首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chemoenzymatic glycosylation remodeling method for the synthesis of selectively fluorinated glycoproteins is described. The method consists of chemical synthesis of a fluoroglycan oxazoline and its use as donor substrate for endoglycosidase (ENGase)-catalyzed transglycosylation to a GlcNAc-protein to form a homogeneous fluoroglycoprotein. The approach was exemplified by the synthesis of fluorinated glycoforms of ribonuclease B (RNase B). An interesting finding was that fluorination at the C-6 of the 6-branched mannose moiety in the Man3GlcNAc core resulted in significantly enhanced reactivity of the substrate in enzymatic transglycosylation. A structural analysis suggests that the enhancement in reactivity may come from favorable hydrophobic interactions between the fluorine and a tyrosine residue in the catalytic site of the enzyme (Endo-A). SPR analysis of the binding of the fluorinated glycoproteins with lectin concanavalin A (con A) revealed the importance of the 6-hydroxyl group on the α-1,6-branched mannose moiety in con A recognition. The present study establishes a facile method for preparation of selectively fluorinated glycoproteins that can serve as valuable probes for elucidating specific carbohydrate–protein interactions.  相似文献   

2.
O'Reilly M  Watson KA  Johnson LN 《Biochemistry》1999,38(17):5337-5345
Acarbose is a naturally occurring pseudo-tetrasaccharide. It has been used in conjunction with other drugs in the treatment of diabetes where it acts as an inhibitor of intestinal glucosidases. To probe the interactions of acarbose with other carbohydrate recognition enzymes, the crystal structure of E. coli maltodextrin phosphorylase (MalP) complexed with acarbose has been determined at 2.95 A resolution and refined to crystallographic R-values of R (Rfree) = 0.241 (0.293), respectively. Acarbose adopts a conformation that is close to its major minimum free energy conformation in the MalP-acarbose structure. The acarviosine moiety of acarbose occupies sub-sites +1 and +2 and the disaccharide sub-sites +3 and +4. (The site of phosphorolysis is between sub-sites -1 and +1.) This is the first identification of sub-sites +3 and +4 of MalP. Interactions of the glucosyl residues in sub-sites +2 and +4 are dominated by carbohydrate stacking interactions with tyrosine residues. These tyrosines (Tyr280 and Tyr613, respectively, in the rabbit muscle phosphorylase numbering scheme) are conserved in all species of phosphorylase. A glycerol molecule from the cryoprotectant occupies sub-site -1. The identification of four oligosaccharide sub-sites, that extend from the interior of the phosphorylase close to the catalytic site to the exterior surface of MalP, provides a structural rationalization of the substrate selectivity of MalP for a pentasaccharide substrate. Crystallographic binding studies of acarbose with amylases, glucoamylases, and glycosyltranferases and NMR studies of acarbose in solution have shown that acarbose can adopt two different conformations. This flexibility allows acarbose to target a number of different enzymes. The two alternative conformations of acarbose when bound to different carbohydrate enzymes are discussed.  相似文献   

3.
Protease stability is a key consideration in the development of peptide-based drugs. A major approach to increase the bioavailability of pharmacologically active peptides is the incorporation of non-natural amino acids. Due to the unique properties of fluorine, fluorinated organic molecules have proven useful in the development of therapeutically active small molecules as well as in materials and crop science. This study presents data on the ability of fluorinated amino acids to influence proteolytic stability when present in peptide sequences that are based on ideal protease substrates. Different model peptides containing fluorinated amino acids or ethylglycine in the P2, P1′or P2′ positions were designed according to the specificities of the serine protease, α-chymotrypsin (EC 3.4.21.1) or the aspartic protease, pepsin (EC 3.4.23.1). The proteolytic stability of the peptides toward these enzymes was determined by an analytical RP-HPLC assay with fluorescence detection and compared to a control sequence. Molecular modeling was used to support the interpretation of the structure–activity relationship based on the analysis of potential ligand-enzyme interactions. Surprisingly, an increase in proteolytic stability was observed only in a few cases. Thus, this systematic study shows that the proteolytic stability of fluorinated peptides is not predictable, but rather is a very complex phenomenon that depends on the particular enzyme, the position of the substitution relative to the cleavage site and the fluorine content of the side chain.  相似文献   

