首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Functional characterization of new short glyproline peptides, which are able to provide a regulatory effect on the functional state of the hemostasis system, as well as lipid and carbohydrate metabolism in the body, is an actual task of physiology and medicine. In the present study, we used a model of experimental metabolic syndrome developed in animals due to continuous feeding with high-calorie food. This leads to increased clotting, glucose concentration, low-density lipoprotein cholesterol, triglycerides, and the level of total cholesterol in the blood, which is accompanied by an increase in the body weight of rats. Arginine-containing peptides (Arg-Glu-Arg-Pro-Gly-Pro, Arg-Glu-Arg-Val-Gly-Pro, Arg-Glu-Arg-Gly-Pro) were intranasally administered every 24 h to rats seven times 6 weeks after the development of metabolic syndrome. These peptides provided a unique combined effect on the body, restoring parameters of lipid metabolism, the hemostasis system, and the concentration of blood glucose to normal values. The corrective effect of the studied peptides was detected 20 h after the last administration and was maintained for 168 h even under further feeding of rats with high-calorie diet. The studied glyproline peptides belong to therapeutic normoglycemic and lipid-lowering drugs. They block the accumulation of new fat deposits in the body, and also have anticoagulant and antithrombotic effects in disorders of lipid metabolism. The Arg-Glu-Arg-Pro-Gly-Pro peptide possessed the most pronounced and stable positive effect on the body.  相似文献   

2.
The role of different glycosaminoglycan species from the vessel walls as physiological antithrombotic agents remains controversial. To further investigate this aspect we extracted glycosaminoglycans from human thoracic aorta and saphenous vein. The different species were highly purified and their anticoagulant and antithrombotic activities tested by in vitro and in vivo assays. We observed that dermatan sulfate is the major anticoagulant and antithrombotic among the vessel wall glycosaminoglycans while the bulk of heparan sulfate is a poorly sulfated glycosaminoglycan, devoid of anticoagulant and antithrombotic activities. Minor amounts of particular a heparan sulfate (< 5% of the total arterial glycosaminoglycans) with high anticoagulant activity were also observed, as assessed by its retention on an antithrombin-affinity column. Possibly, this anticoagulant heparan sulfate originates from the endothelial cells and may exert a significant physiological role due to its location in the interface between the vessel wall and the blood. In view of these results we discuss a possible balance between the two glycosaminoglycan-dependent anticoagulant pathways present in the vascular wall. One is based on antithrombin activation by the heparan sulfate expressed by the endothelial cells. The other, which may assume special relevance after vascular endothelial injury, is based on heparin cofactor II activation by the dermatan sulfate proteoglycans synthesized by cells from the subendothelial layer.  相似文献   

3.
Opioid peptides and opiate drugs such as morphine, mediate their analgesic effects, but also undesired side effects, mostly through activation of the mu opioid receptor. However, delta- and kappa-opioid receptors can also contribute to the analgesic effects of opioids. Recent findings showed that simultaneous activation of multiple opioid receptors may result in additional analgesia with fewer side effects. Here, we evaluated the pharmacological profile of our formerly developed mixed mu/kappa-opioid receptor ligands, Dmt-c[D-Lys-Phe-Phe-Asp]NH2 (C-36) and Dmt-c[D-Lys-Phe-p-CF3-Phe-Asp]NH2 (F-81). The ability of these peptides to cross the blood–brain barrier was tested in the parallel artificial membrane permeability (PAMPA) assay. On the basis of the hot-plate test in mice after central and peripheral administration, analog F-81 was selected for the anti-nociceptive and anti-inflammatory activity assessment after peripheral administration.  相似文献   

4.
Dabigatran and rivaroxaban are novel oral anticoagulants that specifically inhibit thrombin and factor Xa, respectively. The aim of this study is to elucidate antithrombotic properties of these anticoagulant agents under arterial and venous shear conditions. Whole blood samples treated with dabigatran or rivaroxaban at 250, 500, and 1000 nM, with/without aspirin and AR-C66096, a P2Y12 antagonist, were perfused over a microchip coated with collagen and tissue thromboplastin at shear rates of 240 and 600 s−1. Fibrin-rich platelet thrombus formation was quantified by monitoring flow pressure changes. Dabigatran at higher concentrations (500 and 1000 nM) potently inhibited thrombus formation at both shear rates, whereas 1000 nM of rivaroxaban delayed, but did not completely inhibit, thrombus formation. Dual antiplatelet agents weakly suppressed thrombus formation at both shear rates, but intensified the anticoagulant effects of dabigatran and rivaroxaban. The anticoagulant effects of dabigatran and rivaroxaban were also evaluated under static conditions using thrombin generation (TG) assay. In platelet-poor plasma, dabigatran at 250 and 500 nM efficiently prolonged the lag time (LT) and moderately reduce peak height (PH) of TG, whereas rivaroxaban at 250 nM efficiently prolonged LT and reduced PH of TG. In platelet-rich plasma, however, both anticoagulants efficiently delayed LT and reduced PH of TG. Our results suggest that dabigatran and rivaroxaban may exert distinct antithrombotic effects under flow conditions, particularly in combination with dual antiplatelet therapy.  相似文献   

