首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Degradation of extracellular ATP by the retinal pigment epithelium   总被引:6,自引:0,他引:6  
Stimulation of ATP or adenosine receptors causes important physiological changes in retinal pigment epithelial (RPE) cells that may influence their relationship to the adjacent photoreceptors. While RPE cells have been shown to release ATP, the regulation of extracellular ATP levels and the production of dephosphorylated purines is not clear. This study examined the degradation of ATP by RPE cells and the physiological effects of the adenosine diphosphate (ADP) that result. ATP was readily broken down by both cultured human ARPE-19 cells and the apical membrane of fresh bovine RPE cells. The compounds ARL67156and -mATP inhibited this degradation in both cell types. RT-PCR analysis of ARPE-19 cells found mRNA message for multiple extracellular degradative enzymes; ectonucleotide pyrophosphatase/phosphodiesterase eNPP1, eNPP2, and eNPP3; the ectoATPase ectonucleoside triphosphate diphosphohydrolase NTPDase2, NTPDase3, and some message for NTPDase1. Considerable levels of ADP bathed RPE cells, consistent with a role for NTPDase2. ADP and ATP increased levels of intracellular Ca2+. Both responses were inhibited by thapsigargin and P2Y1 receptor inhibitor MRS 2179. Message for both P2Y1 and P2Y12 receptors was detected in ARPE-19 cells. These results suggest that extracellular degradation of ATP in subretinal space can result in the production of ADP. This ADP can stimulate P2Y receptors and augment Ca2+ signaling in the RPE. ectoapyrase; PC-1; CD39; CD39L1; P2Y1; P2Y12; ADP; ATP release; photoreceptors; retinal detachment  相似文献   

2.
Pannexin1 (Panx1), a protein related to the gap junction proteins of invertebrates, forms nonjunctional channels that open upon depolarization and in response to mechanical stretch and purinergic receptor stimulation. Importantly, ATP can be released through Panx1 channels, providing a possible role for these channels in non-vesicular signal transmission. In this study we expressed exogenous human and mouse Panx1 in the gap junction deficient Neuro2A neuroblastoma cell line and explored the contribution of Panx1 channels to cell–cell communication as sites of ATP release. Electrophysiological (patch clamp) recordings from Panx1 transfected Neuro2A cells revealed membrane conductance that increased beyond 0 mV when applying voltage ramps from −60 to +100 mV; threshold was correlated with extracellular K+, so that at 10 mM K+, channels began to open at −30 mV. Evaluation of cell–cell communication using dual whole cell recordings from cell pairs revealed that activation of Panx1 current in one cell of the pair induced an inward current in the second cell after a latency of 10–20 s. This paracrine response was amplified by an ATPase inhibitor (ARL67156, 100 μM) and was blocked by the ATP-degrading enzyme apyrase (6.7 U/ml), by the P2 receptor antagonist suramin (50 μM) and by the Panx1 channel blocker carbenoxolone. These results provide additional evidence that ATP release through Panx1 channels can mediate nonsynaptic bidirectional intercellular communication. Furthermore, current potentiation by elevated K+ provides a mechanism for enhancement of ATP release under pathological conditions.  相似文献   

3.
Bumetanide and other high-ceiling diuretics (HCD) attenuate myogenic tone and contractions of vascular smooth muscle cells (VSMC) triggered by diverse stimuli. HCD outcome may be mediated by their interaction with NKCC1, the only isoform of Na+, K+, 2Cl cotransporter expressed in VSMC as well as with targets distinct from this carrier. To examine these hypotheses, we compared the effect of bumetanide on contractions of mesenteric arteries from wild-type and NKCC1 knockout mice. In mesenteric arteries from wild-type controls, 100 μM bumetanide evoked a decrease of up to 4-fold in myogenic tone and contractions triggered by modest [K+]o-induced depolarization, phenylephrine and UTP. These actions of bumetanide were preserved after inhibition of nitric oxide synthase with NG-nitro-l-arginine methyl ester, but were absent in mesenteric arteries from NKCC1-/- mice. The data show that bumetanide inhibits VSMC contractile responses via its interaction with NKCC1 and independently of nitric oxide production by endothelial cells.  相似文献   