4.
Pal PP  Bae JH  Azim MK  Hess P  Friedrich R  Huber R  Moroder L  Budisa N 《Biochemistry》2005,44(10):3663-3672
Global replacements of tyrosine by 2- and 3-fluorotyrosine in "enhanced green" and "enhanced yellow" mutants of Aequorea victoria green fluorescent proteins (avGFPs) provided protein variants with novel biophysical properties. While crystallographic and modeled structures of these proteins are indistinguishable from those of their native counterparts (i.e., they are perfectly isomorphous), there are considerable differences in their spectroscopic properties. The fluorine being an integral part of the avGFP chromophore induces changes in the titration curves, variations in the intensity of the absorbance and fluorescence, and spectral shifts in the emission maxima. Furthermore, targeted fluorination in close proximity to the fluorinated chromophore yielded additional variants with considerably enhanced spectral changes. These unique spectral properties are intrinsic features of the fluorinated avGFPs, in the context of the rigid chromophore-microenvironment interactions. The availability of the isomorpohous crystal structures of fluorinated avGFPs allowed mapping of novel, unusual interaction distances created by the presence of fluorine atoms. In addition, fluorine atoms in the ortho position of the chromophore tyrosyl moiety exhibit a single conformation, while in the meta position two conformer states were observed in the crystalline state. Such global replacements in chromophores of avGFPs and similar proteins result in "atomic mutations" (i.e., H --> F replacements) in the structures, offering unprecedented opportunities to understand and manipulate the relationships between protein structure and spectroscopic properties.  相似文献   

5.
The introduction of fluorine atoms into organic molecules has received considerable attention as these organofluorines have often found widespread applications in bioorganic chemistry, medicinal chemistry and biomaterial science. Despite innovation of synthetic C–F forming methodologies, selective fluorination is still extremely challenging. Therefore, a biotransformation approach using fluorine biocatalysts is needed to selectively introduce fluorine into structurally diverse molecules. Yet, there are few ways that enable incorporation of fluorine into structurally complex bioactive molecules. One is to extend the substrate scope of the existing enzyme inventory. Another is to expand the biosynthetic pathways to accept fluorinated precursors for producing fluorinated bioactive molecules. Finally, an understanding of the physiological roles of fluorometabolites in the producing microorganisms will advance our ability to engineer a microorganism to produce novel fluorinated commodities. Here, we review the fluorinase biotechnology and fluorine biocatalysts that incorporate fluorine motifs to generate fluorinated molecules, and highlight areas for future developments.  相似文献   

6.
The cytochrome P450 catalyzes hydroxylation of many substrates in the presence of O(2) and specific electron transport system. The ternary complex S-Fe(+)O(2) with substrate and O(2) bound to their respective sites on the reduced enzyme is an important intermediate in the formation of the hydroxylating species. Then the active site may be considered as having two sub-sites geared for entirely different types of functionally relevant interactions. The two sites are the substrate binding site, the specific protein residues (Site I), and the L(6) position of the iron (Site II) to which O(2) binds upon reduction. In the ferric enzyme, when substrate binds to Site I, the low spin six-coordinated P450 is converted to the readily reducible high spin five coordinated state. Certain amines and OH compounds, such as products of P450-catalyzed reactions, can bind to Site II resulting in six coordinated inhibited complexes. Then the substrate and product interactions with the two sub-sites can regulate the functional state of the enzyme during catalysis. Product interactions have received very little attention. CYP101 is the only P450 in which X-ray and spectroscopic data on all three structures, the substrate-free, camphor-bound and the 5-exo-OHcamphor-bound are available. The substrate-free CYP101 is low spin and six-coordinated with a water molecule ligated at the L(6) position of the iron. The substrate camphor binds to Site I, and releases the L(6) water despite its inability to bind to this site, indicating that Site I binding can inhibit Site II ligation. The product 5-exo-OHcamphor in addition to binding to Site I, binds to Site II through its -OH group forming Fe-O bond, resulting in the low spin six-coordinated complex. New temperature-jump relaxation kinetic data indicating that Site II ligation inhibits Site I binding are presented. It appears that the Site I and Site II function as interacting sub-sites. The inhibitory allosteric interactions between the two sub-sites are also reflected in the data on binding of the substrate camphor (S) in the presence of the product 5-exo-OH camphor (P) to CYP101 (E). The data are in accordance with the two-site model involving the ternary complex ESP. The affinity of the substrate to the product-bound enzyme as well as the affinity of the product to the substrate-bound enzyme decreased with increase in product concentration, which is consistent with mixed inhibition indicative of inhibitory allosteric interactions between the two sub-sites. Implications of these observations for coupling/uncoupling mechanisms are discussed in the light of the published findings consistent with the two-site behavior of the P450 active site. In addition, kinetic data indicating that the transient high spin intermediate may have to be taken into account for understanding how some P450s have been able to express appreciable hydroxylation activities in the absence of substrate-induced low to high spin transition, observable by the traditional static spectroscopy, are presented.  相似文献   

