首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipase D (PLD) catalyzes the hydrolysis and transesterification of glycerophospholipids at the terminal phosphodiester bond. In many plants, several isoforms of PLD have been identified without knowing their functional differences. In this paper, the specificities of two PLD isoenzymes from white cabbage (Brassica oleracea var. capitata) and two ones from opium poppy (Papaver somniferum L.), which were recombinantly produced in Escherichia coli, were compared in the hydrolysis of phospholipids with different head groups and in the transphosphatidylation of phosphatiylcholine with several acceptor alcohols. In a biphasic reaction system, consisting of buffer and diethyl ether, the highly homologous isoenzymes are able to hydrolyze phosphatidylcholine, -glycerol, -ethanolamine, -inositol and - with one exception - also phosphatidylserine but with different individual reaction rates. In transphosphatidylation of phosphatidylcholine, they show significant differences in the rates of head group exchange but with the same trend in the preference of acceptor alcohols (ethanolamine > glycerol ? l-serine). For l- and d-serine a stereoselectivity of PLD was observed. The results suggest a physiological relevance of the different hydrolytic and transphosphatidylation activities in plant PLD isoenzymes.  相似文献   

2.
The phospholipase D (PLD) from Streptomyces chromofuscus belongs to the superfamily of PLDs. All the enzymes included in this superfamily are able to catalyze both hydrolysis and transphosphatidylation activities. However, S. chromofuscus PLD is calcium dependent and is often described as an enzyme with weak transphosphatidylation activity. S. chromofuscus PLD-catalyzed hydrolysis of phospholipids in aqueous medium leads to the formation of phosphatidic acid. Previous studies have shown that phosphatidic acid-calcium complexes are activators for the hydrolysis activity of this bacterial PLD. In this work, we investigated the influence of diacylglycerols (naturally occurring alcohols) as candidates for the transphosphatidylation reaction. Our results indicate that the transphosphatidylation reaction may occur using diacylglycerols as a substrate and that the phosphatidylalcohol produced can be directly hydrolyzed by PLD. We also focused on the surface pressure dependency of PLD-catalyzed hydrolysis of phospholipids. These experiments provided new information about PLD activity at a water-lipid interface. Our findings showed that classical phospholipid hydrolysis is influenced by surface pressure. In contrast, phosphatidylalcohol hydrolysis was found to be independent of surface pressure. This latter result was thought to be related to headgroup hydrophobicity. This work also highlights the physiological significance of phosphatidylalcohol production for bacterial infection of eukaryotic cells.  相似文献   

3.
Myocardial phospholipase D (PLD) is located in different subcellular membranes, including sarcolemma (SL) and sarcoplasmic reticulum (SR). In this study, the kinetics of PLD-dependent hydrolytic and transphosphatidylation activities were examined in SL and SR fractions isolated from rat heart by measuring the formation of phosphatidic acid and phosphatidylethanol, respectively. The results showed that, compared to SR PLD, SL PLD had a higher Vmax, i.e. 373 vs. 70 nmol/mg protein/h for the hydrolytic activity and 415 vs. 60 nmol/mg protein/h for the transphosphatidylation activity. In comparison with the SR enzyme, SL PLD had a lower Km value for the hydrolytic activity (0.46 vs. 0.65 mM), but a higher Km for the transphosphatidylation activity (225 vs. 179 mM). These distinctive kinetic parameters suggest that SL PLD and SR PLD may be isoforms of the enzyme and/or have different membrane domain. Therefore, SL- and SR-localized PLD activities may be under independent control mechanism(s) and play distinct roles in normal conditions and pathological processes.  相似文献   

4.
Phospholipase D (PLD)-mediated transphosphatidylation of phosphatidylcholine (PC) in a biphasic system was limited by the hydrolysis reaction. A biphasic system can produce a large amount of water. To solve this problem, a microaqueous water-immiscible organic solvent was used for the first time in the bioconversion of phosphatidylserine (PS). The transphosphatidylation among 40 µmol PC, 800 µmol L-serine, and 0.17 U/mL PLD in 2.133 mL of butyl acetate with 6.25% water (V/V) was conducted at a trans-phosphatidylation rate of 88% (mol/mol), and no hydrolytic reaction was observed. Compared to commonly used biphasic systems, this system shows a similar transphosphatidylation rate, whereas the undesirable hydrolysis of phospholipids was completely suppressed.  相似文献   

