首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elaboration of enamel matrix glycoprotein was investigated in secretory ameloblasts of incisor teeth in 30–40-g rats. To this end, the distribution of glycoprotein was examined histochemically by the use of phosphotungstic acid at low pH, while the formation of glycoprotein was traced radioautographically in animals sacrificed 2.5–30 min after galactose-3H injection. Histochemically, the presence of glycoprotein is observed in ameloblasts as well as in the enamel matrix; in ameloblasts glycoprotein occurs within the Golgi apparatus in amounts increasing from the outer to the inner face of the stacks of saccules, and is concentrated in condensing vacuoles and secretory granules; in the enamel matrix, glycoprotein is observed within linear subunits. Radioautographs at 2.5 min after injection demonstrate the uptake of galactose-3H label by Golgi saccules, indicating that galactose-3H is incorporated into glycoprotein within this organelle. After 5–10 min, the label collects in the condensing vacuoles and secretory granules of the Golgi region. By 20–30 min, the label appears in the secretory granules of the apical (Tomes') processes, as well as in the enamel matrix (next to the distal end of the apical processes, and at the tips of matrix prongs). In conclusion, galactose contributes to the formation of glycoprotein within the Golgi apparatus. The innermost saccules then distribute the completed glycoprotein to condensing vacuoles, which later evolve into secretory granules. These granules rapidly migrate to the apical processes, where they discharge their glycoprotein content to the developing enamel.  相似文献   

2.
Constitutive protein secretion from the exocrine pancreas of fetal rats   总被引:6,自引:0,他引:6  
Two general kinds of exocytotic secretion of proteins are known: that which is stimulated by secretagogues; and constitutive exocytosis, which is unable to be stimulated. The exocrine pancreas has often been cited as a model system for the first kind of secretion. However, the release of digestive enzymes from the exocrine pancreas of 1-day prenatal rats cannot be stimulated by secretagogues; therefore, its secretion is constitutive. To gain insight into the intracellular pathways which mediate secretion in the fetal gland, we examined the kinetics of release of newly synthesized proteins. We find that fetal pancreas in a steady state of secretion releases pulse-labeled secretory proteins in two kinetically distinct phases. The first phase occurring during 0-6.5 h of chase comprises approximately 12% of total incorporated radioactivity, the second phase beginning at greater than 7 h of chase comprises the remainder. Based on analysis by electron microscope autoradiography, radiolabel is localized during the first phase of secretion in immature granules/condensing vacuoles, Golgi compartments, and few mature granules. The second phase of secretion occurs when radiolabel is predominantly in mature granules. We propose that secretion occurs via (at least) 2 exocytotic routes, both of which are constitutive in fetal pancreatic tissue.  相似文献   

3.
It has been established by electron microscopic radioautography of guinea pig pancreatic exocrine cells (Caro and Palade, 1964) that secretory proteins are transported from the elements of the rough-surfaced endoplasmic reticulum (ER) to condensing vacuoles of the Golgi complex possibly via small vesicles located in the periphery of the complex. To define more clearly the role of these vesicles in the intracellular transport of secretory proteins, we have investigated the secretory cycle of the guinea pig pancreas by cell fractionation procedures applied to pancreatic slices incubated in vitro. Such slices remain viable for 3 hr and incur minimal structural damage in this time. Their secretory proteins can be labeled with radioactive amino acids in short, well defined pulses which, followed by cell fractionation, makes possible a kinetic analysis of transport. To determine the kinetics of transport, we pulse-labeled sets of slices for 3 min with leucine-14C and incubated them for further +7, +17, and +57 min in chase medium. At each time, smooth microsomes ( = peripheral elements of the Golgi complex) and rough microsomes ( = elements of the rough ER) were isolated from the slices by density gradient centrifugation of the total microsomal fraction. Labeled proteins appeared initially (end of pulse) in the rough microsomes and were subsequently transferred during incubation in chase medium to the smooth microsomes, reaching a maximal concentration in this fraction after +7 min chase incubation. Later, labeled proteins left the smooth microsomes to appear in the zymogen granule fraction. These data provide direct evidence that secretory proteins are transported from the cisternae of the rough ER to condensing vacuoles via the small vesicles of the Golgi complex.  相似文献   