7.
The thermodynamics of base pairing is of fundamental importance. Fluorinated base analogs are valuable tools for investigating pairing interactions. To understand the influence of direct base–base interactions in relation to the role of water, pairing free energies between natural nucleobases and fluorinated analogs are estimated by potential of mean force calculations. Compared to pairing of AU and GC, pairing involving fluorinated analogs is unfavorable by 0.5–1.0 kcal mol−1. Decomposing the pairing free energies into enthalpic and entropic contributions reveals fundamental differences for Watson–Crick pairs compared to pairs involving fluorinated analogs. These differences originate from direct base–base interactions and contributions of water. Pairing free energies of fluorinated base analogs with natural bases are less unfavorable by 0.5–1.0 kcal mol−1 compared to non-fluorinated analogs. This is attributed to stabilizing C–FH–N dipolar interactions and stronger NH–C hydrogen bonds, demonstrating direct and indirect influences of fluorine. 7-methyl-7H-purine and its 9-deaza analog (Z) have been suggested as members of a new class of non-fluorinated base analogs. Z is found to be the least destabilizing universal base in the context of RNA known to date. This is the first experimental evidence for nitrogen-containing heterocylces as bioisosteres of aromatic rings bearing fluorine atoms.  相似文献   

8.
The higher-order DNA-protein complex that carries out the chemical steps of phage Mu transposition is organized by bridging interactions among three DNA sites, the left (L) and right (R) ends of Mu, and an enhancer element (E), mediated by the transposase protein MuA. A subset of the six subunits of MuA associated with their cognate sub-sites at L and R communicate with the enhancer to trigger the stepwise assembly of the functional transpososome. The DNA follows a well-defined path within the transpososome, trapping five supercoil nodes comprising two E-R crossings, one E-L crossing and two L-R crossings. The enhancer is a critical DNA element in specifying the unique interwrapped topology of the three-site LER synapse. In this study, we used multiple strategies to characterize Mu end-enhancer interactions to extend, modify and refine those inferred from earlier analyses. Directed placement of transposase subunits at their cognate sub-sites at L and R, analysis of the protein composition of transpososomes thus obtained, and their characterization using topological methods define the following interactions. R1-E interaction is essential to promote transpososome assembly, R3-E interaction contributes to the native topology of the transpososome, and L1-E and R2-E interactions are not required for assembly. The data on L2-E and L3-E interactions are not unequivocal. If they do occur, either one is sufficient to support the assembly process. Our results are consistent with two R-E and perhaps one L-E, being responsible for the three DNA crossings between the enhancer and the left and right ends of Mu. A 3D representation of the interwrapped complex (IW) obtained by modeling is consistent with these results. The model reveals straightforward geometric and topological relationships between the IW complex and a more relaxed enhancer-independent V-form of the transpososome assembled under altered reaction conditions.  相似文献   

