首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
THE CYTOPLASMIC CONTROL OF NUCLEAR ACTIVITY IN ANIMAL DEVELOPMENT   总被引:20,自引:0,他引:20  
1.This article reviews the occurrence, mechanism, and functional significance of the cytoplasmic regulation of nuclear activity during cell differentiation and especially during early animal development. 2.Nuclei from brain, and from other kinds of adult cell normally inactive in DNA synthesis, are rapidly induced to commence DNA synthesis by components or properties of intact egg cytoplasm. The components of egg cytoplasm which induce DNA synthesis are not species-specific and they are likely to include DNA polymerase. It is known that DNA polymerase exists in egg cytoplasm before it becomes associated with nuclei in which it is effective. The induction of DNA synthesis in brain nuclei by living egg cytoplasm is always preceded by a pronounced nuclear swelling, a dispersion of chromosomes or chromatin, and the entry of cytoplasmic protein into the nucleus. 3.RNA synthesis can be experimentally induced or repressed by living cytoplasm. The cytoplasm of unfertilized and fertilized eggs appears to contain components which can reversibly and independently repress the synthesis of ribosomal RNA, transfer RNA, and heterogeneous RNA. RNA synthesis can be induced by introducing nuclei inactive in this respect into the cytoplasm of cells very active in RNA synthesis. The induction and repression of RNA synthesis is preceded by a marked swelling of the nucleus and the dispersion of its chromosome material. 4.The cytoplasmic control of chromosome condensation before division has been demonstrated by introducing sperm or adult brain nuclei into the cytoplasm of oocytes undergoing meiotic maturation. 5.The evidence that regional differences in the composition of eggs and other cells are associated with changes in nuclear and gene activity is reviewed in Section 111. While it is certain that these regional differences are of great importance in cell differentiation, evidence that they have a direct effect on nuclear activity has been obtained in a few instances only. In some species it has been shown that the cytoplasmic components related to germ-cell differentiation include RNA and, frequently, granules. 6.It is concluded that whenever nuclei are introduced experimentally into the cytoplasm of another cell, they very quickly assume, in nearly every respect, the nuclear activity characteristic of the host cell. In many instances, altered function has been demonstrated in nuclei which subsequently support normal development. The induced nuclear changes are therefore regarded as normal and it is believed that they are achieved through the same mechanism as that by which the host cell nucleus originally came to function in its characteristic way. Examples are cited to show that changes in gene activity very frequently arise immediately after mitosis. The changes induced experimentally in transplanted nuclei resemble in very many respects those undergone by nuclei which are naturally reconstituted after mitosis, and it is argued that the two processes are functionally equivalent, It is suggested that during telophase of mitosis, chromosomes are reprogrammed in respect of potential gene activity by association with cytoplasmic proteins. Inter-phase nuclei seem not to show changes of gene activity except when they undergo a pronounced enlargement after entering a new cytoplasmic environment.  相似文献   

2.
Neutrophils are deprived of proliferative capacity and have a tightly controlled lifespan to avoid their persistence at the site of injury. We have recently described that the proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repair of proliferating cells, is a key regulator of neutrophil survival. In neutrophils, PCNA was localized exclusively in the cytoplasm due to its nuclear-to-cytoplasmic relocalization during granulocytic differentiation. We showed here that leptomycin B, an inhibitor of the chromosome region maintenance 1 (CRM1) exportin, inhibited PCNA relocalization during granulocytic differentiation of HL-60 and NB4 promyelocytic cell lines and of human CD34+ primary cells. Using enhanced green fluorescent protein fusion constructs, we have demonstrated that PCNA relocalization involved a nuclear export signal (NES) located from Ile-11 to Ile-23 in the PCNA sequence. However, this NES, located at the inner face of the PCNA trimer, was not functional in wild-type PCNA, but instead, was fully active and leptomycin B-sensitive in the monomeric PCNAY114A mutant. To test whether a defect in PCNA cytoplasmic relocalization would affect its antiapoptotic activity in mature neutrophils, a chimeric PCNA fused with the SV40 nuclear localization sequence (NLS) was generated to preclude its cytoplasmic localization. As expected, neutrophil-differentiated PLB985 cells expressing ectopic SV40NLS-PCNA had an increased nuclear PCNA as compared with cells expressing wild-type PCNA. Accordingly, the nuclear PCNA mutant did not show any antiapoptotic activity as compared with wild-type PCNA. Nuclear-to-cytoplasmic relocalization that occurred during myeloid differentiation is essential for PCNA antiapoptotic activity in mature neutrophils and is dependent on the newly identified monomerization-dependent PCNA NES.  相似文献   