5.
A new reaction system suitable for phospholipase D (PLD)-catalyzed transphosphatidylation of alcohols with phosphatidylcholine under anhydrous conditions is reported. The key innovation of the reaction system is a cation-exchange resin serving as a scavenger for choline that forms as a byproduct in the transphosphatidylation reaction. Due to the absence of water in this system, the reaction path dramatically shifts in favor of the target transphosphatidylated product, whereas the undesirable side hydrolysis of phosphatidylcholine is completely suppressed, in contrast to commonly used biphasic water-organic systems. In addition, a salt activation technique is successfully applied to increase the catalytic activity of PLD in this anhydrous system. The new reaction system is successfully used for transphosphatidylation of a wide range of primary, secondary, and aromatic alcohols catalyzed by PLD from Streptomyces sp.  相似文献   

6.
The current studies explore the role of phospholipase D (PLD) in mast cell activation. Although most investigators believe that receptor-mediated accumulation of 1,2-diacylglycerol (DAG) occurs by phospholipase C hydrolysis of phosphoinositides, our previous work indicated a modest role for these substrates and suggested that phosphatidylcholine (PC) is the more likely substrate. PLD cleaves the terminal phosphodiester bond of phospholipids to yield phosphatidic acid (PA), but in the presence of ethanol, it transfers the phosphatidyl moiety of the phospholipid substrate to ethanol producing phosphatidylethanol (PEt); a reaction termed transphosphatidylation. In purified rat mast cells prelabeled with [3H]arachidonic acid, [3H]palmitic acid, or 1-O-[3H]alkyl-lysoPC, a receptor-associated increase in PLD activity was initially suggested by the rapid accumulation of labeled PA, although other mechanisms might be involved. PLD activity was assessed more directly by the production of labeled PEt by PLD-mediated transphosphatidylation in the presence of ethanol. IgE receptor cross-linking resulted in a 3- to 10-fold increase in PLD activity during the 10 min after stimulation, approximately 50% of which occurred during the first two min. PEt formation was dependent on the concentration of ethanol and was maximal at 0.5%. At concentrations of ethanol greater than or equal to 0.2%, receptor-dependent formation of PA was reduced suggesting that the ethanol promoted transphosphatidylation at the expense of hydrolysis. The dose-related decline in PA accumulation seen in the presence of ethanol was similar to ethanol-mediated inhibition of exocytosis suggesting that receptor-mediated PA formation may be of regulatory importance. These observations indicate that PLD-mediated formation of PA occurs in stimulated mast cells and, in conjunction with separate findings of PA phosphohydrolase conversion of PA to DAG in mast cells, suggest that a major mechanism of DAG formation during mast cell activation is PC----PA----DAG.  相似文献   

7.
Phospholipases D (PLDs) catabolize structural phospholipids to produce phosphatidic acid (PtdOH), a lipid playing central role in signalling pathways in animal, yeast and plant cells. In animal cells two PLD genes have been studied while in model plant Arabidopsis twelve genes exist, classified in six classes (α-ζ). This underlines the role of these enzymes in plant responses to environmental stresses. However, information concerning the PLD involvement in the widely cultivated and economically important cotton plant responses is very limited. The aim of this report was to study the activity of conventional cotton PLD and its participation in plant responses to mechanical wounding, which resembles both biotic and abiotic stresses. PLDα activity was identified and further characterized by transphosphatidylation reaction. Upon wounding, cotton leaf responses consist of an acute in vitro increase of PLDα activity in both wounded and systemic tissue. However, determination of the in vivo PtdOH levels under the same wounding conditions revealed a rapid PtdOH formation only in wounded leaves and a late response of a PtdOH increase in both tissues. Εxpression analysis of PLDα and PLDδ isoforms showed mRNA accumulation of both isoforms in the wounded tissue, but only PLDδ exerts a high and sustainable expression in systemic leaves, indicating that this isoform is mainly responsible for the systemic wound-induced PtdOH production. Therefore, our data suggest that PLDα and PLDδ isoforms are involved in different steps in cotton wound signalling.  相似文献   