9.
The aim of this work was to establish an approach for identification of protein interactions. This assay used an anti-S100A8 antibody coupled on beads and incubated with cell extract. The bead eluates were analyzed using ProteinChip technology and subsequently subjected to an appropriate digestion. Molecular masses of digestion fragments were determined by SELDI-MS, and database analysis revealed S100A10 as interacting protein. This result was confirmed by co-immunoprecipitation and immunocapturing. Using S100A10 as new bait, a specific interaction with S100A7 was detectable.  相似文献   

10.
For the characterization of protein sequences and post-translational modifications by MS, the 'top-down' proteomics approach utilizes molecular and fragment ion mass data obtained by ionizing and dissociating a protein in the mass spectrometer. This requires more complex instrumentation and methodology than the far more widely used 'bottom-up' approach, which instead uses such data of peptides from the protein's digestion, but the top-down data are far more specific. The ESI MS spectrum of a 14 protein mixture provides full separation of its molecular ions for MS/MS dissociation of the individual components. False-positive rates for the identification of proteins are far lower with the top-down approach, and quantitation of multiply modified isomers is more efficient. Bottom-up proteolysis destroys the information on the size of the protein and the connectivities of the peptide fragments, but it has no size limit for protein digestion. In contrast, the top-down approach has a approximately 500 residue, approximately 50 kDa limitation for the extensive molecular ion dissociation required. Basic studies indicate that this molecular ion intractability arises from greatly strengthened electrostatic interactions, such as hydrogen bonding, in the gas-phase molecular ions. This limit is now greatly extended by variable thermal and collisional activation just after electrospray ('prefolding dissociation'). This process can cleave 287 inter-residue bonds in the termini of a 1314 residue (144 kDa) protein, specify previously unidentified disulfide bonds between eight of 27 cysteines in a 1714 residue (200 kDa) protein, and correct sequence predictions in two proteins, one of 2153 residues (229 kDa).  相似文献   

11.
Mass spectrometry for the study of protein-protein interactions   总被引:8,自引:0,他引:8  
The identification of subpicomolar amounts of protein by mass spectrometry (MS) coupled with two-dimensional methods to separate complex protein mixtures is fueling the field of proteomics, and making feasible the notion of cataloging and comparing all of the expressed proteins in a biological sample. Functional proteomics is a complementary effort aimed at the characterization of functional features of proteins, such as their interactions with other proteins. Proteins comprise modular domains, many of which are noncatalytic modules that direct protein-protein interactions. Capturing proteins of interest and their interacting proteins by using high-affinity antibodies presents a simple method to prepare relatively simple protein mixtures easily resolved in one-dimensional formats. Individual or mixtures of proteins identified as stained bands in polyacrylamide gels are subjected to in situ digestion with the protease trypsin, and the extracted peptide fragments are analyzed by MS. The quality, quantity, and complexity of the tryptic digest, the species origin of the proteins, and the quality of the corresponding databases of genomic and protein information greatly influence the subsequent MS analysis in terms of degree of difficulty and methodological approach required to make an unambiguous protein identification. In this article we report the isolation of associated proteins from a complex cell-derived lysate by using an epitope-directed antibody. The protein pICLn engineered to carry an epitope tag was purified from cultured human embryonic kidney cells, and found to associate with a variety of proteins including the spliceosomal proteins smE and smG. By application of this general approach, the systematic identification of protein complexes and assignment of protein function are possible.  相似文献   

12.
We present results from a novel strategy that enables concurrent identification of protein-protein interactions and topologies in living cells without specific antibodies or genetic manipulations for immuno-/affinity purifications. The strategy consists of (i) a chemical cross-linking reaction: intact cell labeling with a novel class of chemical cross-linkers, protein interaction reporters (PIRs); (ii) two-stage mass spectrometric analysis: stage 1 identification of PIR-labeled proteins and construction of a restricted database by two-dimensional LC/MSMS and stage 2 analysis of PIR-labeled peptides by multiplexed LC/FTICR-MS; and (iii) data analysis: identification of cross-linked peptides and proteins of origin using accurate mass and other constraints. The primary advantage of the PIR approach and distinction from current technology is that protein interactions together with topologies are detected in native biological systems by stabilizing protein complexes with new covalent bonds while the proteins are present in the original cellular environment. Thus, weak or transient interactions or interactions that require properly folded, localized, or membrane-bound proteins can be labeled and identified through the PIR approach. This strategy was applied to Shewanella oneidensis bacterial cells, and initial studies resulted in identification of a set of protein-protein interactions and their contact/binding regions. Furthermore most identified interactions involved membrane proteins, suggesting that the PIR approach is particularly suited for studies of membrane protein-protein interactions, an area under-represented with current widely used approaches.  相似文献   