5.
In the present study we have compared the antithrombotic and anticoagulant properties of sodium and calcium derivatives of pentosan polysulphate (Na-PPS, Ca-PPS). The antithrombotic effect of these agents have been investigated in an experimental thrombosis model in which rat mesenteric venules diameter of 20-30 microm were injured by well defined Argon laser lesions. Furthermore, the in vivo and in vitro anticoagulant activities (aPTT, Heptest) of these agents have been studied. Thrombus formation was significantly inhibited after s.c. injection of Na-PPS and Ca-PPS in doses above 10 mg/kg. The duration of the antithrombotic effect lasted 8 h for Na-PPS and 12 h for Ca-PPS. After oral administration of Na-PPS an antithrombotic effect was not observed. Oral application of Ca-PPS in doses higher than 20 mg/kg significantly inhibited thrombus formation. Na-PPS and Ca-PPS markedly prolonged clotting time in aPTT and Heptest in concentrations ranging from 0.01 to 0.2 mg/ml rat PTT. Two h after s.c. administration of these agents in a dose 10 mg/kg, the aPTT increased 3-fold and Heptest 2.5-fold compared to controls. After oral application of 50 mg/kg Na-PPS and Ca-PPS no effect on coagulation test could be measured.  相似文献   

6.
High affinity uptake of serum-derived low density lipoprotein (LDL) cholesterol is accomplished through the LDL receptor in the liver. In mammals, thyroid hormone depletion leads to decreased LDL receptor expression and elevated serum cholesterol. The clinical association in humans has been known since the 1920s; however, a molecular explanation has been lacking. LDL receptor levels are subject to negative feedback regulation by cellular cholesterol through sterol regulatory element-binding protein-2 (SREBP-2). Here we demonstrate that the SREBP-2 gene is regulated by thyroid hormone and that increased SREBP-2 nuclear protein levels in hypothyroid animals results in thyroid hormone-independent activation of LDL receptor gene expression and reversal of the associated hypercholesterolemia. This occurs without effects on other thyroid hormone-regulated genes. Thus, we propose that the decreased LDL receptor and increased serum cholesterol associated with hypothyroidism are secondary to the thyroid hormone effects on SREBP-2. These results suggest that hypercholesterolemia associated with hypothyroidism can be reversed by agents that directly increase SREBP-2. Additionally, these results indicate that mutations or drugs that lower nuclear SREBP-2 would cause hypercholesterolemia.  相似文献   

7.
The effects on serum cholesterol level were examined in rats fed on various xenobiotics. The hypercholesterolemia induced by polychlorinated biphenyls (PCB) was characterized in rats, from which lipoproteins were isolated by ultracentrifugation. A dietary addition of 0.03% PCB, 0.3% chloretone, 0.1% aminopyrine, or 0.2% 2,6-di-tert-butyl-p-cresol (BHT) resulted in a significant increase in serum cholesterol, although the chemical structure of each of these xenobiotics was different. The serum cholesterol level was markedly increased by one month of PCB feeding, the effect of PCB on the serum phospholipid level being similar. The serum triglyceride level transiently increased within 7 days of feeding with PCB diet. PCB feeding resulted in the elevation of all lipoproteins, including VLDL, LDL, HDL1, and HDL2, a marked increase being observed in HDI1. Both HDL1 and HDL2 isolated from PCB-treated rats contained more apolipoprotein A-I (apo A-I) and less apo E than normal. VLDL isolated from PCB-treated rats had more cholesterol and apo E, but less apo C than that of the control animals. These data demonstrate that PCB feeding resulted in increased VLDL rich in cholesterol and apo E, and increased HDL rich in apo A-I. This experimentally induced hypercholesterolemia resulting in apo A-I-rich HDL would be a useful model for investigating the metabolism of apo-A-I and HDL.  相似文献   

