首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human neutrophilic myeloperoxidase (MPO) is involved in the defence mechanism of the body against micro-organisms. The enzyme catalyses the generation of the strong oxidant hypochlorous acid (HOCl) from hydrogen peroxide and chloride ions. In normal neutrophils MPO is present in the dimeric form (140 kDa). The disulphide-linked protomers each consist of a heavy subunit and a light one. Reductive alkylation converts the dimeric enzyme into two promoters, 'hemi-myeloperoxidase'. We studied the initial activities of human dimeric MPO and hemi-MPO at the physiological pH of 7.2 and found no significant differences in chlorinating activity. These results indicate that, at least at neutral pH, the protomers of MPO function independently. The absorption spectra of MPO compounds II and III, both inactive forms concerning HOCl generation, and the rate constants of their formation were the same for dimeric MPO and hemi-MPO, but hemi-MPO required a slightly larger excess of H2O2 for complete conversion. Hemi-MPO was less stable at a high temperature (80 degrees C) as compared to the dimeric enzyme. Furthermore, the resistance of the chlorinating activity of hemi-MPO against its oxidative product hypochlorous acid was somewhat lower (IC50 = 32 microM HOCl) compared to dimeric MPO (IC50 = 50 microM HOCl). The higher stability of dimeric MPO in the presence of its oxidative product compared to that of monomeric MPO might be the reason for the occurrence of MPO as a dimer.  相似文献   

2.
A key function of neutrophil myeloperoxidase (MPO) is the synthesis of hypochlorous acid (HOCl), a potent oxidizing agent that plays a cytotoxic role against invading bacteria and viruses at inflammatory sites and in phagosomes. MPO displayed a chlorinating activity preferably at acidic pH but at neutral pH MPO catalyzes mainly reactions of the peroxidase cycle. In the present work effects of tyrosine on the chlorinating activity of MPO were studied. At pH 7.4 we detected an increased HOCl production in the presence of tyrosine not only by the MPO-H2O2-Cl- system but also in suspensions of zymosan-activated neutrophils. An excess of H2O2 is known to cause an accumulation of compound II of MPO blocking the generation of HOCl at neutral pH. As evidenced by spectral changes, tyrosine-induced activation of MPO to synthesize HOCl was due to the ability of tyrosine to reduce compound II back to the native state, thus accelerating the enzyme turnover. MPO-induced oxidation of tyrosine is relevant to what can be in vivo; we detected MPO-catalyzed formation of dityrosine in the presence of plasma under experimental conditions when tyrosine concentration was about three magnitudes of order less than the Cl concentration. At acidic pH formation of compound II was impaired in the presence of chloride and dityrosine couldn't be detected in plasma. In conclusion, the ability of tyrosine to increase the chlorinating activity of MPO at neutral pH and enhanced values of H2O2 may be very effective for the specific enhancement of HOCl production under acute inflammation.  相似文献   

3.
Myeloperoxidase (MPO) is a dominating enzyme of circulating polymorphonuclear neutrophils that catalyzes the two-electron oxidation of chloride, thereby producing the strong halogenating agent hypochlorous acid (ClO/HOCl). In absence of MPO the tripeptide Pro-Gly-Gly reacts with HOCl faster than the amino acid taurine (2-aminoethanesulfonic acid, Tau), while the MPO-mediated chlorination shows reverse order. A comparative study of the enzymatic oxidation of both substrates at pH 4.0–6.0, varying H2O2 concentration is presented. Initial and equilibrium rates studies have been carried on, reaction rates in the latter being slower due to the chemical equilibrium between MPO-I and MPO-II–HO2. A maximum of chlorination rate is observed for Pro-Gly-Gly and Tau when [H2O2] ≈ 0.3–0.7 mM and pH ≈ 4.5–5.0. Several mechanistic possibilities are considered, the proposed one implies that chlorination takes place via two pathways. One, for bulkier substrates, involves chlorination by free HOCl outside the heme cavity; ClO is released from the active center, diffuses away the heme cavity, and undergoes protonation to HOCl. The other implies the existence of compound I–Cl complex (MPO-I–Cl), capable of chlorinating smaller substrates in the heme pocket. Electronic structure calculations show the size of Pro-Gly-Gly comparable to the available gap in the substrate channel, this tripeptide being unable to reach the active site, and its chlorination is only possible by free HOCl outside the enzyme.  相似文献   