8.
Our previous studies have shown that parathyroid hormone (PTH) stimulates phosphatidylcholine (PC) hydrolysis by phospholipase D (PLD) and transphosphatidylation in UMR-106 osteoblastic cells. To determine whether phospholipase C (PLC) is also involved in the PTH-mediated PC hydrolysis, we used the inhibitor, tricyclodecan-9-yl xanthogenate (D609), a putatively selective antagonist of this pathway. Consistent with this proposed mechanism, D609 decreased (3)H-phosphocholine in extracts from UMR-106 cells prelabeled with (3)H-choline. Unexpectedly, D609 enhanced PC hydrolysis and transphosphatidylation, suggesting that either there was a compensatory increase in PLD activity when PLC was inhibited, or that D609 directly increased PLD activity. The D609-stimulated increase in PC hydrolysis was rapid, being seen as early as 2 min. The effect of D609 was temperature-sensitive, consistent with an enzymatic mechanism. The D609-stimulated increase in PC hydrolysis was PKC-independent, based upon the lack of effect of down-regulation of PKC by phorbol 12,13-dibutyrate on the response. The studies reveal a novel action of this inhibitor on signaling in osteoblastic cells which might influence downstream responses.  相似文献   

9.
Generation and attenuation of lipid second messengers are key processes in cellular signalling. Receptor-mediated increase in 1,2-diacylglycerol (DG) levels is attenuated by DG kinase and DG lipase. We here report a novel mechanism of DG attenuation by phospholipase D (PLD), which also precludes the production of another (putative) second messenger, phosphatidic acid (PA). In the presence of an alcohol, PLD converts phosphatidylcholine (PC) into a phosphatidylalcohol (by transphosphatidylation) rather than into PA. We found in bradykinin-stimulated human fibroblasts that PLD mediates transphosphatidylation from PC (donor) to the endogenous 'alcohol' DG (acceptor), yielding bis(1,2-diacylglycero)-3-sn-phosphate (bisphosphatidic acid; bisPA). This uncommon phospholipid is thus a condensation product of the phospholipase C (PLC) and PLD signalling pathways, where PLC produces DG and PLD couples this DG to a phosphatidyl moiety. Long-term phorbol ester treatment blocks bradykinin-induced activation of PLD and consequent bisPA formation, thereby unveiling rapid formation of DG. BisPA formation is rapid (15 s) and transient (peaks at 2-10 min) and is also induced by other stimuli capable of raising DG and activating PLD simultaneously, e.g. endothelin, lysophosphatidic acid, fetal calf serum, phorbol ester, dioctanoylglycerol or bacterial PLC. This novel metabolic route counteracts rapid accumulation of receptor-induced DG and PA, and assigns for the first time a physiological role to the transphosphatidylation activity of PLD, that is signal attenuation.  相似文献   

10.
A membrane-bound phospholipase D (PLD) has been identified and isolated in a soluble form from an actinomycete, Streptoverticillium cinnamoneum. The enzyme has a monomeric structure with a molecular size of about 37 kDa, being the smallest among the enzymes so far reported. The enzyme catalyzes the hydrolysis of phosphatidylethanolamine and phosphatidylserine as preferred substrates, but not the transphosphatidylation reaction of their phospholipid groups to ethanol. Together with the absence of immunochemical cross-reactivity, these enzymatic properties demonstrate that the membrane-bound enzyme is distinct from the extracellular enzyme recently characterized and cloned from the same bacterial strain [C. Ogino et al., J. Biochem. 125 (1999) 263–269] and is therefore regarded as a novel prokaryotic PLD.  相似文献   