8.
For a better understanding of the hypolipidemic function of dipyridamole, we have studied the comparative effects of diet supplementation with 10% coconut oil with and without dipyridamole on the lipid plasma and lipoprotein composition in chicks. This study was performed under postprandial and food-deprivation (12h) conditions. Coconut oil induced a clear hypercholesterolemia under both feeding conditions. Simultaneous administration of dipyridamole maintained total and esterified cholesterol at levels similar to those observed in control animals sacrificed under postprandial conditions. Under these conditions, our results also show that dipyridamole significantly reduced cholesterol levels in all the chick plasma lipoproteins that were increased by coconut oil administration. Nevertheless, it should be emphasised that the levels of total cholesterol found in intermediate- and very-low-density lipoproteins were lower than in control. All chemical components of these fractions were significantly decreased by dipyridamole. The effects were not significant in chicks deprived of food. In conclusion, our results show that the hypercholesterolemia induced by coconut oil was prevented by dipyridamole. To our knowledge, this is one of the first reports on the antihypercholesterolemic effects of dipyridamole.  相似文献   

9.
Administration of the thrombin mutant W215A/E217A (WE), rationally designed for selective activation of the anticoagulant protein C, elicits safe and potent anticoagulant and antithrombotic effects in a baboon model of platelet-dependent thrombosis. The lowest dose of WE tested (0.011 mg/kg bolus) reduced platelet thrombus accumulation by 80% and was at least as effective as the direct administration of 40-fold more (0.45 mg/kg bolus) activated protein C. WE-treated animals showed no detectable hemorrhage or organ failure. No procoagulant activity could be detected for up to 1 week in baboon plasma obtained following WE administration. These results show that engineered thrombin derivatives that selectively activate protein C may represent useful therapeutic agents for the treatment of thrombotic disorders.  相似文献   

10.
It is not known if vitamin E in hyperlipidemia and hypercholesterolemia of longer duration has any beneficial or adverse effects on electrolytes, and liver and kidney function. The objectives of this study are to determine (i) if long duration of mild hypercholesterolemia has any adverse effects on serum electrolytes, glucose and enzymes related to liver and kidney functions; (ii) if vitamin E has any effects on serum electrolytes, glucose and enzymes related to liver and kidney function in hypercholesterolemia. Blood samples were collected from the rabbits before and at various intervals during administration of a high cholesterol diet (0.25%) for 2 and 4 months, and while on a high cholesterol diet with vitamin E following a high cholesterol diet. Measurements of serum total cholesterol (TC), glucose, aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), albumin, creatinine, electrolytes [sodium (Na), potassium (K), chloride (Cl), and carbon dioxide (CO2)] were made. High cholesterol diet for 2 months produced hypercholesterolemia which was associated with reductions in serum glucose, unaltered serum electrolytes, ALT, ALP, GGT, albumin and creatinine, and increased levels of AST. Hypercholesterolemia for 4 months had effects similar to hypercholesterolemia for 2 months except it lowered serum ALP. Vitamin E did not affect any of the parameters except serum glucose and Cl, which decreased compared to the values at month 2. Hypercholesterolemia for short and long term does not have adverse effects on liver or kidney function, and serum electrolytes. Vitamin E during hypercholesterolemia does not affect serum electrolytes or liver and kidney function.  相似文献   

11.
New antithrombotic agents are being developed not only to improve efficacy, but also to increase safety in comparison with widely used conventional agents such as the oral anticoagulants. New anticoagulant, antiplatelet, and profibrinolytic compounds are currently under study in drug development programs, and most of those in phase II or III of development are derived from the observation of natural phenomena and merely mimic processes developed by mammalians, including humans, to avoid thrombosis, or by blood-sucking insects or animals to prevent coagulation of the blood their are feeding on. By contrast, drug candidates identified by means of rigorous research and designed to target new pathways and achieve direct and specific inhibition of factors that are presumed to play an important role in thrombogenesis have generally failed to show any benefit and sometimes even induce deleterious effects. The clinical development of new drugs, even those mimicking natural phenomena, improves our knowledge of the pathogenesis of thrombosis and sheds light, retrospectively, on previous conceptual errors. The improvement in our basic knowledge and the development of new types of drugs suggest that, in contrast to the current antithrombotic compounds that are used in a broad range of clinical settings, use of new drugs should be restricted to specific situations in which their mechanisms of action are predicted to deliver the highest medical benefit. A major obstacle resides in the fact that current drug development programs are still required to comply with long obsolete guidelines based on the characteristics of first-generation antithrombotic agents, and that do not take into account the specific mechanisms of action of new drugs. This situation should change, however, and new antithrombotic drugs should soon be able to benefit from adapted development programs that will make it possible to determine their optimal risk-benefit ratio.  相似文献   