4.
Recent observations link myeloperoxidase (MPO) activation to neurodegeneration. In multiple sclerosis MPO is present in areas of active demyelination where the potent oxidant hypochlorous acid (HOCl), formed by MPO from H2O2 and chloride ions, could oxidatively damage myelin-associated lipids. The purpose of this study was (i) to characterize reaction products of sphingomyelin (SM) formed in response to modification by HOCl, (ii) to define the impact of exogenously added SM and HOCl-modified SM (HOCl-SM) on viability parameters of a neuronal cell line (PC12), and (iii) to study alterations in the PC12 cell proteome in response to SM and HOCl-SM. MALDI-TOF-MS analyses revealed that HOCl, added as reagent or generated enzymatically, transforms SM into chlorinated species. On the cellular level HOCl-SM but not SM induced the formation of reactive oxygen species. HOCl-SM induced severely impaired cell viability, dissipation of the mitochondrial membrane potential, and activation of caspase-3 and DNA damage. Proteome analyses identified differential expression of specific subsets of proteins in response to SM and HOCl-SM. Our results demonstrate that HOCl modification of SM results in the generation of chlorinated lipid species with potent neurotoxic properties. Given the emerging connections between the MPO–H2O2–chloride axis and neurodegeneration, this chlorinating pathway might be implicated in neuropathogenesis.  相似文献   

5.
Vascular NAD(P)H oxidase-derived reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) have emerged as important molecules in the pathogenesis of atherosclerosis, hypertension, and diabetic vascular complications. Additionally, myeloperoxidase (MPO), a transcytosable heme protein that is derived from leukocytes, is also believed to play important roles in the above-mentioned inflammatory vascular diseases. Previous studies have shown that MPO-induced vascular injury responses are H2O2 dependent. It is well known that MPO can use leukocyte-derived H2O2; however, it is unknown whether the vascular-bound MPO can use vascular nonleukocyte oxidase-derived H2O2 to induce vascular injury. In the present study, ANG II was used to stimulate vascular NAD(P)H oxidases and increase their H2O2 production in the vascular wall, and vascular dysfunction was used as the vascular injury parameter. We demonstrated that vascular-bound MPO has sustained activity in the vasculature. MPO could use the vascular NAD(P)H oxidase-derived H2O2 to produce hypochlorus acid (HOCl) and its chlorinating species. More importantly, MPO derived HOCl and chlorinating species amplified the H2O2-induced vascular injury by additional impairment of endothelium-dependent relaxation. HOCl-modified low-density lipoprotein protein (LDL), a specific biomarker for the MPO-HOCl-chlorinating species pathway, was expressed in LDL and MPO-bound vessels with vascular NAD(P)H oxidase-derived H2O2. MPO-vascular NAD(P)H oxidase-HOCl-chlorinating species may represent a common pathogenic pathway in vascular diseases and a new mechanism involved in exacerbation of vascular diseases under inflammatory conditions.  相似文献   