13.
A short fluorinated antifreeze glycopeptide (2) was synthesized and evaluated for ice recrystallization inhibition (IRI) activity. The activity of 2 was compared to native biological antifreeze AFGP 8 and a rationally designed C-linked AFGP analogue (OGG-Gal, 1). In addition, a simple fluorinated galactose derivative was prepared and its IRI activity was compared to non-fluorinated compounds. The results from this study suggest that the stereochemistry at the anomeric position in the carbohydrate plays a role in imparting ice recrystallization inhibition activity and that incorporation of hydrophobic groups such as fluorine atoms cause a decrease in IRI activity. These observations are consistent with the theory that fluorine atoms increase ordering of bulk water resulting in a decrease of IRI activity, supporting our previously proposed mechanism of ice recrystallization inhibition.  相似文献   

14.
Single-chain Fv (scFv) format protein is a commonly used analytical tool for diagnostic and therapeutic applications. The usage of scFv antibody fragments in therapeutic applications has demonstrated that they need to have high thermostability. Many rational or irrational methods have been described erstwhile to engineer or improve the stability of scFv proteins by modifications of natural amino acid. Here we have demonstrated an alternate strategy to efficiently improve the thermostability of scFvs by non-canonical amino acid. Previously, fluoroprolines have been proven as a choice to tune the stability of many polypeptides and few globular proteins. Hence we exploited the usage of fluoroproline to enhance the thermal stability of scFv by replacing the natural proline on the framework regions of scFv that influence the folding or stability. To demonstrate our approach, a bacterial cytoplasmic foldable and humanized anti-c-Met scFv (hu-MscFv) was used. The hu-MscFv proline sites were successfully incorporated with (2S,4R)-4-fluoroproline without affecting its structure and function by the in vivo residue specific global replacement method which exploits bacterial auxotrophic system. The time-dependent temperature effect on the activity of fluorinated hu-MscFv revealed its increased stability at 40 °C along with improved half-life than the hu-MscFv with natural proline. Further model based structure analysis on hu-MscFv with fluoroproline indicated that the fluorine atoms were able to establish new favourable dipole interactions with neighbouring polar groups in their local micro environments that rationalizes its improved thermostability. Moreover the scFv sequence based statistical analysis strongly supports the fact that this method can be applied to any target scFv, since they contain high frequency conserved proline sites in their framework regions.  相似文献   

15.
Prediction of fluorine chemical shifts in proteins   总被引:3,自引:0,他引:3  
D H Gregory  J T Gerig 《Biopolymers》1991,31(7):845-858
Molecular dynamics calculations have been used in an effort to estimate the change in fluorine nmr shielding when a fluorine nucleus enters the tertiary structure of a protein. Considerations of the possible interactions that can define the shift parameter change suggest that van der Waals interactions are the leading determinant of fluorine shifts in proteins, although aromatic ring currents, other magnetic anisotropies, and electrostatic field effects could result in shift distinctions of 1 ppm or smaller. Results of our studies of a fluorine-containing analogue of the ribonuclease A S-protein/S-peptide complex indicate that static structures such as those implied by crystallographic data lead to overestimates of the magnitude of the van der Waals shielding term; molecular dynamics simulations provide indications of the effects of conformational averaging in defining this term. The treatment used predicts the correct direction of the shift change when the fluorine enters this protein environment from aqueous solution and, with an experimentally supported choice of adjustable parameters, gives agreement with the magnitude of the shift.  相似文献   