4.
Catalytic (C) and regulatory (RI and RII) subunits of cAMP-dependent protein kinases were localized by immunoelectron microscopy in cisternae of the rough endoplasmic reticulum (rER) and in the Golgi complex of rat pancreas or parotid cells. Zymogen granules of the exocrine pancreas showed C- and RI-immunoreactivity, secretory granules of parotid acinar cells only RII-immunoreactivity. Injection of rats with isoproterenol (IPR) increased in the parotid gland the number of acinar cells with RII-labeled granules. In addition, it led to the appearance of C-immunoreactivity in the condensing vacuoles and secretory granules with a maximum at 24 h after stimulation. This was confirmed by enzyme-linked immunosorbent assay (ELISA) determinations of C- and RII-subunits in secretory granules isolated from stimulated and control parotid glands. The amount of immunoreactive C-subunits in the secretory granules increased further following repeated injections of the beta-agonist. These findings suggest the existence of secretory forms of cAMP-dependent protein kinase R- and C-subunits and their separate regulation.  相似文献   

5.
Our previous observations on the synthesis and transport of secretory proteins in the pancreatic exocrine cell were made on pancreatic slices from starved guinea pigs and accordingly apply to the resting, unstimulated cell. Normally, however, the gland functions in cycles during which zymogen granules accumulate in the cell and are subsequently discharged from it in response to secretogogues. The present experiments were undertaken to determine if secretory stimuli applied in vitro result in adjustments in the rates of protein synthesis and/or of intracellular transport. To this intent pancreatic slices from starved animals were stimulated in vitro for 3 hr with 0.01 mM carbamylcholine. During the first hour of treatment the acinar lumen profile is markedly enlarged due to insertion of zymogen granule membranes into the apical plasmalemma accompanying exocytosis of the granule content. Between 2 and 3 hr of stimulation the luminal profile reverts to unstimulated dimensions while depletion of the granule population nears completion. The acinar cells in 3-hr stimulated slices are characterized by the virtual complete absence of typical condensing vacuoles and zymogen granules, contain a markedly enlarged Golgi complex consisting of numerous stacked cisternae and electron-opaque vesicles, and possess many small pleomorphic storage granules. Slices in this condition were pulse labeled with leucine-3H and the route and timetable of intracellular transport assessed during chase incubation by cell fractionation, electron microscope radioautography, and a discharge assay covering the entire secretory pathway. The results showed that the rate of protein synthesis, the rate of drainage of the rough-surfaced endoplasmic reticulum (RER) compartment, and the over-all transit time of secretory proteins through the cells was not accelerated by the secretogogue. Secretory stimulation did not lead to a rerouting of secretory proteins through the cell sap. In the resting cell, the secretory product is concentrated in condensing vacuoles and stored as a relatively homogeneous population of spherical zymogen granules. By contrast, in the stimulated cell, secretory proteins are initially concentrated in the flattened saccules of the enlarged Golgi complex and subsequently stored in numerous small storage granules before release. The results suggest that secretory stimuli applied in vitro primarily affect the discharge of secretory proteins and do not, directly or indirectly, influence their rates of synthesis and intracellular transport.  相似文献   