4.
A capillary electrophoresis (CE) method for the characterization of recombinant NTPDases 1, 2, and 3, and for assaying NTPDase inhibitors has been developed performing the enzymatic reaction within the capillary. After hydrodynamic injection of plugs of substrate solution with or without inhibitor in reaction buffer, followed by a suspension of an enzyme-containing membrane preparation, and subsequent injection of another plug of substrate solution with or without inhibitor, the reaction took place close to the capillary inlet. After 5 min, the electrophoretic separation of the reaction products was initiated by applying a constant current of −60 μA. The method employing a polyacrylamide-coated capillary and reverse polarity mode provided baseline resolution of substrates and products within a short separation time of less than 7 min. A 50 mM phosphate buffer (pH 6.5) was used for the separations and the products were detected by their UV absorbance at 210 nm. The Michaelis–Menten constants (Km) for the recombinant rat NTPDases 1, 2, and 3 obtained with this method were consistent with previously reported data. The inhibition studies revealed pronounced differences in the potency of reactive blue 2, pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), suramin, and N6-diethyl-β,γ-dibromomethylene-ATP (ARL67156) towards the NTPDase isoforms. Notably, ARL67156 does not inhibit all NTPDases, having only a minor inhibitory effect on NTPDase2. Dipyridamole is not an inhibitor of the NTPDase isoforms investigated. The new method is fast and accurate, it requires only tiny amounts of material (nanoliter scale), no sample pretreatment and can be fully automated; thus it is clearly superior to the current standard methods.  相似文献   

5.
The ectonucleotidase NTPDase1 (CD39) terminates P2 receptor activation by the hydrolysis of extracellular nucleotides (i.e., the P2 receptor ligands). In agreement with that role, exacerbated inflammation has been observed in NTPDase1-deficient mice. In this study, we extend these observations by showing that inhibition of NTPDase1 markedly increases IL-8 production by TLR-stimulated human neutrophils. First, immunolabeling of human blood neutrophils and neutrophil-like HL60 cells displayed the expression of NTPDase1 protein, which correlated with the hydrolysis of ATP at their surface. NTPDase1 inhibitors (e.g., NF279 and ARL 67156) as well as NTPDase1-specific small interfering RNAs markedly increased IL-8 production in neutrophils stimulated with LPS and Pam(3)CSK(4) (agonists of TLR4 and TLR1/2, respectively) but not with flagellin (TLR5) and gardiquimod (TLR7 and 8). This increase in IL-8 release was due to the synergy between TLRs and P2 receptors. Indeed, ATP was released from neutrophils constitutively and accumulated in the medium upon NTPDase1 inhibition by NF279. Likewise, both human blood neutrophils and neutrophil-like HL60 cells produced IL-8 in response to exogenous nucleotides, ATP being the most potent inducer. In agreement, P2Y(2) receptor knockdown in neutrophil-like HL60 cells markedly decreased LPS- and Pam(3)CSK(4)-induced IL-8 production. In line with these in vitro results, injection of LPS in the air pouches of NTPDase1-deficient mice triggered an increased production of the chemokines MIP-2 and keratinocyte-derived chemokine (i.e., the rodent counterparts of human IL-8) compared with that in wild-type mice. In summary, NTPDase1 controls IL-8 production by human neutrophils via the regulation of P2Y(2) activation.  相似文献   

6.
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1?/? mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1?/? mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.  相似文献   