3.
The distribution between nuclei and cytoplasm of DNA-binding proteins from growing NIL cells was studied. To obtain the subcellular fractions, cell monolayers or cells previously detached from the culture dish were treated with the non-ionic detergent Nonidet P-40. Proteins with affinity for DNA were isolated from nuclear or cytoplasmic fractions by chromatography on DNA-cellulose columns and were further analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The results show that P8, one of the major components in the 0.15 M NaCl-eluted proteins, is found predominantly in the cytoplasmic fractions, whereas P6, the other main protein peak in this eluate, is more prominent in the nuclear fraction. Among the other proteins eluted at 0.15 M NaCl from the DNA-cellulose column, P5 and P5′ are detected in both nuclear and cytoplasmic fractions. All the other proteins in the 0.15 M NaCl eluate are present almost exclusively in the cytoplasmic fraction. On the other hand, most of the proteins with higher affinity for DNA, eluted from the column at 2 M NaCl, are present in the nuclear fraction, although they are also detected in the cytoplasm in amounts similar to those observed in the nuclei.  相似文献   

4.
Proliferating cell nuclear antigen (PCNA/cyclin) is a 36-kDa polypeptide present in the nuclei of mitotically active cells. It is known to be involved in DNA replication through an association with DNA polymerase delta. We examined the total content as well as the subcellular distribution of PCNA in the oocyte and the egg of Xenopus laevis by employing immunocytological staining and immunoblot analysis. While oocytes are not capable of replicating chromosomes, PCNA is abundant in the nucleus (about 65 ng per nucleus). The oocyte cytoplasm, on the other hand, does not contain a significant quantity of this protein. The amount of total PCNA does not change appreciably during oocyte maturation and the subsequent stages of egg cleavage. Thus, PCNA belongs to a class of proteins which are stockpiled during oogenesis in order to be utilized later for early embryogenesis.  相似文献   

5.
Proliferating cell nuclear antigen (PCNA/cyclin) is a 36-kDa polypeptide present in the nuclei of mitotically active cells. It is known to be involved in DNA replication through an association with DNA polymerase δ. We examined the total content as well as the subcellular distribution of PCNA in the oocyte and the egg of Xenopus laevis by employing immunocytological staining and immunoblot analysis. While oocytes are not capable of replicating chromosomes, PCNA is abundant in the nucleus (about 65 ng per nucleus). The oocyte cytoplasm, on the other hand, does not contain a significant quantity of this protein. The amount of total PCNA does not change appreciably during oocyte maturation and the subsequent stages of egg cleavage. Thus, PCNA belongs to a class of proteins which are stockpiled during oogenesis in order to be utilized later for early embryogenesis.  相似文献   

6.
The proliferating cell nuclear antigen (PCNA) is a key component of the eukaryotic DNA replication machinery. It also plays an important role in DNA repair mechanisms. Despite the intense scientific research on yeast and human PCNA, information describing the function of this protein in plants is still very limited. In the previous study Arabidopsis PCNA2 but not PCNA1 was proposed to be functionally important in DNA polymerase η-dependent postreplication repair. In addition to the above study, PCNA2 but not PCNA1 was also shown to be necessary for Arabidopsis DNA polymerase λ-dependent oxidative DNA damage bypass. Taking into account the reported differences between PCNA1 and PCNA2, we tested the idea of a possible cooperation between PCNA1 and PCNA2 in the plant cell. In a bimolecular fluorescence complementation assay an interaction between PCNA1 and PCNA2 was observed in the nucleus, as well as in the cytoplasm. This finding, together with our previous results, indicates that PCNA1 and PCNA2 may cooperate in planta by forming homo- and heterotrimeric rings. The observed interaction might be relevant when distinct functions for PCNA1 and PCNA2 are considered.  相似文献   

7.
The diverse function of proliferating cell nuclear antigen (PCNA) is thought to be due, in large part, to post-translational modifications. Here we show by high resolution two-dimensional PAGE analysis that there are three distinct PCNA isoforms that differ in their acetylation status. The moderately acetylated main (M) form was found in all of the subcellular compartments of cycling cells, whereas the highly acetylated acidic form was primarily found in the nucleoplasm, nuclear matrix, and chromatin. Interestingly, the deacetylated basic form was most pronounced in the nucleoplasm of cycling cells. The cells in G(0) and the cytoplasm of cycling cells contained primarily the M form only. Because p300 and histone deacetylase (HDAC1) were co-immunoprecipitated with PCNA, they are likely responsible for the acetylation and deacetylation of PCNA, respectively. We also found that deacetylation reduced the ability of PCNA to bind to DNA polymerases beta and delta. Taken together, our data support a model where the acidic and M forms participate in DNA replication, whereas the basic form is associated with the termination of DNA replication.  相似文献   