6.
The synthesis, intracellular transport, storage, and discharge of secretory proteins in and from the pancreatic exocrine cell of the guinea pig were studied by light- and electron microscopical autoradiography using DL-leucine-4,5-H3 as label. Control experiments were carried out to determine: (a) the length of the label pulse in the blood and tissue after intravenous injections of leucine-H3; (b) the amount and nature of label lost during tissue fixation, dehydration, and embedding. The results indicate that leucine-H3 can be used as a label for newly synthesized secretory proteins and as a tracer for their intracellular movements. The autoradiographic observations show that, at ∼5 minutes after injection, the label is localized mostly in cell regions occupied by rough surfaced elements of the endoplasmic reticulum; at ∼20 minutes, it appears in elements of the Golgi complex; and after 1 hour, in zymogen granules. The evidence conclusively shows that the zymogen granules are formed in the Golgi region by a progressive concentration of secretory products within large condensing vacuoles. The findings are compatible with an early transfer of label from the rough surfaced endoplasmic reticulum to the Golgi complex, and suggest the existence of two distinct steps in the transit of secretory proteins through the latter. The first is connected with small, smooth surfaced vesicles situated at the periphery of the complex, and the second with centrally located condensing vacuoles.  相似文献   

7.
In the previous paper we described an in vitro system of guinea pig pancreatic slices whose secretory proteins can be pulse-labeled with radioactive amino acids. From kinetic experiments performed on smooth and rough microsomes isolated by gradient centrifugation from such slices, we obtained direct evidence that secretory proteins are transported from the cisternae of the rough endoplasmic reticulum to condensing vacuoles of the Golgi complex via small vesicles located in the periphery of the complex. Since condensing vacuoles ultimately become zymogen granules, it was of interest to study this phase of the secretory cycle in pulse-labeled slices. To this intent, a zymogen granule fraction was isolated by differential centrifugation from slices at the end of a 3-min pulse with leucine-14C and after varying times of incubation in chase medium. At the end of the pulse, few radioactive proteins were found in this fraction; after +17 min in chaser, its proteins were half maximally labeled; they became maximally labeled between +37 and +57 min. Parallel electron microscopic radioautography of intact cells in slices pulse labeled with leucine-3H showed, however, that zymogen granules become labeled, at the earliest, +57 min post-pulse. We assumed that the discrepancy between the two sets of results was due to the presence of rapidly labeled condensing vacuoles in the zymogen granule fraction. To test this assumption, electron microscopic radioautography was performed on sections of zymogen granule pellets isolated from slices pulse labeled with leucine-3H and subsequently incubated in chaser. The results showed that the early labeling of the zymogen granule fractions was, indeed, due to the presence of highly labeled condensing vacuoles among the components of these fractions.  相似文献   

8.
Chromogranin B (CgB, secretogranin I) is a secretory granule matrix protein expressed in a wide variety of endocrine cells and neurons. Here we generated transgenic mice expressing CgB under the control of the human cytomegalovirus promoter. Northern and immunoblot analyses, in situ hybridization and immunocytochemistry revealed that the exocrine pancreas was the tissue with the highest level of ectopic CgB expression. Upon subcellular fractionation of the exocrine pancreas, the distribution of CgB in the various fractions was indistinguishable from that of amylase, an endogenous constituent of zymogen granules. Immunogold electron microscopy of pancreatic acinar cells showed co-localization of CgB with zymogens in Golgi cisternae, condensing vacuoles/immature granules and mature zymogen granules; the ratio of immunoreactivity of CgB to zymogens being highest in condensing vacuoles/immature granules. CgB isolated from zymogen granules of the pancreas of the transgenic mice aggregated in a mildly acidic (pH 5.5) milieu in vitro, suggesting that low pH-induced aggregation contributed to the observed concentration of CgB in condensing vacuoles. Our results show that a neuroendocrine-regulated secretory protein can be sorted to exocrine secretory granules in vivo, and imply that a key feature of CgB sorting in the trans-Golgi network of neuroendocrine cells, i.e. its aggregation-mediated concentration in the course of immature secretory granule formation, also occurs in exocrine cells although secretory protein sorting in these cells is thought to occur largely in the course of secretory granule maturation.  相似文献   