6.
Myeloperoxidase (MPO) catalyzes the two-electron oxidation of chloride, thereby producing hypochlorous acid (HOCl). Taurine (2-aminoethane-sulfonic acid, Tau) is thought to act as a trap of HOCl forming the long-lived oxidant monochlorotaurine [(N-Cl)-Tau], which participates in pathogen defense. Here, we amend and extend previous studies by following initial and equilibrium rate of formation of (N-Cl)-Tau mediated by MPO at pH 4.0-7.0, varying H(2)O(2) concentration. Initial rate studies show no saturation of the active site under assay conditions (i.e. [H(2)O(2)] > or = 2000 [MPO]). Deceleration of Tau chlorination under equilibrium is quantitatively described by the redox equilibrium established by H(2)O(2)-mediated reduction of compound I to compound II. At equilibrium regime the maximum chlorination rate is obtained at [H(2)O(2)] and pH values around 0.4mM and pH 5. The proposed mechanism includes known acid-base and binding equilibria taking place at the working conditions. Kinetic data ruled out the currently accepted mechanism in which a proton participates in the molecular step (MPO-I+Cl(-)) leading to the formation of the chlorinating agent. Results support the formation of a chlorinating compound I-Cl(-) complex (MPO-I-Cl) and/or of ClO(-), through the former or even independently of it. ClO(-) diffuses away and rapidly protonates to HOCl outside the heme pocket. Smaller substrates will be chlorinated inside the enzyme by MPO-I-Cl and outside by HOCl, whereas bulkier ones can only react with the latter.  相似文献   

7.
8.
Halogenated lipids, proteins, and lipoproteins formed in reactions with myeloperoxidase (MPO)-derived hypochlorous acid (HOCl) and hypobromous acid (HOBr) can contribute to the regulation of functional activity of cells and serve as mediators of inflammation. Human serum albumin (HSA) is the major plasma protein target of hypohalous acids. This study was performed to assess the potency of HSA modified by HOCl (HSA–Cl) and HOBr (HSA–Br) to elicit selected neutrophil responses. HSA–Cl/Br were found to induce neutrophil degranulation, generation of reactive oxygen intermediates, shape change, and actin cytoskeleton reorganization. Thus HSA–Cl/Br can initially act as a switch and then as a feeder of the “inflammatory loop” under oxidative stress. In HSA–Cl/Br-treated neutrophils, monoclonal antibodies against CD18, the β subunit of β2 integrins, reduced the production of superoxide anion radicals and hydrogen peroxide as well as MPO exocytosis, suggesting that CD18 contributed to neutrophil activation. HSA–Cl/Br-induced neutrophil responses were also inhibited by genistein, a broad-specificity tyrosine kinase inhibitor, and wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, supporting the notion that activation of both tyrosine kinase and PI3K may play a role in neutrophil activation by HSA modified in MPO-dependent reactions. These results confirm the hypothesis that halogenated molecules formed in vivo via MPO-dependent reactions can be considered as a new class of biologically active substances potentially able to contribute to activation of myeloid cells in sites of inflammation and serve as inflammatory response modulators.  相似文献   

9.
Myeloperoxidase (MPO), a heme enzyme secreted by activated phagocytes, catalyzes the oxidation of halides to hypohalous acids. At plasma concentrations of halides, hypochlorous acid (HOCl) is the major strong oxidant produced. In contrast, the related enzyme eosinophil peroxidase preferentially generates hypobromous acid (HOBr). Since reagent and MPO-derived HOCl converts low-density lipoprotein (LDL) to a potentially atherogenic form, we investigated the effects of HOBr on LDL modification. Compared to HOCl, HOBr caused 2-3-fold greater oxidation of tryptophan and cysteine residues of the protein moiety (apoB) of LDL and 4-fold greater formation of fatty acid halohydrins from the lipids in LDL. In contrast, HOBr was 2-fold less reactive than HOCl with lysine residues and caused little formation of N-bromamines. Nevertheless, HOBr caused an equivalent increase in the relative electrophoretic mobility of LDL as HOCl, which was not reversed upon subsequent incubation with ascorbate, in contrast to the shift in mobility caused by HOCl. Similar apoB modifications were observed with HOBr generated by MPO/H(2)O(2)/Br(-). In the presence of equivalent concentrations of Cl(-) and Br(-), modifications of LDL by MPO resembled those seen in the presence of Br(-) alone. Interestingly, even at physiological concentrations of the two halides (100 mM Cl(-), 100 microM Br(-)), MPO utilized a portion of the Br(-) to oxidize apoB cysteine residues. MPO also utilized the pseudohalide thiocyanate to oxidize apoB cysteine residues. Our data show that even though HOBr has different reactivities than HOCl with apoB, it is able to alter the charge of LDL, converting it into a potentially atherogenic particle.  相似文献   