7.
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.  相似文献   

8.
The role of pannexin 1 in the release to the extracellular space of ATP/adenosine modulating the acetylcholine (ACh) secretion was studied in mouse diaphragm motor synapses. Using neuromuscular preparations obtained from wild-type and pannexin-1 knockout mice, the miniature endplate potential (MEPPs) and evoked endplate potentials (EPPs) were recorded in combination with pharmacological modulation of P2-type ATP receptors and A1-type adenosine receptors. Selective inhibition of A1 receptors with DPCPX or P2 receptors with PPADS increased quantal content of EPPs in wild-type mice. MRS 2211, selective antagonist of P2Y13 receptors, produced the same effect. Activation of receptors A1 or P2Y13 by their agonists (2-CADO and IDP, respectively) decreased the EPP quantal content. It means that the activity of endogenous ATP and adenosine is synergistic and directed to depression of the ACh release. ARL67156, an inhibitor of synaptic ecto-ATPases, which blocks the hydrolysis of ATP to adenosine and increases the level of ATP in the synaptic cleft, prolonged EPPs without changing their quantal content. In pannexin-1 knockout mice there were no changes in the EPP quantal content and in other parameters of synaptic transmission as compared to wildtype mice. However, downregulation of purinergic effects with antagonists of A1 or P2 receptors (DPCPX, PPADS, MRS 2211) did not change EPP quantal content and any other parameters of spontaneous or evoked ACh release in all cases. ARL67156 did not alter the temporal parameters of EPPs, either. Nevertheless, 2-CADO, the A1-type receptor agonist, decreased the EPP quantal content, while the agonist of P2Y13 receptors decreased the MEPP amplitude. Thus, in mice lacking pannexin 1, procedures revealing the presence and regulatory activity of synaptic ATP/adenosine did not change the parameters of synaptic transmission. The obtained data substantiate a mandatory role of pannexin 1 in the purinergic regulation of motor synapse activity by endogenous ATP/adenosine.  相似文献   

9.
Myosin light chain phosphatase with its regulatory subunit, myosin phosphatase target subunit 1 (MYPT1) modulates Ca2+-dependent phosphorylation of myosin light chain by myosin light chain kinase, which is essential for smooth muscle contraction. The role of MYPT1 in vascular smooth muscle was investigated in adult MYPT1 smooth muscle specific knock-out mice. MYPT1 deletion enhanced phosphorylation of myosin regulatory light chain and contractile force in isolated mesenteric arteries treated with KCl and various vascular agonists. The contractile responses of arteries from knock-out mice to norepinephrine were inhibited by Rho-associated kinase (ROCK) and protein kinase C inhibitors and were associated with inhibition of phosphorylation of the myosin light chain phosphatase inhibitor CPI-17. Additionally, stimulation of the NO/cGMP/protein kinase G (PKG) signaling pathway still resulted in relaxation of MYPT1-deficient mesenteric arteries, indicating phosphorylation of MYPT1 by PKG is not a major contributor to the relaxation response. Thus, MYPT1 enhances myosin light chain phosphatase activity sufficient for blood pressure maintenance. Rho-associated kinase phosphorylation of CPI-17 plays a significant role in enhancing vascular contractile responses, whereas phosphorylation of MYPT1 in the NO/cGMP/PKG signaling module is not necessary for relaxation.  相似文献   

10.
The present study tested the hypothesis that rainbow trout erythrocytes release ATP upon deoxygenation, a mechanism that enables mammalian erythrocytes to produce local vasodilation. We also investigated ATP release and ectonucleotidase activity in the coronary circulation of the isolated trout heart. Erythrocytes suspended in an albumin-containing saline and equilibrated at physiological Pco2 showed negligible hemolysis (< 0.1%), and notably they released small amounts of ATP. The elevation of extracellular [ATP] was higher in the presence of the ectonucleotidase inhibitor ARL 67156 than in its absence, revealing the presence of ectonucleotidase activity. The induction of either a slow (minutes) or a fast (seconds) decrease in hemoglobin O2 saturation did not lead to additional ATP release. An elevation of Pco2 was also without influence on erythrocyte ATP release. In the saline-perfused coronary circulation, [ATP] increased as the perfusate moved through the vessels in the presence of ARL 67156. When ATP was added to the inflowing saline, most ATP disappeared during passage of the coronary bed when ARL 67156 was absent but not when it was present. We conclude that rainbow trout erythrocytes and vasculature possess the key elements for ATP signaling, i.e. cellular ATP release and balanced ATP degradation by ectonucleotidases, but that erythrocyte ATP release is not influenced by oxygenation degree. The latter is suggested to be related to the lack of a deoxygenation-dependent interaction of trout hemoglobin with the cytoplasmic domain of band 3.  相似文献   