9.
Synopsis the structure and cytochemistry of GERL was studied in several different exocrine secretory cells, including the exorbital lacrimal gland, parotid, lingual serous (von Ebner's), submandibular, and sublingual salivary glands, and exocrine pancreas of the rat; the lacrimal, parotid and pancreas of the guinea-pig; and the lacrimal gland of the monkey. GERL was morphologically and cytochemically similar in all cell types studied. It was located in the inner Golgi region and consisted of cisternal and tubular portions. Immature secretory granules were in continuity with GERL through multiple tubular connections. Modified cisternae of endoplasmic reticulum, with ribosomes only on one surface, closely paralleled parts of GERL. GERL and immature granules were intensely reactive for acid phosphatase activity, while the inner Golgi saccules were reactive for thiamine pyrophosphatase and nucleoside diphosphatase activities. In the rat exorbital lacrimal and parotid glands, reaction product for endogenous peroxidase, a secretory enzyme, was present in the endoplasmic reticulum, Golgi saccules, immature and mature secretory granules. GERL was usually free of reaction product or contained only a small amount. The widespread occurrence of GERL in secretory cells, and its intimate involvement with the formation of granules, suggest that it is an integral component of the secretory process.  相似文献   

10.
The subcellular components involved in the synthesis, transport, and discharge of secretory proteins in the guinea pig pancreatic exocrine cell have been isolated from gland homogenates by differential and gradient centrifugation. They include rough and smooth microsomes derived respectively from the rough endoplasmic reticulum and Golgi periphery, a zymogen granule fraction consisting mainly of mature zymogen granules and a smaller population of condensing vacuoles, and a plasmalemmal fraction. Membrane subfractions were obtained from the particulate components by treatment with mild (pH 7.8) alkaline buffers which extract the majority (>95%) of the content of secretory proteins, allowing the membranes to be recovered from the extracting fluid by centrifugation. The purity of the fractions was assessed by electron microscopy and by assaying marker enzymes for cross-contaminants. The rough and smooth microsomes were essentially free of mitochondrial contamination; the smooth microsomes contained <15% rough contaminants. The zymogen granule fraction and its derived membranes were free of rough microsomes and contained <3% contaminant mitochondria. The plasmalemmal fraction was heterogeneous as to origin (deriving from basal, lateral, and apical poles of the cell) and contained varying amounts of adherent fibrillar material arising from the basement membrane and terminal web. The lipid and enzymatic composition of the membrane fractions are described in the following reports.  相似文献   

11.
The histological, ultrastructural, and biochemical changes occurring during hormone-induced cytodifferentiation of the ovalbumin-secreting glands in the chick oviduct have been studied. Marked perivascular edema is an initial response of the immature oviduct stroma to diethylstilbestrol administration and is accompanied by an interstitial migration of mononuclear cells. Mitotic activity in the immature mucosal epithelium increases within 24 hr, and glands begin to develop on days 2–4 as budlike invaginations into the subepithelial stroma. An immediate intracellular effect of the hormone is aggregation of previously dispersed ribosomes. Ribosomal zones in the nucleolus gain prominence, and there is a progressive development of rough endoplasmic reticulum in the epithelial cells. Extensive profiles of endoplasmic reticulum are present in the gland cells by day 6. Fine apical progranules appear in the epithelial cells on day 2, and ovalbumin can be measured immunochemically by day 3 at about the same time that new species of nuclear RNA have been identified. Ovalbumin granules form within condensing vacuoles in the Golgi zone and begin to be released into the lumina of the gland acini at about day 6 of the treatment.  相似文献   