12.
The present study focused on the role of galacto-oligosaccharides (GOS) against the development of hypercholesterolemia. In the current research, GOS synthesized from lactose solution were fed to hypercholesterolemic female Sprague–Dawley rats. Negative control group (G1) was fed on standard basal diet alone. Positive control group (G5) was fed on inulin (154 mg/250 g body weight), while treatment groups G2, G3 and G4 received 110 mg, 154 mg and 198.4 mg/250 g body weight, respectively, of GOS along with high-fat diet for a period of 60 days. Findings from this study revealed that animals belonging to prebiotic GOS (G2, G3 and G4)-fed group showed significantly decreased serum triglycerides, total cholesterol, LDL cholesterol and VLDL cholesterol as compared to control group (G0). The groups which were fed on different doses of GOS revealed a significant reduction in TC, TG, LDL, and VLDL levels and an increase in HDL level corresponding to the reference group that was fed on inulin, while G1 negative control group revealed increased levels of TC, TG, LDL and VLDL. In contrast to positive control group G5 (154 mg inulin), all doses of GOS lowered serum TC, TG and LDL-C and raised HDL-C; however, G4 (198.4 mg) proved to be more effective. Hence, GOS proved to be supportive in preventing hypercholesterolemia leading cause of cardiovascular disease and atherosclerosis. This study reported a significant reduction of serum TC, TG and LDL-C in female rats for 60 days as compared to control. Conclusively, GOS were found to be worthless against hypercholesterolemia.  相似文献   

13.
Novel anticoagulant therapies target specific clotting factors in blood coagulation cascade. Inhibition of the blood coagulation through Factor VIII–Factor IX interaction represents an attractive approach for the treatment and prevention of diseases caused by thrombosis. Our research efforts are continued by the synthesis and biological evaluation of cyclic, head to tail peptides, analogs of the 558–565 sequence of the A2 subunit of FVIII, aiming at the efficient inhibition of Factor VIIIa–Factor IXa interaction. The analogs were synthesized on solid phase using the acid labile 2-chlorotrityl chloride resin, while their anticoagulant activities were examined in vitro by monitoring activated partial thromboplastin time and the inhibition of Factor VIII activity. The results reveal that these peptides provide bases for the development of new anticoagulant agents.  相似文献   

14.
The hypocholesterolemic activities of pamaqueside and tiqueside, two structurally similar saponins, were evaluated in cholesterol-fed rabbits. The pharmacological profiles of the saponins were virtually identical: both dose-dependently decreased the intestinal absorption of labeled cholesterol 25-75%, increased fecal neutral sterol excretion up to 2.5-fold, and decreased hepatic cholesterol content 10-55%. High doses of pamaqueside (>5 mg/kg) or tiqueside (>125 mg/kg) completely prevented hypercholesterolemia. Decreases in plasma and hepatic cholesterol levels were strongly correlated with increased neutral sterol excretion. Ratios of neutral sterol excreted to pamaqueside administered were greater than 1:1 at all doses, in opposition to the formation of a stoichiometric complex previously suggested for tiqueside and other saponins. Ratios in tiqueside-treated rabbits were less than unity, a reflection of its lower potency. Pamaqueside-treated rabbits exhibited a more rapid decline in plasma cholesterol concentrations than control animals fed a cholesterol-free diet, indicating that the compound also inhibited the absorption of biliary cholesterol. Intravenous administration of pamaqueside had no effect on plasma cholesterol levels despite plasma levels twice those observed in rabbits given pamaqueside orally.These data indicate that pamaqueside and tiqueside induce hypocholesterolemia by blocking lumenal cholesterol absorption via a mechanism that apparently differs from the stoichiometric complexation of cholesterol hypothesized for other saponins.  相似文献   

15.
Aanalysis of the literature and our own research on the physiological effects of complex compounds of heparin with low molecular ligands (amino acids, regulatory peptides) is presented. It is proved that anticoagulative effects in blood flow were conditioned by the interaction of heparin with glioproline, immunopeptides, and other low molecular substances with formation of complex compounds. The presence of structural regions of binding of heparin and other components is established. It is indicated that in the blood of animals heparin complexes with low molecular ligands possess protective anticoagulative and antithrombotic effects. We made an attempt to reveal the possible mechanism of anticoagulative-fibrinolytic and antithrombotic action of complex compounds of heparin in the organism.  相似文献   