11.
12.
The nucleoside triphosphate diphosphohydrolase (NTPDase) family cleaves tri- and diphosphonucleosides to monophosphonucleosides and is responsible for terminating purinergic transmission. Since the NTPDase family in zebrafish is poorly understood, here we evaluated the nucleotide hydrolysis in three tissues of adult zebrafish (brain, liver, and heart), confirmed the presence of distinct NTPDase members by a phylogenetic analysis and verified their relative gene expression profiles in the respective tissues. A different profile of ATP and ADP hydrolysis in the brain, liver, and heart as a function of time and protein concentration was observed. Sodium azide (20 mM), ARL 67156 (300 μM) and Suramin (300 μM) differently altered the nucleotide hydrolysis in zebrafish tissues, suggesting the contribution of distinct NTPDase activities. Homology-based searches identified the presence of NTPDase1-6 and NTPDase8 orthologs and the phylogeny also grouped three NTPDase2 and two NTPDase5 paralogs. The deduced amino acid sequences share the apyrase conserved regions, conserved cysteine residues, putative N-glycosylation, phosphorylation, N-acetylation sites, and different numbers of transmembrane domains. RT-PCR experiments revealed the existence of a distinct relative entpd1-6 and entpd8 expression profile in brain, liver, and heart. Taken together, these results indicate that several NTPDase members might contribute to a tight regulation of nucleotide hydrolysis in zebrafish tissues.  相似文献   

13.
Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP) as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP) accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.  相似文献   

14.
Precipitation of Ehrlich ascites tumor cells (EATC) by centrifugation causes ATP secretion. ATP secretion is accompanied by an increase of calcium concentration in the cytosol and persists for a long time (minutes) after centrifugation during the storage of cells at a low temperature. During prolonged storage (for more than 1.5 h), the concentration of extracellular ATP decreases to the level of ∼100 nM due to termination of secretion and ATP hydrolysis by surface ATPases. The rate of ATP hydrolysis exponentially falls with the temperature decrease from 36 to 8°C. ARL67156, a selective inhibitor of E-NTPDase-1, effectively suppresses the extracellular ATP hydrolysis. The intensity of ATP secretion does not correlate with the calcium ions concentration in the cytosol and Ca2+ mobilization from endoplasmic reticulum but correlates with the intensity of Ca2+ influx into the cells. The temperature dependences of ATP secretion intensity and Ca2+ entry rate coincide.  相似文献   

15.
Urotensin I (UI) elicits dose-dependent relaxation responses in isolated helical strips of rat tail and mesenteric arteries contracted by 10−5M norepinephrine (NE). The rat mesenteric artery demonstrated a 40 fold lower threshold sensitivity to UI (0.25 mU/M1 versus maximal relaxation at 0.25 mU/m1). Complete relaxation of the rat tail artery with UI could not be achieved, even at doses exceeding 10 mU/m1. Pretreatment of the arterial strips with cyclooxygenase inhibitors had no effect on the contractile response to NE in the tail artery, but reduced NE responsiveness in the mesenteric artery. Significant enhancement of UI relaxation responses in both types of arterial strips was achieved by pre-treatment with the cyclooxygenase inhibiters, suggesting a modulatory role for prostaglandins (PGs) in the expression of the UI relaxation response in NE contracted arterial strips. The major enzymatically formed PG (as assessed by [1-14C] PGH2 metabolism in broken cell preparations) in both the rat tail and mesenteric arteries was 6-keto PGF, the stable hydrolysis product of PGI2. Using a specific RIA to quantify 6-keto PGF release, it was found that UI elicited nearly a two-fold increase in the release of this PG compared to the NE control in both rat tail and mesenteric arteries. These data suggest that PGI2 may modulate the relaxation response to UI either by direct physiological opposition (PGI2 elicited contractile response in NE contracted tail and mesenteric arteries at doses exceeding 10−8M) and/or by some as yet undefined mechanism (eg. effects on Ca2+, cAMP).  相似文献   