11.
A membrane-bound phospholipase D (PLD) has been identified and isolated in a soluble form from an actinomycete, Streptoverticillium cinnamoneum. The enzyme has a monomeric structure with a molecular size of about 37 kDa, being the smallest among the enzymes so far reported. The enzyme catalyzes the hydrolysis of phosphatidylethanolamine and phosphatidylserine as preferred substrates, but not the transphosphatidylation reaction of their phospholipid groups to ethanol. Together with the absence of immunochemical cross-reactivity, these enzymatic properties demonstrate that the membrane-bound enzyme is distinct from the extracellular enzyme recently characterized and cloned from the same bacterial strain [C. Ogino et al., J. Biochem. 125 (1999) 263-269] and is therefore regarded as a novel prokaryotic PLD.  相似文献   

12.
The determination of phospholipase D activity in emulsion systems   总被引:1,自引:0,他引:1  
Although phospholipase D (PLD) is often used in emulsion systems consisting of buffer and a nonpolar organic solvent, most activity assays have been designed to work in purely aqueous milieu. Here a method is described for the determination of PLD activity in emulsion systems. The assay is based on the transphosphatidylation of phosphatidylcholine with 1-butanol in dichloromethane/buffer with the subsequent densitometric quantification of the products after their separation by HPTLC and staining with a CuSO4/H3PO4 reagent. The method is particularly appropriate for the determination of enzymes such as PLD from Streptomyces sp. that prefer the exchange of the head group in glycerophospholipids to their hydrolysis. Since the application of an organic solvent in the PLD assay allows the determination of the enzyme in analytes insoluble in aqueous media, the method can also be used to determine PLD activity in the presence of high concentrations of phospholipids.  相似文献   

13.
We have recently shown that two flexible loops of Streptomyces phospholipase D (PLD) affect the catalytic reaction of the enzyme by a comparative study of chimeric PLDs. Gly188 and Asp191 of PLD from Streptomyces septatus TH-2 (TH-2PLD) were identified as the key amino acid residues involved in the recognition of phospholipids. In the present study, we further investigated the relationship between a C-terminal loop of TH-2PLD and PLD activities to elucidate the reaction mechanism and the recognition of the substrate. By analyzing chimeras and mutants in terms of hydrolytic and transphosphatidylation activities, Ala426 and Lys438 of TH-2PLD were identified as the residues associated with the activities. We found that Gly188 and Asp191 recognized substrate forms, whereas residues Ala426 and Lys438 enhanced transphosphatidylation and hydrolysis activities regardless of the substrate form. By substituting Ala426 and Lys438 with Phe and His, respectively, the mutant showed not only higher activities but also higher thermostability and tolerance against organic solvents. Furthermore, the mutant also improved the selectivity of the transphosphatidylation activity. The residues Ala426 and Lys438 were located in the C-terminal flexible loop of Streptomyces PLD separate from the highly conserved catalytic HxKxxxxD motifs. We demonstrated that this C-terminal loop, which formed the entrance of the active well, has multiple functional roles in Streptomyces PLD.  相似文献   

14.
Activation of phospholipase D (PLD) and protein kinase C (PKC) as well as calcium mobilization are essential signals for degranulation of mast cells. However, the exact role of PLD in degranulation remains undefined. In this study we have tested the hypothesis that the PLD product, phosphatidic acid, and diacylglycerides generated therefrom might promote activation of PKC. Studies were conducted in two rodent mast cell lines that were stimulated with Ag via FcepsilonRI and a pharmacologic agent, thapsigargin. Diversion of production of phosphatidic acid to phosphatidylbutanol (the transphosphatidylation reaction) by addition of l-butanol suppressed both the translocation of diacylglyceride-dependent isoforms of PKC to the membrane and degranulation. Tertiary-butanol, which is not a substrate for the transphosphatidylation, had a minimal effect on PKC translocation and degranulation, and 1-butanol itself had no effect on PKC translocation when PKC was stimulated directly with phorbol ester, 12-O-tetradecanoylphorbol-13-acetate. Also, in cells transfected with small inhibitory RNAs directed against PLD1 and PLD2, activation of PLD, generation of diacylglycerides, translocation of PKC, and degranulation were all suppressed. Phorbol ester, which did not stimulate degranulation by itself, restored degranulation when used in combination with thapsigargin whether PLD function was disrupted with 1-butanol or the small inhibitory RNAs. However, degranulation was not restored when cells were costimulated with Ag and phorbol ester. These results suggested that the production of phosphatidic acid by PLD facilitates activation of PKC and, in turn, degranulation, although additional PLD-dependent processes appear to be critical for Ag-mediated degranulation.  相似文献   