16.
The mechanisms underlying the impairment of endothelium-mediated vasorelaxation induced by dietary hypercholesterolemia and the mechanisms of restoration of endothelial function following reintroduction of low cholesterol diet were evaluated. Feeding rats with high cholesterol diet induced hypercholesterolemia and high blood pressure. This was associated with reduced vasorelaxation in response to acetylcholine, isoproterenol, and adenosine. At the same time, exaggerated contractile responses to serotonin and phenylephrine were observed. Reintroduction of a normal diet to cholesterol fed rats resulted in significant normalization of blood pressure, serum lipid profile, relaxation and contractile responses. The contributions of endothelial derived relaxing factors (EDRF), endothelial derived contractile factors (EDCFs)/prostanoids, and endothelial derived hyperpoalrising factor (EDHF) to the vasorelaxation in each group of animals were assessed. EDCFs constricting activity was increased in both cholesterol fed groups as compared to the control group. EDRF and EDHF were found to be the primary factors involved in the regulation of endothelium-mediated responsiveness. In control animals, EDRF was responsible for 70-90% of relaxation, depending on the agonist used. In cholesterol fed animals, EDRF was significantly reduced while EDHF was maintained or enhanced showing that EDHF had a significant role in maintaining the endothelial responses. Importantly, the restoration of vasorelaxation following reintroduction of normal diet was mediated not only by improvement of EDRF-dependent relaxation, but also to a significant extent by a further increase in EDHF-mediated relaxation. Taken together, the data showed that EDRF was attenuated during hypercholesterolemia and dietary interventions with low fat content restored these responses. However, EDHF-mediated responses were not reduced by hypercholesterolemia and subsequently improved their function after application of low cholesterol diet. The results implicate EDHF-mediated relaxation is also an important mechanism for restoration of endothelial function upon application of dietary restrictions for reduction of serum cholesterol level.  相似文献   

17.
This review is focused on recent data on structure and functions of PCSK9 proprotein convertase, a newly identified participant in cholesterol metabolism in mammalian organisms, including humans. Proprotein convertase acts as a molecular chaperone for the low density lipoprotein (LDL) receptor, targeting it to the lysosomal degradation pathway. Various mutations increasing the PCSK9 affinity toward the LDL receptor cause autosomal dominant hypercholesterolemia. In contrast, loss-of-function mutations in PCSK9 gene decrease the blood plasma cholesterol level, thus acting as a protection factor against atherosclerosis and coronary heart disease. It is supposed that pharmacological agents inhibiting the interaction between PCSK9 and LDL receptor may substantially amplify the benefits of drugs—statins and cholesterol absorption blockers—in the treatment of all types of hypercholesterolemia, including its widespread multigenic and multifactorial forms.  相似文献   

18.
Vanadium(III, IV, V)–chlorodipicolinate (dipic-Cl) complexes, including H[VIII(dipic-Cl)2] · 5H2O (V3dipic-Cl), VIVO(dipic-Cl)(H2O)2 (V4dipic-Cl) and K[VVO2(dipic-Cl)] (V5dipic-Cl), were prepared with the indicated oxidation states. Our aim was to evaluate the anti-diabetic effects of V3dipic-Cl, V4dipic-Cl and V5dipic-Cl in streptozotocin-induced diabetic rats. Vanadium complexes were orally administered to diabetic rats at concentrations of 0.1–0.3 mg/ml in the drinking water. We found that vanadium–chlorodipicolinate (V–dipic-Cl) complexes at the concentration of 0.1 mg/ml did not exhibit blood glucose-lowering effects when administered to diabetic rats for 20 days. However, the levels of fasting blood glucose in diabetic rats were decreased after treatment with 0.3 mg/ml of V4dipic-Cl and V5dipic-Cl complexes for the following 20 days. Although administration of both V4dipic-Cl and V5dipic-Cl significantly lowered diabetic hyperglycemia, the vanadium intake from administration of V4dipic-Cl is nearly 1.5-fold greater compared to that of V5dipic-Cl. Treatment with the H2dipic-Cl ligand and all three V–dipic-Cl complexes significantly lowered serum cholesterol, while administration of the V5dipic-Cl complex lowered serum cholesterol significantly more than administration of the ligand alone. Treatment with ligand alone did not have an effect on serum triglyceride, while administration of the V4dipic-Cl and V5dipic-Cl significantly lowered the elevated serum triglyceride associated with diabetes. Oral administration of the ligand and all V–dipic-Cl complexes did significantly lower diabetes elevated serum alkaline phosphatase. Treatment with H2dipic-Cl ligand and V4dipic-Cl and V5dipicCl significantly lowered diabetes elevated aspartate amino transferase. These results indicate that the health of the treated animals did not seem to be further compromised compared to that of diabetic animals. In addition, oral administration of H2dipic-Cl, V3dipic-Cl, V4dipic-Cl and V5dipic-Cl did not alter diabetic serum creatinine and blood urea nitrogen levels, suggesting no significant side effects of vanadium treatment on renal functions at the dose of 0.3 mg/ml in diabetic rats. The results presented here suggest that the anti-diabetic effects of treatment with V–dipic-Cl complexes were likely associated in part with the oxidation state of vanadium.  相似文献   