16.
The relative importance of ATP as a functional sympathetic neurotransmitter in blood vessels has been shown to be increased when the level of preexisting vascular tone or pressure is increased, in studies carried out in rat mesenteric arteries. The aim of the present study was to determine whether tone influences the involvement of ATP as a sympathetic cotransmitter with noradrenaline in another species. We used the porcine perfused mesenteric arterial bed and porcine mesenteric large, medium and small arteries mounted for isometric tension recording, because purinergic cotransmission can vary depending on the size of the blood vessel. In the perfused mesenteric bed at basal tone, sympathetic neurogenic vasocontractile responses were abolished by prazosin, an α1-adrenoceptor antagonist, but there was no significant effect of α,β-methylene ATP, a P2X receptor-desensitizing agent. Submaximal precontraction of the mesenteric arterial bed with U46619, a thromboxane A2 mimetic, augmented the sympathetic neurogenic vasocontractile responses; under these conditions, both α,β-methylene ATP and prazosin attenuated the neurogenic responses. In the mesenteric large, medium and small arteries, prazosin attenuated the sympathetic neurogenic contractile responses under conditions of both basal and U46619-raised tone. α,β-Methylene ATP was effective in all of these arteries only under conditions of U46619-induced tone, causing a similar inhibition in all arteries, but had no significant effect on sympathetic neurogenic contractions at basal tone. These data show that ATP is a cotransmitter with noradrenaline in porcine mesenteric arteries; the purinergic component was revealed under conditions of partial precontraction, which is more relevant to physiological conditions.  相似文献   

17.
The peptide hormone relaxin has striking effects on the vascular system. Specifically, endogenous relaxin treatment reduces myogenic reactivity through nitric oxide (NO)-mediated vasorelaxation and increases arterial compliance in small resistance arteries. However, less is known about the vascular roles of endogenous relaxin, particularly in males. Therefore, we used male wild-type (Rln +/+) and relaxin knockout (Rln −/−) mice to test the hypothesis that passive wall properties and vascular reactivity in mesenteric arteries would be compromised in Rln −/− mice. Passive compliance was determined in arteries (n = 8–9) mounted on a pressure myograph and in Ca2+-free Krebs containing 2 mM EGTA. Passive volume compliance was significantly (P = 0.01) decreased in the mesenteric arteries of Rln −/− mice. Vascular reactivity was assessed using wire myography. In mesenteric arteries (n = 5) of Rln −/− mice, there was a significant (P<0.03) increase in sensitivity to the vasoconstrictors phenylephrine and thromboxane-mimetic U41669. This enhanced responsiveness to vasoconstrictors was abolished by endothelial denudation, and attributed to impaired NO and prostanoid pathways in Rln −/− mice. Sensitivity to the endothelial agonist acetylcholine was significantly (n = 7–9, P≤0.03) decreased, and this was abolished in the presence of the cyclooxygenase inhibitor, indomethacin (2 µM). This indicates that prostanoid vasoconstrictor pathways were upregulated in the mesenteric arteries of Rln −/− mice. In summary, we demonstrate endothelial dysfunction and impaired arterial wall remodeling in male mice deficient in relaxin. Thus, our results highlight a role for endogenous relaxin in the maintenance of normal mesenteric artery structure and function in males.  相似文献   