8.
During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.  相似文献   

9.
The nuclear lamins are members of the intermediate filament (IF) family of proteins. The lamins have an essential role in maintaining nuclear integrity, as do the other IF family members in the cytoplasm. Also like cytoplasmic IFs, the organization of lamins is dynamic. The lamins are found not only at the nuclear periphery but also in the interior of the nucleus, as distinct nucleoplasmic foci and possibly as a network throughout the nucleus. Nuclear processes such as DNA replication may be organized around these structures. In this review, we discuss changes in the structure and organization of the nuclear lamins during the cell cycle and during cell differentiation. These changes are correlated with changes in nuclear structure and function. For example, the interactions of lamins with chromatin and nuclear envelope components occur very early during nuclear assembly following mitosis. During S-phase, the lamins colocalize with markers of DNA replication, and proper lamin organization must be maintained for replication to proceed. When cells differentiate, the expression pattern of lamin isotypes changes. In addition, changes in lamin organization and expression patterns accompany the nuclear alterations observed in transformed cells. These lamin structures may modulate nuclear function in each of these processes.  相似文献   

10.
The nuclear lamins are members of the intermediate filament (IF) family of proteins. The lamins have an essential role in maintaining nuclear integrity, as do the other IF family members in the cytoplasm. Also like cytoplasmic IFs, the organization of lamins is dynamic. The lamins are found not only at the nuclear periphery but also in the interior of the nucleus, as distinct nucleoplasmic foci and possibly as a network throughout the nucleus. Nuclear processes such as DNA replication may be organized around these structures. In this review, we discuss changes in the structure and organization of the nuclear lamins during the cell cycle and during cell differentiation. These changes are correlated with changes in nuclear structure and function. For example, the interactions of lamins with chromatin and nuclear envelope components occur very early during nuclear assembly following mitosis. During S-phase, the lamins colocalize with markers of DNA replication, and proper lamin organization must be maintained for replication to proceed. When cells differentiate, the expression pattern of lamin isotypes changes. In addition, changes in lamin organization and expression patterns accompany the nuclear alterations observed in transformed cells. These lamin structures may modulate nuclear function in each of these processes.  相似文献   

11.
Proliferating cell nuclear antigen (PCNA) is expressed in the nuclei of proliferating cells, but is not detected in resting cells. The kinetics of PCNA expression suggest that it is associated with a phase preceding active DNA synthesis. DNA synthesis is under cytoplasmic control, and there is a cytoplasmic protein, ADR (activator of DNA replication), that induces DNA synthesis in isolated quiescent nuclei. We now report that a human antibody preparation monospecific for PCNA, but not two monoclonal antibodies directed against different epitopes on PCNA, can inhibit the ability of ADR to induce DNA synthesis in isolated quiescent nuclei. This effect is not due to inhibition of DNA polymerase alpha activity. Thus, the anti-PCNA antibody exerts its effect either by directly influencing the initial interaction of ADR with the nucleus, or by inhibiting subsequent synthetic events.  相似文献   

12.
Nuclear actin dynamics--from form to function   总被引:2,自引:0,他引:2  
Vartiainen MK 《FEBS letters》2008,582(14):2033-2040
  相似文献   