19.
Since hypercholesterolemia directly modifies the composition of erythrocytes plasma membrane, the influence of statins on erythrocytes has been researched. The beneficial effects of statins on clinical events may involve mechanisms that modify endothelial dysfunction, plaque stability, thrombus formation and inflammatory responses. The aim of the study was to evaluate the hypolipemic efficacy and effects of pravastatin and simvastatin on erythrocyte membrane fluidity and damage of erythrocytes in patients with type 2 hypercholesterolemia in comparison with a control group of healthy subjects. The study involved 53 patients affected by type 2 hypercholesterolemia (mean age, 53.3 +/- 10.3) with initial total serum cholesterol (TC) levels > 250 mg/dL, LDL-cholesterol (LDL-C) levels > 170 mg/dL, and triglycerides (TG) levels < 400 mg/dL. The control group consisted of 30 healthy individuals (mean age 56.9 +/- 6.3). Statins were given for 12 weeks. The dosages for oral administration of simvastatin and pravastatin were 20 mg/day. Laboratory tests were carried out before and after 4 and 12 weeks of the pharmacological treatment. The damage to plasma membrane of erythrocytes was measured on the basis of lipid peroxidation. The fluidity of plasma membrane of erythrocytes was determined by electron paramagnetic resonance (EPR) spectroscopy, using two spin labels: 5-DSA and 16-DSA. The cholesterol level in the membrane of red blood cells was estimated. Simvastatin and pravastatin reduced the total cholesterol concentration and LDL-cholesterol in plasma, as well as the cholesterol concentration in erythrocytes membranes. Hypercholesterolemia induced changes in the basic properties of human erythrocyte plasma membrane, including its fluidity and the intensity of lipid peroxidation. These results indicate that the simvastatin and pravastatin therapy reverses the alteration in the erythrocyte plasma membrane properties.  相似文献   

20.
Cadmium (Cd) is one of the most important environmental pollutants that cause a number of adverse health effects in humans and animals. Recent studies have shown that Cd-induced oxidative damage within the vascular tissues results in vascular dysfunction. The current study was aimed to investigate whether ascorbic acid could protect against Cd-induced vascular dysfunction in mice. Male ICR mice were received CdCl2 (100 mg/l) via drinking water for 8 weeks alone or received ascorbic acid supplementation at doses of 50 and 100 mg/kg/day for every other day. Results showed that Cd administration increased arterial blood pressure and blunted the vascular responses to vasoactive agents. These alterations were related to increased superoxide production in thoracic aorta, increased urinary nitrate/nitrite, increased plasma protein carbonyl, elevated malondialdehyde (MDA) concentrations in plasma and tissues, decreased blood glutathione (GSH), and increased Cd contents in blood and tissues. Ascorbic acid dose-dependently normalized the blood pressure, improved vascular reactivities to acetylcholine (ACh), phenylephrine (Phe) and sodium nitroprusside (SNP). These improvements were associated with significant suppression of oxidant formation, prevention of GSH depletion, and partial reduction of Cd contents in blood and tissues. The findings in this study provide the first evidence in pharmacological effects of ascorbic acid on alleviation of oxidative damage and improvement of vascular function in a mouse model of Cd-induced hypertension and vascular dysfunction. Moreover, our study suggests that dietary supplementation of ascorbic acid may provide beneficial effects by reversing the oxidative stress and vascular dysfunction in Cd-induced toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号