首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Encouraged by the recent finding of vesicular glutamate transporter 2 (VGLUT2) immunoreactivity (-ir) in intraganglionic laminar endings (IGLEs) of the rat esophagus, we investigated also the distribution and co-localization patterns of VGLUT1. Confocal imaging revealed substantial co-localization of VGLUT1-ir with selective markers of IGLEs, i.e., calretinin and VGLUT2, indicating that IGLEs contain both VGLUT1 and VGLUT2 within their synaptic vesicles. Besides IGLEs, we found VGLUT1-ir in both cholinergic and nitrergic myenteric neuronal cell bodies, in fibers of the muscularis mucosae, and in esophageal motor endplates. Skeletal neuromuscular junctions, in contrast, showed no VGLUT1-ir. We also tested for probable co-localization of VGLUT1-ir with markers of extrinsic and intrinsic esophageal innervation and glia. Within the myenteric neuropil we found, besides co-localization of VGLUT1 and substance P, no further co-localization of VGLUT1-ir with any of these markers. In the muscularis mucosae some VGLUT1-ir fibers were shown to contain neuronal nitric oxide synthase (nNOS)-ir. VGLUT1-ir in esophageal motor endplates was partly co-localized with vesicular acetylcholine transporter (VAChT)/choline acetyltransferase (ChAT)-ir, but VGLUT1-ir was also demonstrated in separately terminating fibers at motor endplates co-localized neither with ChAT/VAChT-ir nor with nNOS-ir, suggesting a hitherto unknown glutamatergic enteric co-innervation. Thus, VGLUT1-ir was found in extrinsic as well as intrinsic innervation of the rat esophagus.  相似文献   

2.
The ontogeny of the innervation of human lymphoid organs has not been studied in detail. Our aim was to assess the nature and distribution of parenchymal nerves in human fetal thymus and spleen. We used the peroxidase immunohistochemical technique with antibodies specific to neuron-specific enolase (NSE), neurofilaments (NF), PGP9.5, S100 protein, and tyrosine hydroxylase (TH) and evaluated our results with image analysis. In human fetal thymus, NSE-, NF-, S100-, PGP9.5-, and TH-positive nerves were identified associated with large blood vessels from 18 gestational weeks (gw) onwards, increasing in density during development. Their branches penetrated the septal areas at 20 gw, reaching the cortex and the corticomedullary junction between 20 and 23 gw. Few nerve fibers were seen in the medulla in close association with Hassall's corpuscles. In human fetal spleen, NSE-, NF-, S100-, PGP9.5-, and TH-positive nerve fibers were localized in the connective tissue surrounding the splenic artery at 18 gw. Perivascular NSE-, NF-, S100-, PGP9.5-, and TH-positive nerve fibers were seen extending into the white pulp, mainly in association with the central artery and its branches, increasing in density during gestation. Scattered NSE-, NF-, S100-, PGP9.5-, and TH-positive nerve fibers and endings were localized in the red pulp from 18 gw onward. The predominant perivascular distribution of most parenchymal nerves implies that thymic and splenic innervation may play an important functional role during intrauterine life.  相似文献   

3.
The presence of galanin-like immunoreactivity in nerves to the stomach of the Atlantic cod has been investigated by immunohistochemistry. The distribution of ganglion cells showing galanin-like immunoreactivity was compared with the total distribution in nerves and ganglia. Projection studies were made to determine the origin of the galanin neurons. The effect of galanin was studied in smooth muscle strip preparations of the gut wall and arteries. Galanin-like immunoreactive ganglion cells frequently occurred along the vagal branches to the stomach. Most of them projected cranially. Immunoreactive nerve fibres were present in all layers of the gut and around arterial branches on the surface of the stomach. Ligations of the vagus and splanchnic nerves produced accumulations of immunoreactive material on both sides of the ligature. Galanin produced weak contractile effects unaffected by tetrodotoxin on the gut wall and on gut arteries. It is concluded that a population of the ganglion cells along the vagus nerve in the Atlantic cod contains a galanin-like peptide. Some of these cells may be parts of autonomic parasympathetic pathways innervating the gut of the Atlantic cod, having direct excitatory effects on the smooth muscles of the gut wall and gut arteries.  相似文献   