13.
Abstract. This study reports on the proliferating cell nuclear antigen (PCNA) and Ki-67 cell cycle related expression and distribution pattern analysed in the same cells. MCF-7 cells were synchronized by mitotic detachment and triple stained for DNA, PCNA and Ki-67. The major cell type was identified on each time sample as a function of the PCNA/Ki-67 pattern, and both antigens as well as DNA were quantified. During G1 phase, the expression of PCNA greatly increased whereas Ki-67 content decreased. During S phase, nuclear Ki-67 content continuously increased especially in the second half of this phase, mainly due to the accumulation of the antigen in the nucleoli. During G2 phase, the antigen significantly passed into the nucleoplasm, its content continued to increase and reached its maximum in mitotic cells. Nuclear PCNA content mostly increased in the first part of S phase and sharply declined in mitotic cells as the antigen shifted to the cytoplasm. Cells showing PCNA positive Ki-67 negative labelling were observed in all time samples from the beginning of the experiment. Their nuclear size, DNA content (of G1 cells), PCNA content (equivalent to the content of some late G, cells) and time occurrence (their percentage increased after the last late G1 cells had disappeared) tend to indicate that these cells have left the cycle by the end of G1 phase to enter a quiescent state. Cells coming out of mitosis split into two groups according to their Ki-67/PCNA content. The biggest fraction was PCNA negative and Ki-67 positive while the smallest showed positive staining for both antibodies. Cells of this second cohort slowly lost their 1–67 while their PCNA content increased as they moved through G1. Concurrently, most of the cells of the first cohort (here called Q2 and Q3 cell types) lost their Ki-67 without increasing their PCNA content; then they joined cells of the second cohort by increasing their PCNA content at the end of G, phase. Some cells of this first cohort can also increase their PCNA and thus reach cells of the first cohort before the end of G1 phase. The existence of these two main cell cohorts suggests that cells after mitosis differ in some way that make them progress dlfferently through G1. Some cells seem to go through early G1 (G1a and late G1 (Glb) while others may come out of mitosis committed to go through the following cycle by directly entering late G1 compartment.  相似文献   

14.
DNA damage leads to activation of several mechanisms such as DNA repair and cell-cycle checkpoints. It is evident that these different cellular mechanisms have to be finely co-ordinated. Growing evidence suggests that the Rad9/Rad1/Hus1 cell-cycle checkpoint complex (9-1-1 complex), which is recruited to DNA lesion upon DNA damage, plays a major role in DNA repair. This complex has been shown to interact with and stimulate several proteins involved in long-patch base excision repair. On the other hand, the well-characterised DNA clamp-proliferating cell nuclear antigen (PCNA) also interacts with and stimulates several of these factors. In this work, we compared the effects of the 9-1-1 complex and PCNA on flap endonuclease 1 (Fen1). Our data suggest that PCNA and the 9-1-1 complex can independently bind to and activate Fen1. Finally, acetylation of Fen1 by p300-HAT abolished the stimulatory effect of the 9-1-1 complex but not that of PCNA, suggesting a possible mechanism of regulation of this important repair pathway.  相似文献   

15.
DNA-tumor viruses comprise enveloped and non-enveloped agents that cause malignancies in a large variety of cell types and tissues by interfering with cell cycle control and immortalization. Those DNA-tumor viruses that replicate in the nucleus use cellular mechanisms to transport their genome and newly synthesized viral proteins into the nucleus. This requires cytoplasmic transport and nuclear import of their genome. Agents that employ this strategy include adenoviruses, hepadnaviruses, herpesviruses, and likely also papillomaviruses, and polyomaviruses, but not poxviruses which replicate in the cytoplasm. Here, we discuss how DNA-tumor viruses enter cells, take advantage of cytoplasmic transport, and import their DNA genome through the nuclear pore complex into the nucleus. Remarkably, nuclear import of incoming genomes does not necessarily follow the same pathways used by the structural proteins of the viruses during the replication and assembly phases of the viral life cycle. Understanding the mechanisms of DNA nuclear import can identify new pathways of cell regulation and anti-viral therapies.  相似文献   

16.
In a two-hybrid screen for proteins that interact with human PCNA, we identified and cloned a human protein (hCdc18) homologous to yeast CDC6/Cdc18 and human Orc1. Unlike yeast, in which the rapid and total destruction of CDC6/Cdc18 protein in S phase is a central feature of DNA replication, the total level of the human protein is unchanged throughout the cell cycle. Epitope-tagged protein is nuclear in G1 and cytoplasmic in S-phase cells, suggesting that DNA replication may be regulated by either the translocation of this protein between the nucleus and the cytoplasm or the selective degradation of the protein in the nucleus. Mutation of the only nuclear localization signal of this protein does not alter its nuclear localization, implying that the protein is translocated to the nucleus through its association with other nuclear proteins. Rapid elimination of the nuclear pool of this protein after the onset of DNA replication and its association with human Orc1 protein and cyclin-cdks supports its identification as human CDC6/Cdc18 protein.  相似文献   