16.
Water-mediated hydrogen exchange (HX) processes involving the protein main chain are sensitive to structural dynamics and molecular interactions. Measuring deuterium uptake in amide bonds provides information on conformational states, structural transitions and binding events. Increasingly, deuterium levels are measured by mass spectrometry (MS) from proteolytically generated peptide fragments of large molecular systems. However, this bottom-up method has limited spectral capacity and requires a burdensome manual validation exercise, both of which restrict analysis of protein systems to generally less than 150 kDa. In this study, we present a bottom-up HX-MS2 method that improves peptide identification rates, localizes high-quality HX data and simplifies validation. The method combines a new peptide scoring algorithm (WUF, weighted unique fragment) with data-independent acquisition of peptide fragmentation data. Scoring incorporates the validation process and emphasizes identification accuracy. The HX-MS2 method is illustrated using data from a conformational analysis of microtubules treated with dimeric kinesin MCAK. When compared to a conventional Mascot-driven HX-MS method, HX-MS2 produces two-fold higher α/β-tubulin sequence depth at a peptide utilization rate of 74%. A Mascot approach delivers a utilization rate of 44%. The WUF score can be constrained by false utilization rate (FUR) calculations to return utilization values exceeding 90% without serious data loss, indicating that automated validation should be possible. The HX-MS2 data confirm that N-terminal MCAK domains anchor kinesin force generation in kinesin-mediated depolymerization, while the C-terminal tails regulate MCAK-tubulin interactions.  相似文献   

17.
18.
Elucidating mechanisms of natural organofluorine biosynthesis is essential for a basic understanding of fluorine biochemistry in living systems as well as for expanding biological methods for fluorine incorporation into small molecules of interest. To meet this goal we have combined massively parallel sequencing technologies, genetic knockout, and in vitro biochemical approaches to investigate the fluoride response of the only known genetic host of an organofluorine-producing pathway, Streptomyces cattleya. Interestingly, we have discovered that the major mode of S. cattleya's resistance to the fluorinated toxin it produces, fluoroacetate, may be due to temporal control of production rather than the ability of the host's metabolic machinery to discriminate between fluorinated and non-fluorinated molecules. Indeed, neither the acetate kinase/phosphotransacetylase acetate assimilation pathway nor the TCA cycle enzymes (citrate synthase and aconitase) exclude fluorinated substrates based on in vitro biochemical characterization. Furthermore, disruption of the fluoroacetate resistance gene encoding a fluoroacetyl-CoA thioesterase (FlK) does not appear to lead to an observable growth defect related to organofluorine production. By showing that a switch in central metabolism can mediate and control molecular fluorine incorporation, our findings reveal a new potential strategy toward diversifying simple fluorinated building blocks into more complex products.  相似文献   

19.
In this paper we report the synthesis of four fluorinated analogues of brassinosteroids in which fluorine was introduced stereoselectively at C-2. The bioactivity of these new compounds was evaluated using the rice lamina inclination test. The results show that two of these analogues elicit high bioactivity, suggesting the involvement of hydrogen bond interactions between the active brassinosteroids and their cellular receptor.  相似文献   

20.
C Minks  R Huber  L Moroder  N Budisa 《Biochemistry》1999,38(33):10649-10659
The single tryptophan residue (Trp187) of human recombinant annexin V, containing 320 residues and 5328 atoms, was replaced with three different isosteric analogues where hydrogen atoms at positions 4, 5, and 6 in the indole ring were exchanged with fluorine. Such single atom exchanges of H --> F represent atomic mutations that result in slightly increased covalent bond lengths and inverted polarities in the residue side-chain structure. These minimal changes in the local geometry do not affect the secondary and tertiary structures of the mutants, which were identical to those of wild-type protein in the crystal form. But the mutants exhibit significant differences in stability, folding cooperativity, biological activity, and fluorescence properties if compared to the wild-type protein. These rather large global effects, resulting from the minimal local changes, have to be attributed either to the relatively strong changes in polar interactions of the indole ring or to differences in the van der Waals radii or to a combination of both facts. The changes in local geometry that are below resolution of protein X-ray crystallographic studies are probably of secondary importance in comparison to the strong electronegativity introduced by the fluorine atom. Correspondingly, these types of mutations provide an interesting approach to study cooperative functions of integrated residues and modulation of particular physicochemical properties, in the present case of electronegativity, in a uniquely structured and hierarchically organized protein molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号