18.
This study was designed to determine whether the 24-h rhythms of clock gene expression and vascular smooth muscle (VSM) contractile responses are altered in type 2 diabetic db/db mice. Control and db/db mice were euthanized at 6-h intervals throughout the day. The aorta, mesenteric arteries, heart, kidney, and brain were isolated. Clock and target gene mRNA levels were determined by either real-time PCR or in situ hybridization. Isometric contractions were measured in isolated aortic helical strips, and pressor responses to an intravenous injection of vasoconstrictors were determined in vivo using radiotelemetry. We found that the 24-h mRNA rhythms of the following genes were suppressed in db/db mice compared with control mice: the clock genes period homolog 1/2 (Per1/2) and cryptochrome 1/2 (Cry1/2) and their target genes D site albumin promoter-binding protein (Dbp) and peroxisome proliferator-activated receptor-γ (Pparg) in the aorta and mesenteric arteries; Dbp in the heart; Per1, nuclear receptor subfamily 1, group D, member 1 (Rev-erba), and Dbp in the kidney; and Per1 in the suprachiasmatic nucleus. The 24-h contractile variations in response to phenylephrine (α(1)-agonist), ANG II, and high K(+) were significantly altered in the aortas from db/db mice compared with control mice. The diurnal variations of the in vivo pressor responses to phenylephrine and ANG II were lost in db/db mice. Moreover, the 24-h mRNA rhythms of the contraction-related proteins Rho kinase 1/2, PKC-potentiated phosphatase inhibitory protein of 17 kDa, calponin-3, tropomyosin-1/2, and smooth muscle protein 22-α were suppressed in db/db mice compared with control mice. Together, our data demonstrated that the 24-h rhythms of clock gene mRNA, mRNA levels of several contraction-related proteins, and VSM contraction were disrupted in db/db mice, which may contribute to the disruption of their blood pressure circadian rhythm.  相似文献   

19.
Pannexin1 (Panx1) subunits oligomerize to form large-pore channels between the intracellular and extracellular milieu that have been shown to regulate proliferation, differentiation and cell death mechanisms. These key cellular responses are ultimately necessary for normal tissue development and function but the role of Panx1 in development, differentiation and function in many tissues remains unexplored, including that of the breast. Panx1 was identified to be expressed in the mammary gland through western blot and immunofluorescent analysis and is dynamically upregulated during pregnancy and lactation. In order to evaluate the role of Panx1 in the context of mammary gland development and function, Panx1-/- mice were evaluated in comparison to wild-type mice in the mammary glands of virgin, lactating and involuting mice. Our results revealed that Panx1 ablation did not affect virgin or involuting mammary glands following histological and whole mount analysis. Panx1 was necessary for timely alveolar development during early lactation based on a decreased number of alveolar lumen following histological analysis and reduced proliferation following Ki67 immunofluorescent labelling. Importantly, the loss of Panx1 in lactating mammary glands did not overtly affect epithelial or secretory differentiation of the mammary gland suggesting that Panx1 is not critical in normal mammary gland function. In addition, PANX1 mRNA expression was correlated with negative clinical outcomes in patients with breast cancer using in silico arrays. Together, our results suggest that Panx1 is necessary for timely alveolar development following the transition from pregnancy to lactation, which may have implications extending to patients with breast cancer.  相似文献   

20.
For mammals, acetylcholine (ACh) promotes endothelium-dependent vasodilation primarily through nitric oxide (NO) and prostaglandin-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors. Currently, no studies have been conducted on small systemic arteries from wild birds. We hypothesized that ACh-mediated vasodilation of isolated small arteries from mourning doves (Zenaida macroura) would likewise depend on endothelial-derived factors. Small resistance mesenteric and cranial tibial (c. tibial) arteries (80–150 μm, inner diameter) were cannulated and pre-constricted to 50 % of resting inner diameter with phenylephrine then exposed to increasing concentrations of ACh (10?9–10?5 M) or the NO donor, sodium nitroprusside (SNP; 10?12–10?3 M). For mesenteric arteries, ACh-mediated vasodilation was significantly blunted with the potassium channel antagonist tetraethylammonium chloride (TEA, 10 mM); whereas responses were only moderately impaired with endothelial disruption or inhibition of prostaglandins (indomethacin, 10 μM). In contrast, endothelial disruption as well as exposure to TEA largely abolished vasodilatory responses to ACh in c. tibial arteries while no effect of prostaglandin inhibition was observed. For both vascular beds, responses to ACh were moderately dependent on the NO signaling pathway. Inhibition of NO synthase had no impact, despite complete reversal of phenylephrine-mediated tone with SNP, whereas inhibition of soluble guanylate cyclase (sGC) caused minor impairments. Endothelium-independent vasodilation also relied on potassium channels. In summary, ACh-mediated vasodilation of mesenteric and c. tibial arteries occurs through the activation of potassium channels to induce hyperpolarization with moderate reliance on sGC. Prostaglandins likewise play a small role in the vasodilatory response to ACh in mesenteric arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号