15.
The transphosphatidylation activity of phospholipase D   总被引:4,自引:0,他引:4  
Transphosphatidylation activity is a characteristic and remarkable property of phospholipase D (PLD) and has been studied in plants and mammalian tissues. This reaction is often used to confirm the properties and/or abnormalities of PLD activity. The mechanism for activating PLD transphosphatidylation seems multiple. Although significant changes of transphosphatidylation activity have been found in some pathological animal models, the biological significance of PLD transphosphatidylation remains largely unknown.  相似文献   

16.
An attempt was made to use the phospholipase D (PLD)- containing culture supernatants of actinomycetes directly as catalysts for the transphosphatidylation reaction of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) in a biphasic system. Of the five actinomycetes (three Streptomyces sp. and two Streptoverticillium sp.) examined, three (St. mediocidicus, Stv. cinnamoneum and Stv. hachijoense) exhibited good PLD production performance, but the selectivity (ratio of transphosphatidylation to hydrolysis) of the PLDs in the culture supernatant of all three actinomycetes were significantly low. However, the addition of EDTA to the reaction mixture as a chelating agent remarkably improved the selectivity of the PLDs, which approached 100% in all the culture supernatants. Commercially available PLDs were also investigated and classified into two types. The PLDs of one type had high selectivity and no metal was required for the enzyme activity, while those of the other type showed low selectivity and a metal was necessary for the enzyme to be activated. From this finding, it was considered that the culture supernatants used in this study contained several PLDs of both types. When the chelating agent was added to the reaction mixture, the hydrolysis due to PLDs with low selectivity was suppressed by removal of the essential metal, resulting in an increased in the overall selectivity of the PLDs in the culture supernatant. Repeated batch transphosphatidylation reactions were performed 20 times, reusing the PLDs in the aqueous phase by centrifugation; the reaction rate gradually decreased to 60% of that of batch 1 by batch 20. This suggests that the transphosphatidylation reaction using a culture supernatant has potential for industrial application. (c) 1994 John Wiley & Sons, Inc.  相似文献   

17.
This review is focusing on an industrially important enzyme, phospholipase D (PLD), exhibiting both transphosphatidylation and hydrolytic activities for various phospholipids. The transphosphatidylation activity of PLD is particularly useful for converting phosphatidylcholine (PC) into other phospholipids. During the last decade, the genes coding for PLD have been identified from various species including mammals, plants, yeast, and bacteria. However, detailed basic and applied enzymological studies on PLD have been hampered by the low productivity in these organisms. Efficient production of a recombinant PLD has also been unsuccessful so far. We recently isolated and characterized the PLD gene from Streptoverticillium cinnamoneum, producing a secretory PLD. Furthermore, we constructed an overexpression system for the secretory enzyme in an active and soluble form using Streptomyces lividans as a host for transformation of the PLD gene. The Stv. cinnamoneum PLD was proven to be useful for the continuous and efficient production of phosphatidylethanolamine (PE) from phosphatidylcholine. Thus, the secretory PLD is a promising catalyst for synthesizing new phospholipids possessing various polar head groups that show versatile physiological functions and may be utilized in food and pharmaceutical industries.  相似文献   