17.
A method is described for microinjection of cloned DNA into the zygote nucleus of Lytechinus variegatus. Eggs of this species are unusually transparent, facilitating visual monitoring of the injection process. The initial fate of injected DNA fragments appears similar to that observed earlier for exogenous DNA injected into unfertilized egg cytoplasm. Thus after end-to-end ligation, it is replicated after a lag of several hours to an extent indicating that it probably participates in most of the later rounds of DNA synthesis undergone by the host cell genomes during cleavage. The different consequences of nuclear versus cytoplasmic injection are evident at advanced larval stages. Larvae descendant from eggs in which exogenous DNA was injected into the nuclei are four times more likely (32% versus 8%) to retain this DNA in cell lineages that replicate very extensively during larval growth, i.e. the lineages contributing to the imaginal rudiment, and thus to display greatly enhanced contents of the exogenous DNA. Similarly, 36% of postmetamorphic juveniles from a nuclear injection sample retained the exogenous DNA sequences, compared to 12% of juveniles from a cytoplasmic injection sample. However, the number of copies of the exogenous DNA sequences retained per average genome in postmetamorphic juveniles was usually less than 0.1 (range 0.05-50), and genome blot hybridizations indicate that these sequences are organized as integrated, randomly oriented, end-to-end molecular concatenates. It follows that only a small fraction of the cells of the average juvenile usually retains the exogenous sequences. Thus, even when introduced by nuclear microinjection, the stable incorporation of exogenous DNA in the embryo occurs in a mosaic fashion, although in many recipients the DNA enters a wider range of cell lineages than is typical after cytoplasmic injection. Nuclear injection would probably be the route of choice for studies of exogenous DNA function in the postembryonic larval rudiment.  相似文献   

18.
The presence of ectopic DNA in the cytoplasm induces inflammation and cell death. It has been widely reported that leakage of nuclear DNA into the cytoplasm can mainly be sensed by cyclic GMP-AMP synthase (cGAS). We recently reported that mitochondria-derived cytoplasmic double-stranded DNA (dsDNA) that has escaped lysosomal degradation induces significant cytotoxicity in cultured cells and in vivo. Cytoplasmic mitochondrial DNA is assumed to be involved in various diseases and disorders, and more and more papers have been published confirming this. On the other hand, the current method for evaluating mitochondrial DNA in the cytoplasm may not be quantitative. Here, we introduce in detail a method to evaluate ectopic mitochondrial DNA in cells. This method is useful in basic research as well as in the study of aging, Parkinson’s disease, Alzheimer’s disease, heart failure, autoimmune diseases, cancer, and other conditions.  相似文献   

19.
In eukaryotic cells, nucleus-cytoplasm exchanges play an important role in genomic regulation. We have analyzed the localization of four nuclear antigens in different growth conditions: two replicative proteins, DNA polymerase alpha and proliferating cell nuclear antigen (PCNA), and two oncogenic regulatory proteins, c-Myc and c-Fos. A kinetic study of subcellular localization of these proteins has been done. In cultures in which cells were sparse, these proteins were detected in the nucleus. When proliferation was stopped by the high density of culture cells or by serum starvation, these proteins left the nucleus for the cytoplasm with different kinetics. DNA polymerase alpha is the first protein to leave the nucleus, with the PCNA protein, c-Fos, and c-Myc leaving the nucleus later. In contrast, during serum stimulation c-Fos and c-Myc relocalize into the nucleus before the replicative proteins. We also noticed that in sparse cell cultures, 10% of the cells exhibit a perinuclear staining for the DNA polymerase alpha, PCNA, and c-Myc proteins but not for c-Fos. This peculiar staining was also observed as an initial step to nuclear localization after serum stimulation and in vivo in Xenopus embryos when the G1 phase is reintroduced in the embryonic cell cycle at the mid-blastula stage. We suggest that such staining could reflect specific structures involved in the initiation of the S phase.  相似文献   

20.
Ubiquitination of proliferating cell nuclear antigen (PCNA) plays a crucial role in regulating replication past DNA damage in eukaryotes, but the detailed mechanisms appear to vary in different organisms. We have examined the modification of PCNA in Schizosaccharomyces pombe. We find that, in response to UV irradiation, PCNA is mono- and poly-ubiquitinated in a manner similar to that in Saccharomyces cerevisiae. However in undamaged Schizosaccharomyces pombe cells, PCNA is ubiquitinated in S phase, whereas in S. cerevisiae it is sumoylated. Furthermore we find that, unlike in S. cerevisiae, mutants defective in ubiquitination of PCNA are also sensitive to ionizing radiation, and PCNA is ubiquitinated after exposure of cells to ionizing radiation, in a manner similar to the response to UV-irradiation. We show that PCNA modification and cell cycle checkpoints represent two independent signals in response to DNA damage. Finally, we unexpectedly find that PCNA is ubiquitinated in response to DNA damage when cells are arrested in G2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号