4.
5.
Summary Light- and electron-microscopic studies were performed on those tissues that are supposed to deliver the anlagen of the extrinsic ocular muscles. Since the blastemata of the ocular muscles can be traced back into the prechordal mesoderm, it can be concluded that this tissue is the source of these muscles. In embryos from stage 8–10 according to Hamburger and Hamilton (HH) cells are found to detach from the lateral border of the prechordal mesoderm. These cells are assumed to give rise to the trochlearis and abducens musculature. In stage-14 embryos the paired premandibular cavity arises within the lateral wings of the prechordal mesenchyme. In 4-day embryos the lateral wall of each premandibular cavity becomes denser forming a premuscular mass, which is subdivided into the anlagen of the oculomotorius muscles in 5-day embryos. The head cavities are not homologous to somites because their structures, origins and sites are very different.This work was supported by a grant from the Deutsche Forschungsgemeinschaft (CH 44/6-1).This paper is dedicated to Prof. Dr. med. Dr. h.c. Hermann Voss on the occasion of his 90th birthday.  相似文献   

6.
7.
8.
9.
Interspecific competitive interactions can occur either between adult parasitoids searching/exploiting hosts (extrinsic competition) or between parasitoid larvae developing within the same host (intrinsic competition). Understanding how interspecific competition between parasitoids can affect pest suppression is important for improving biological pest control. The purpose of this work was to review both extrinsic and intrinsic competition between egg parasitoid species. These are organisms that are often candidates for biological control programs due to their ability to kill the pest before the crop feeding stage. We first reviewed the literature about interspecific competitive abilities of adult parasitoids in terms of comparative host location strategies highlighting which ecological and behavioral factors are likely to shape extrinsic competition. Then we focused on the interspecific competitive interactions between immatures developing within the same host taking into account which factors play a key role in the outcome of intrinsic competition. Finally we conclude stressing on the need to elucidate the overall competitive interaction that parasitoid species may experience in the field in order to enhance biological control success.  相似文献   

10.
Levels of PACAP38 were measured in different areas of the chicken brain under various lighting conditions by radioimmunoassay (RIA). Selected groups of animals were maintained under light for 14 h alternating with 10 h of darkness (LD), reversed lighting conditions (DL) and constant light (LL) or constant dark (DD). Daily variations of PACAP levels were observed in the brainstem, diencephalon, telencephalon and retina. In the brainstem and diencephalon, levels of PACAP increased during subjective nighttime, except in the DL group where levels were elevated between 15-21 h. In the telencephalon, the lowest level of PACAP was measured between 12-21 h except in the DL group where two peaks occurred at 18 and 03 h. In the retina, all 4 groups showed a similar level and pattern, with lowest levels during midday hours. No daily variation was observed in the pineal gland. According to the present observations, it is suggested that PACAP levels differ in several areas of the chicken brain under various lighting conditions and photic stimuli do not appear to be the main regulators of the circadian variations of PACAP.  相似文献   

11.
The role of hypophysis in the regulation mechanism of the secretion of gut glucagon immunoreactivity (gut GI) that was measured using C-terminal specific glucagon antiserum after pancreatectomy, and gut glucagon-like immunoreactivity (gut GLI) that was obtained by subtracting GI from total glucagon-like immunoreactivity (total GLI) which was measured using non-specific glucagon antiserum, was investigated in depancreatized dogs. Plasma glucose, gut GI and gut GLI levels were found to increase in totally depancreatized dogs. The former two showed a significant decrease after hypophysectomy, and were reversed by the hypophysis-transplantation, while gut GLI was not affected either by hypophysectomy or hypophysis-transplantation. Intramuscular injections of human growth hormone (HGH) or adrenocorticotropic hormone-Z (ACTH-Z) to depancreatized-hypophysectomized dogs had no effect on plasma glucose level or gut GI. It is concluded that hypophysis may promote the secretion of gut GI after pancreatectomy, but not of gut GLI. Gut GI seems to regulate plasma glucose level after pancreatectomy. However, the precise regulation mechanism of gut GI by the hypophysial hormone after pancreatectomy is not clarified yet.  相似文献   