18.
Bradykinin (BK) and phorbol 12-myristate 13-acetate (PMA) both stimulate the hydrolysis of phosphatidylcholine (PC) in human fibroblasts, resulting in the formation of phosphatidic acid (PA) and diacylglycerol (DG) (Van Blitterswijk, W.J., Hilkmann, H., de Widt, J., and Van der Bend, R.L. (1990) J. Biol. Chem. 266, 10337-10343). Stimulation with BK resulted in the rapid and synchronous formation of [3H]choline and [3H]myristoyl-PA from the correspondingly prelabeled PC, indicative of phospholipase D (PLD) activity. In the presence of ethanol or n-butanol, transphosphatidylation by PLD resulted in the formation of [3H]phosphatidylethanol or - butanol, respectively, at the cost of PA and DG formation. This suggests that PC-derived DG is generated via a PLD/PA phosphohydrolase pathway. A more pronounced but delayed formation of these products was observed by PMA stimulation. The Ca2+ ionophore ionomycin also activated PLD and accelerated (synergized) the response to PMA. Both [3H] choline and [3H]phosphocholine were released into the extracellular medium in a time- and stimulus-dependent fashion, without apparent changes in the high intracellular levels of [3H]phosphocholine. The protein kinase C (PKC) inhibitors staurosporin and 1-O-hexadecyl-2-O-methylglycerol inhibited BK- and PMA-induced activation of PLD. Down-regulation of PKC by long-term pretreatment of cells with phorbol ester caused a dramatic drop in background [3H]choline levels, while subsequent stimulation with BK, ionomycin, or PMA failed to increase these levels and failed to induce transphosphatidylation. From these results we conclude that PLD activation is entirely mediated by (downstream of) PKC. Unexpectedly, however, BK stimulation of these PKC-depleted cells caused a marked generation of DG from PC within 15 s, which was not seen in BK-stimulated control cells, suggesting PC breakdown by a phospholipase C (PLCc). We conclude that cells stimulated with BK generate DG via both the PLCc and the PLD/PA hydrolase pathway, whereas PMA stimulates mainly the latter pathway. BK stimulation of normal cells leads to activation of PKC and, by consequence, to attenuation of the level of PLCc-generated DG and to stimulation of the PLD pathway, whereas the reverse occurs in PKC-down-regulated cells.  相似文献   

19.
Aquaporin 3 (AQP3) is an aquaglyceroporin that transports water and glycerol and is expressed in the epidermis, among other epithelial tissues. We have recently shown that there is an association between this glycerol channel and phospholipase D2 (PLD2) in caveolin-rich membrane microdomains. While PLD2 is able to hydrolyze membrane phospholipids to generate phosphatidic acid, this enzyme also catalyzes, in the presence of primary alcohols, a transphosphatidylation reaction to produce a phosphatidylalcohol. We have proposed that AQP3 associated with PLD2 provides the physiological primary alcohol glycerol to PLD2 for use in the transphosphatidylation reaction to generate phosphatidylglycerol (PG). Further, we have proposed that PG functions as a signaling molecule to mediate early epidermal keratinocyte differentiation, and manipulation of this signaling module inhibits keratinocyte proliferation and enhances differentiation. In contrast, other investigators have suggested a proliferative role for AQP3 in keratinocytes. In addition, AQP3 knockout mice exhibit an epidermal phenotype, characterized by dry skin, decreased elasticity and delayed barrier repair and wound healing, which can be corrected by glycerol but not other humectants. AQP3 levels have also been found to be altered in human skin diseases. In this article the evidence supporting a role for AQP3 in the epidermis will be discussed.  相似文献   

20.
We previously isolated Streptomyces racemochromogenes strain 10-3, which produces a phospholipase D (PLD) with high transphosphatidylation activity. Here, we purified and cloned the PLD (PLD103) from the strain. PLD103 exerted the highest hydrolytic activity at a slightly alkaline pH, which is in contrast to the majority of known Streptomyces PLDs that have a slightly acidic optimum pH. PLD103 shares only 71–76% amino acid sequence identity with other Streptomyces PLDs that have a slightly acidic optimum pH; thus, the diversity in the primary structure might explain the discrepancy observed in the optimum pH. The purified PLD displayed high transphosphatidylation activity in the presence of glycerol, l-serine, and 2-aminoethanol hydrochloride with a conversion rate of 82–97% in a simple one-phase system, which was comparable to the rate of other Streptomyces PLDs in a complicated biphasic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号