis demonstrated that a parallel increase in the relative amounts of the smaller proteoglycans occurred in both the cell layer and medium compared to the large chondroitin sulfate proteoglycan in each compartment. In contrast, muscle-derived fibroblasts displayed a constant ratio of the small proteoglycans of the cell layer and medium fractions, compared to the larger chondroitin sulfate proteoglycan of the respective fraction as a function of cell density. Our results support the concept that proteoglycan synthesis is under developmental regulation during skeletal myogenesis.  相似文献   

19.
Glutamine is synthesized in skeletal muscle, released to the circulation, and transported to other tissues, where it may provide important substrate for gluconeogenesis, ammoniagenesis, and energy-yielding pathways. With the ultimate goal of delineating the factors that control glutamine production and release by skeletal muscle, we have studied the regulation of two key enzymes, glutamine synthetase and glutaminase, in the L6 line of rat skeletal muscle cells grown in monolayer culture. The cultured myotubes were found to have glutamine synthetase and phosphate-dependent glutaminase activities. Glutamine synthetase activity was increased following incubation (1) in glutamine-free medium (threefold); (2) in medium containing high glutamic acid concentrations (fourfold); and (3) in medium supplemented with dexamethasone (threefold). In each case the increase in glutamine synthetase activity required several hours to reach a maximum and was prevented by cycloheximide, suggesting that the change occurred through increased enzyme biosynthesis. No substances tested were found to affect glutaminase activity. We conclude that glutamine synthetase in cultured skeletal muscle is responsive to substrate, product, and hormonal regulation.  相似文献   

20.
Circulating dehydroepiandrosterone (DHEA) is converted to testosterone or estrogen in the target tissues. Recently, we demonstrated that skeletal muscles are capable of locally synthesizing circulating DHEA to testosterone and estrogen. Furthermore, testosterone is converted to 5alpha-dihydrotestosterone (DHT) by 5alpha-reductase and exerts biophysiological actions through binding to androgen receptors. However, it remains unclear whether skeletal muscle can synthesize DHT from testosterone and/or DHEA and whether these hormones affect glucose metabolism-related signaling pathway in skeletal muscles. We hypothesized that locally synthesized DHT from testosterone and/or DHEA activates glucose transporter-4 (GLUT-4)-regulating pathway in skeletal muscles. The aim of the present study was to clarify whether DHT is synthesized from testosterone and/or DHEA in cultured skeletal muscle cells and whether these hormones affect the GLUT-4-related signaling pathway in skeletal muscles. In the present study, the expression of 5alpha-reductase mRNA was detected in rat cultured skeletal muscle cells, and the addition of testosterone or DHEA increased intramuscular DHT concentrations. Addition of testosterone or DHEA increased GLUT-4 protein expression and its translocation. Furthermore, Akt and protein kinase C-zeta/lambda (PKC-zeta/lambda) phosphorylations, which are critical in GLUT-4-regulated signaling pathways, were enhanced by testosterone or DHEA addition. Testosterone- and DHEA-induced increases in both GLUT-4 expression and Akt and PKC-zeta/lambda phosphorylations were blocked by a DHT inhibitor. Finally, the activities of phosphofructokinase and hexokinase, main glycolytic enzymes, were enhanced by testosterone or DHEA addition. These findings suggest that skeletal muscle is capable of synthesizing DHT from testosterone, and that DHT activates the glucose metabolism-related signaling pathway in skeletal muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号