10.
The cell‐penetrating peptide Tat (48–60) (GRKKRRQRRRPPQ) derived from HIV‐1 Tat protein showed potent antibacterial activity (MIC: 2–8 µM ). To investigate the effect of dimerization of Tat (48–60) analog, [Tat(W): GRKKRRQRRRPWQ‐NH2], on antimicrobial activity and mechanism of bactericidal action, its dimeric peptides, di‐Tat(W)‐C and di‐Tat(W)‐K, were synthesized by a disulfide bond linkage and lysine linkage of monomeric Tat(W), respectively. From the viewpoint of a weight basis and the monomer concentration, these dimeric peptides displayed almost similar antimicrobial activity against six bacterial strains tested but acted more rapidly against Staphylococcus aureus on kinetics of bactericidal activity, compared with monomeric Tat(W). Unlike monomeric Tat(W), these dimeric peptides significantly depolarized the cytoplasmic membrane of intact S. aureus cells at MIC and induced dye leakage from bacterial‐membrane‐mimicking egg yolk L ‐α‐phosphatidylethanolamine/egg yolk L ‐α‐phosphatidyl‐DL ‐glycerol (7:3, w/w) vesicles. Furthermore, these dimeric peptides were less effective to translocate across lipid bilayers than monomeric Tat(W). These results indicated that the dimerization of Tat analog induces a partial change in the mode of its bactericidal action from intracellular target mechanism to membrane‐targeting mechanism. Collectively, our designed dimeric Tat peptides with high antimicrobial activity and rapid bactericidal activity appear to be excellent candidates for future development as novel antimicrobial agents. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
N-carbamoylation is the non-enzymatic reaction of cyanate with amino groups. Due to urea-formed cyanate in uremic patients beside carbamoylated proteins also free amino acid carbamoylation has been detected, a modification which has been linked to disturbed protein synthesis as NH2-derivatisation interferes with peptide bond formation. HOCl the product of the activated MPO/H2O2/Cl system is known to react with the NH2-group of free amino acids to form chloramines which could exert some protective effect against protein modification and cytotoxicity induced by HOCl. As N-carbamoylation may inhibit formation of chloramines we have used N-carbamoyl-threonine as a model amino acid to study its ability to limit the reactivity of HOCl with proteins (LDL and human serum albumin) and cells (THP-1 monocytes and coronary artery endothelial cells). The data indicate that N-carbamoylation completely abolished the protein- and cell-protective effect of threonine against HOCl attack. In contrast to threonine the reaction of HOCl with carbamoyl-threonine resulted in the formation of volatile oxidant species with protein modifying and cytotoxic potential. The volatile lipophilic inorganic monochloramine (NH2Cl) was identified as a breakdown product of this reaction.  相似文献   

12.
The heme protein myeloperoxidase (MPO) functions as a catalyst for lipoprotein oxidation. Hypochlorous acid (HOCl), a potent two-electron oxidant formed by the MPO-H2O2-chloride system of activated phagocytes, modifies antiatherogenic high-density lipoprotein (HDL). The structural heterogeneity and oxidative susceptibility of HDL particle subfractions were probed with HOCl. All distinct five HDL subfraction were modified by HOCl as demonstrated by the consumption of tryptophan residues and free amino groups, cross-linking of apolipoprotein AI, formation of HOCl-modified epitopes, increased electrophoretic mobility and altered content of unsaturated fatty acids in HDL subclasses. Small, dense HDL3 were less susceptible to oxidative modification than large, light HDL2 on a total mass basis at a fixed HOCl:HDL mass ratio of 1:32, but in contrast not on a particle number basis at a fixed HOCl:HDL molar ratio of 97:1. We conclude that structural and physicochemical differences between HDL subclasses do not influence their intrinsic susceptibility to oxidative attack by HOCl.  相似文献   