12.
13.
《Trends in microbiology》2023,31(3):280-293
Neutrophil extracellular traps (NETs) evolved to protect the host against microbial infections and are formed by a web-like structure of DNA that is decorated with antimicrobial effectors. Due to their potent inflammatory functions, NETs also cause tissue damage and can favor and/or aggravate inflammatory diseases. This multipronged activity of NETs requires that the induction, release, and degradation of NETs are tightly regulated. Here we describe the key pathways that are intrinsic to neutrophils and regulate NETosis, and we review the most recent findings on how neutrophil extrinsic factors participate in the formation of NETs. In particular, we emphasize how bystander cells contribute to modifying the capacity of neutrophils to undergo NETosis. Finally, we discuss how these neutrophil extrinsic processes can be harnessed to protect the host against the excessive inflammation elicited by uncontrolled NET release.  相似文献   

14.
The anatomical distribution of neurons containing galanin has been studied in the central nervous system of the chicken by means of immunocytochemistry using antisera against rat galanin. Major populations of immunostained perikarya were detected in several brain areas. The majority of galanin-immunoreactive cell bodies was present in the hypothalamus and in the caudal brainstem. Extensive groups of labeled perikarya were found in the paraventricular, periventricular, dorsomedial and tuberal hypothalamic nuclei, and in the nucleus of the solitary tract in the medulla oblongata. In the telencephalon, immunoreactive perikarya were observed in the preoptic area, in the lateral septal nucleus and in the hippocampus. The mesencephalon contained only a few galanin-positive perikarya located in the interpeduncular nucleus. Immunoreactive nerve fibers of varying density were detected in all subdivisions of the brain. Dense accumulations of galanin-positive fibers were seen in the preoptic area, periventricular region of the diencephalon, the ventral hypothalamus, the median eminence, the central gray of the brainstem, and the dorsomedial caudal medulla. The distributional pattern of galanin-immunoreactive neurons suggests a possible involvement of a galanin-like peptide in several neuroregulatory mechanisms.  相似文献   

15.
16.
The innervation of Rana ridibunda esophagus myenteric plexuses has been studied by the following methods: demonstration of cholinesterase activity; FIF method for catecholamines; immunohistochemistry for VIP, SP and SOM, and conventional electron microscopy. The cholinergic innervation is important in the esophagus wall where, in addition to the well known extrinsic component, there is a rich intrinsic plexus with cells and fibres widely distributed. The esophagus, together with the intestine, are the Rana gut portions where the adrenergic component is more broadly expressed. The adrenergic innervation seems to be almost entirely of extrinsic origin. We have shown that, for the tested peptides, there is an intrinsic innervation represented by VIP, SP and SOM like plexuses. We do not discard nonetheless an extrinsic component. The ultrastructure reveals the morphological characteristics of the enteric neurons as well as the fine inter-relationships between the nervous elements and the functional components of the esophagic wall.  相似文献   

17.
Summary Prostaglandins exhibit a variety of actions on intestinal smooth muscle depending upon the type, dose and muscle layer studied. As the cellular origin of prostaglandin H (PGH) synthase has not been established with certainty in the human gut wall, we studied the localization of PGH synthase in the human duodenum, jejunum, ileum and colon by immunohistochemistry. PGH synthase immunoreactivity appeared to be similar in all segments of the intestine. Most smooth muscle cells seemed to contain PGH synthase; however, the reaction in the lamina muscularis mucosae was much stronger than in the longitudinal and circular muscle layers. Endothelial cells in capillaries and larger vessels showed a positive reaction. In addition, unidentified cells in subserosa, at the level of Auerbach's plexus and in the submucosa were stained. We concluded that the smooth muscle cells of the human gut has a rather large capacity for PGH synthesis and the present results may provide a basis for a better understanding of both normal physiological functions as well as intestinal disease states involving disorders of prostaglandin synthesis.  相似文献   