13.
It was shown for the first time that myeloperoxidase, a homodimer that consists of two disulfidebonded identical protomers and catalyzes the formation of hypochlorous acid (HOCl), is decomposed by HOCl into monomers (MPO-Cl). Dimeric myeloperoxidase can also be converted into monomers (hemimyeloperoxidase) by reduction of the disulfide bond. In this study, the effects of two monomeric forms of myeloperoxidase, MPO-Cl and hemi-myeloperoxidase, and native dimeric myeloperoxidase on the production of reactive oxygen (?O 2 ? and H2O2) and halogen (HOCl) species by neutrophils were compared. Neutrophil production of these species was monitored after addition of hemi-myeloperoxidase, MPO-Cl, or dimeric myeloperoxidase and also after the subsequent addition of activators, phorbol-12-myristate-13-acetate or N-formyl-Met-Leu-Phe. HOCl production was assessed by chemiluminescence in the presence of luminol; ?O 2 ? production was assessed by chemiluminescence in the presence of lucigenin and by cytochrome c reduction determined spectrophotometrically, and H2O2 production was measured using fluorimetry with scopoletin. The results indicate that MPO-Cl and hemi-myeloperoxidase, which can occur in blood under halogenative stress, do not prime neutrophil NADPH oxidase, and do not enhance the production of reactive oxygen (?O 2 ? and H2O2) and halogen (HOCl) species.  相似文献   

14.
Myeloperoxidase, a heme enzyme secreted by activated phagocytes, uses H(2)O(2) and Cl(-) to generate the chlorinating intermediate hypochlorous acid (HOCl). This potent cytotoxic oxidant plays a critical role in host defenses against invading pathogens. In this study, we explore the possibility that myeloperoxidase-derived HOCl might oxidize nucleic acids. When we exposed 2'-deoxycytidine to the myeloperoxidase-H(2)O(2)-Cl(-) system, we obtained a single major product that was identified as 5-chloro-2'-deoxycytidine using mass spectrometry, high performance liquid chromatography, UV-visible spectroscopy, and NMR spectroscopy. 5-Chloro-2'-deoxycytidine production by myeloperoxidase required H(2)O(2) and Cl(-), suggesting that HOCl is an intermediate in the reaction. However, reagent HOCl failed to generate 5-chloro-2'-deoxycytidine in the absence of Cl(-). Moreover, chlorination of 2'-deoxycytidine was optimal under acidic conditions in the presence of Cl(-). These results implicate molecular chlorine (Cl(2)), which is in equilibrium with HOCl through a reaction requiring Cl(-) and H(+), in the generation of 5-chloro-2'-deoxycytidine. Activated human neutrophils were able to generate 5-chloro-2'-deoxycytidine. Cellular chlorination was blocked by catalase and heme poisons, consistent with a myeloperoxidase-catalyzed reaction. The myeloperoxidase-H(2)O(2)-Cl(-) system generated similar levels of 5-chlorocytosine in RNA and DNA in vitro. In striking contrast, only cell-associated RNA acquired detectable levels of 5-chlorocytosine when intact Escherichia coli was exposed to the myeloperoxidase system. This observation suggests that oxidizing intermediates generated by myeloperoxidase selectively target intracellular RNA for chlorination. Collectively, these results indicate that Cl(2) derived from HOCl generates 5-chloro-2'-deoxycytidine during the myeloperoxidase-catalyzed oxidation of 2'-deoxycytidine. Phagocytic generation of Cl(2) therefore may constitute one mechanism for oxidizing nucleic acids at sites of inflammation.  相似文献   

15.
Here, we show that hypochlorous acid (HOCl), a potent neutrophil-generated oxidant, can mediate destruction of free heme (Ht) and the heme precursor, protoporphyrin IX (PPIX). Ht displays a broad Soret absorbance peak centered at 365 and 394 nm, indicative of the presence of monomer and μ-oxo-dimer. Oxidation of Ht by HOCl was accompanied by a marked decrease in the Soret absorption peak and release of free iron. Kinetic measurements showed that the Ht-HOCl reaction was triphasic. The first two phases were HOCl concentration dependent and attributable to HOCl binding to the monomeric and dimeric forms. The third phase was HOCl concentration independent and attributed to Ht destruction with the release of free iron. HPLC and LC-ESI-MS analyses of the Ht-HOCl reaction revealed the formation of a number of degradation products, resulting from the cleavage or modification of one or more carbon-methene bridges of the porphyrin ring. Similar studies with PPIX showed that HOCl also mediated tetrapyrrole ring destruction. Collectively, this work demonstrates the ability of HOCl to modulate destruction of heme, through a process that occurs independent of the iron molecule that resides in the porphyrin center. This phenomenon may play a role in HOCl-mediated oxidative injury in pathological conditions.  相似文献   

16.
Oxidation of LDL by the myeloperoxidase (MPO)-H2O2-chloride system is a key event in the development of atherosclerosis. The present study aimed at investigating the interaction of MPO with native and modified LDL and at revealing posttranslational modifications on apoB-100 (the unique apolipoprotein of LDL) in vitro and in vivo. Using amperometry, we demonstrate that MPO activity increases up to 90% when it is adsorbed at the surface of LDL. This phenomenon is apparently reflected by local structural changes in MPO observed by circular dichroism. Using MS, we further analyzed in vitro modifications of apoB-100 by hypochlorous acid (HOCl) generated by the MPO-H2O2-chloride system or added as a reagent. A total of 97 peptides containing modified residues could be identified. Furthermore, differences were observed between LDL oxidized by reagent HOCl or HOCl generated by the MPO-H2O2-chloride system. Finally, LDL was isolated from patients with high cardiovascular risk to confirm that our in vitro findings are also relevant in vivo. We show that several HOCl-mediated modifications of apoB-100 identified in vitro were also present on LDL isolated from patients who have increased levels of plasma MPO and MPO-modified LDL. In conclusion, these data emphasize the specificity of MPO to oxidize LDL.  相似文献   

17.
Abstract

The reaction of human myeloperoxidase (MPO) with hypochlorous acid (HOCl) was investigated by conventional stopped-flow spectroscopy at pH 5, 7, and 9. In the reaction of MPO with HOCl, compound I is formed. Its formation is strongly dependent on pH. HOCl (rather than OCl-) reacts with the unprotonated enzyme in its ferric state. Apparent second-order rate constants were determined to be 8.1×107 M-1s-1 (pH 5), 2.0×108 M-1s-1 (pH 7) and 2.0×106 M-1s-1 (pH 9) at 15°C. Furthermore, the kinetics and spectra of the reactions of halides and thiocyanate and of physiologically relevant one-electron donors (ascorbate, nitrite, tyrosine and hydrogen peroxide) with this compound I were investigated using the sequential-mixing technique. The results show conclusively that the redox intermediates formed upon addition of either hydrogen peroxide or hypochlorous acid to native MPO exhibit the same spectral features and reactivities and thus are identical. In stopped-flow investigations, the MPO/HOCl system has some advantage since: (i) in contrast to H2O2, HOCl cannot function as a one-electron donor of compound I; and (ii) MPO can easily be prevented from cycling by addition of methionine as HOCl scavenger. As a consequence, the observed absorbance changes are bigger and errors in data analysis are smaller.  相似文献   