18.
Ontogeny of immunoreactive CCK and VIP in pig brain and gut   总被引:1,自引:0,他引:1  
The concentrations and hormonal forms of CCK and VIP have been determined in extracts of the brain and duodenum of the developing and adult pig. In methanol extracts of the brain cortex, the single hormone form, CCK8, increased from 130 +/- 20 (Mean +/- SEM) pmol/g at birth to an adult level of 300 +/- 50 pmol/g. In acid extracts of brain, the predominant immunoreactive form had N-terminal immunoreactivity and increased from 240 +/- 20 pmol/g at birth to an adult level 490 +/- 30 pmol/g; the C-terminal immunoreactivity was about 10-fold lower. The concentrations and hormonal forms of immunoreactive CCK in duodenal extracts did not appear to be age-related. C-terminal immunoreactivity in methanol extracts averaged 140 +/- 20 pmol/g and in acid extracts 240 +/- 60 pmol/g. The concentration of N-terminal immunoreactivity in acid extracts averaged 490 +/- 70 pmol/g. The VIP concentrations in acid extracts of the brain cortex was 13.5 +/- 2 pmol/g at birth and rose gradually to 30 +/- 9 pmol/g in the adult; in duodenal extracts it was 240 +/- 18 pmol/g at birth and 195 +/- 38 pmol/g in the adult. These results are in marked contrast with the ontogeny of these hormones in the rat in which brain concentrations of CCK and VIP in the neonate are less than 10% of adult levels and in which there are age-related changes in the content of these hormones in the duodenum as well.  相似文献   

19.
Adrenergic innervation of the gut musculature in vertebrates   总被引:2,自引:0,他引:2  
Summary The adrenergic innervation of the gut musculature has been compared in various vertebrates (two teleost fish, an amphibian, a reptile and a mammal) by the fluorescent histochemical localization of certain monoamines. Very few, if any, adrenergic nerves occur within the longitudinal gut muscle of any of these animals, except for the taenia coli of the guinea-pig caecum. In contrast, the circular smooth muscle coat is supplied by varicose adrenergic nerves. These nerve fibres are particularly numerous in the toad large intestine, guinea-pig caecum, and throughout the eel gut, but are generally sparse or absent from the musculature of the stomach and small intestine of the trout, toad, lizard and guinea-pig. The extent of adrenergic innervation of the muscle has been discussed in relation to the physiology of the different muscle coats and to the general structure of the enteric plexuses in the vertebrate gut.  相似文献   

20.
It is now well established that pituitary adenylate cyclase-activating polypeptide (PACAP) exerts anti-apoptotic and pro-differentiating actions during development of the rodent cerebellum. Cell signaling involved in the neurotrophic effects of PACAP has been precisely investigated. In particular, PACAP is a potent inhibitor of the mitochondrial apoptotic pathway through an ERK- and PKA-dependent mechanism. However, transposition of the neurodevelopmental activities of PACAP to the human cerebellum remains speculative, essentially because of the lack of data concerning the PACAP-ergic system. The present review is based on recent results that provide the first molecular, pharmacological and anatomical characterizations of PACAP receptors in the developing human cerebellum. It is now clearly established that the distribution pattern of PAC1-R and VPAC1-R mRNA in the human cerebellum is very similar to that already described in rodents. [(125)I]PACAP27 binding sites are closely associated with germinative neuroepithelia in fetal stages and with mature granule cells in infants and adults. Pharmacological characterization revealed that, in fetuses, PACAP binding sites exhibit a PAC1-R profile while, in adult patients, they correspond to a heterogeneous population of PAC1-R and VPAC(1/2)-R. Altogether, these data provide the first evidence that PACAP may exert neurodevelopmental functions in the human cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号