18.
Multi-system involvement and rapid clinical deterioration are hallmarks of coronavirus disease 2019 (COVID-19) related mortality. The unique clinical phenomena in severe COVID-19 can be perplexing, and they include disproportionately severe hypoxemia relative to lung alveolar-parenchymal pathology and rapid clinical deterioration, with poor response to O2 supplementation, despite preserved lung mechanics. Factors such as microvascular injury, thromboembolism, pulmonary hypertension, and alteration in hemoglobin structure and function could play important roles. Overwhelming immune response associated with “cytokine storms” could activate reactive oxygen species (ROS), which may result in consumption of nitric oxide (NO), a critical vasodilation regulator. In other inflammatory infections, activated neutrophils are known to release myeloperoxidase (MPO) in a natural immune response, which contributes to production of hypochlorous acid (HOCl). However, during overwhelming inflammation, HOCl competes with O2 at heme binding sites, decreasing O2 saturation. Moreover, HOCl contributes to several oxidative reactions, including hemoglobin-heme iron oxidation, heme destruction, and subsequent release of free iron, which mediates toxic tissue injury through additional generation of ROS and NO consumption. Connecting these reactions in a multi-hit model can explain generalized tissue damage, vasoconstriction, severe hypoxia, and precipitous clinical deterioration in critically ill COVID-19 patients. Understanding these mechanisms is critical to develop therapeutic strategies to combat COVID-19.  相似文献   

19.
Hypochlorous acid (HOCl), an oxidant produced by myeloperoxidase (MPO), induces protein and lipid oxidation, which is implicated in the pathogenesis of atherosclerosis. Individuals with mildly elevated bilirubin concentrations (i.e., Gilbert syndrome; GS) are protected from atherosclerosis, cardiovascular disease, and related mortality. We aimed to investigate whether exogenous/endogenous unconjugated bilirubin (UCB), at physiological concentrations, can protect proteins/lipids from oxidation induced by reagent and enzymatically generated HOCl. Serum/plasma samples supplemented with exogenous UCB (≤250 µM) were assessed for their susceptibility to HOCl and MPO/H2O2/Cl oxidation, by measuring chloramine, protein carbonyl, and malondialdehyde (MDA) formation. Serum/plasma samples from hyperbilirubinemic Gunn rats and humans with GS were also exposed to MPO/H2O2/Cl to: (1) validate in vitro data and (2) determine the relevance of endogenously elevated UCB in preventing protein and lipid oxidation. Exogenous UCB dose-dependently (P<0.05) inhibited HOCl and MPO/H2O2/Cl-induced chloramine formation. Albumin-bound UCB efficiently and specifically (3.9–125 µM; P<0.05) scavenged taurine, glycine, and N-α-acetyllysine chloramines. These results were translated into Gunn rat and GS serum/plasma, which showed significantly (P<0.01) reduced chloramine formation after MPO-induced oxidation. Protein carbonyl and MDA formation was also reduced after MPO oxidation in plasma supplemented with UCB (P<0.05; 25 and 50 µM, respectively). Significant inhibition of protein and lipid oxidation was demonstrated within the physiological range of UCB, providing a hypothetical link to protection from atherosclerosis in hyperbilirubinemic individuals. These data demonstrate a novel and physiologically relevant mechanism whereby UCB could inhibit protein and lipid modification by quenching chloramines induced by MPO-induced HOCl.  相似文献   

20.
Lin CY  Key JL 《Plant physiology》1971,48(5):547-552
The dissociation of N2 gas-induced monomeric ribosomes from the pea root was studied by varying the concentration of KCl (or NH4Cl) and MgCl2 in the presence of dithiothreitol. These monoribosomes were shown to dissociate completely into subunits at 0.5m KCl or NH4Cl in the presence of 5 mm MgCl2. The 40S subunits were more susceptible to structural change in KCl than were the 60S subunits. On the other hand, the 60S subunits appeared to be more labile to NH4Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号