12.
The pancreatic acinar carcinoma established in rat by Reddy and Rao (1977, Science 198:78-80) demonstrates heterogeneity of cytodifferentiation ranging from cells containing abundant well- developed secretory granules to those with virtually none. We examined the synthesis intracellular transport and storage of secretory proteins in secretory granule-enriched (GEF) and secretory granule-deficient (GDF) subpopulations of neoplastic acinar cells separable by Percoll gradient centrifugation, to determine the secretory process in cells with distinctly different cytodifferentiation. The cells pulse-labeled with [3H]leucine for 3 min and chase incubated for up to 4 h were analyzed by quantitative electron microscope autoradiography. In GEF neoplastic cells, the results of grain counts and relative grain density estimates establish that the label moves successively from rough endoplasmic reticulum (RER) leads to the Golgi apparatus leads to post-Golgi vesicles (vacuoles or immature granules) leads to mature secretory granules, in a manner reminiscent of the secretory process in normal pancreatic acinar cells. The presence of approximately 40% of the label in association with secretory granules at 4 h postpulse indicates that GEF neoplastic cells retain (acquire) the essential regulatory controls of the secretory process. In GDF neoplastic acinar cells the drainage of label from RER is slower, but the peak label of approximately 20% in the Golgi apparatus is reached relatively rapidly (10 min postpulse). The movement of label from the Golgi to the post- Golgi vesicles is evident; further delineation of the secretory process in GDF neoplastic cells, however, was not possible due to lack of secretory granule differentiation. The movement of label from RER leads to the Golgi apparatus leads to the post-Golgi vesicles suggests that GDF neoplastic cells also synthesize secretory proteins, but to a lesser extent than the GEF cells. The reason(s) for the inability of GDF cells to concentrate and store exportable proteins remain to be elucidated.  相似文献   

13.
We have examined, in the pancreatic exocrine cell, the metabolic requirements for the conversion of condensing vacuoles into zymogen granules and for the discharge of the contents of zymogen granules. To study condensing vacuole conversion, we pulse labeled guinea pig pancreatic slices for 4 min with leucine-3H and incubated them in chase medium for 20 min to allow labeled proteins to reach condensing vacuoles. Glycolytic and respiratory inhibitors were then added and incubation continued for 60 min to enable labeled proteins to reach granules in control slices. Electron microscope radioautography of cells or of zymogen granule pellets from treated slices showed that a large proportion of prelabeled condensing vacuoles underwent conversion in the presence of the combined inhibitors. Osmotic fragility studies on zymogen granule suspensions suggest that condensation may result from the aggregation of secretory proteins in an osmotically inactive form. Discharge was studied using an in vitro radioassay based on the finding that prelabeled zymogen granules can be induced to release their labeled contents to the incubation medium by carbamylcholine or pancreozymin. Induced discharge is not affected if protein synthesis is blocked by cycloheximide for up to 2 hr, but is strictly dependent on respiration. The data indicate that transport and discharge do not require the pari passu synthesis of secretory or nonsecretory proteins (e.g. membrane proteins), suggesting that the cell may reutilize its membranes during the secretory process. The energy requirements for zymogen discharge may be related to the fusion-fission of the granule membrane with the apical plasmalemma.  相似文献   

14.
Addition of 20 mM ammonium chloride during in vitro chase incubation of [35S]methionine pulse-labeled parotid tissue does not perturb the magnitude or radiochemical composition of secretion stimulated by isoproterenol. An apparent inhibition of stimulated output of radiolabeled secretory proteins that was observed when ammonium chloride was added immediately postpulse (but not at later time points prior to stimulation) could be accounted for by slowdown in Golgi transit of exocrine secretory protein at a stage prior to completion of terminal glycosylation. Thus, ammonium chloride does not block entry of newly synthesized secretory proteins into the secretagogue-releasable storage granule compartment. By contrast, ammonium chloride increases the output and substantially alters the relative composition of newly synthesized protein in unstimulated secretion. The latter effects could be assigned to stages of intracellular transport that normally occur at chase times greater than 60 min postpulse and thus are focused within the maturing acinar storage granule. Notably, the compositional alterations cannot reflect the preferential exocytosis of immature granules. Taken together, these results suggest that the sorting of exocrine secretory proteins into the secretagogue-regulated pathway may not involve positive selection by a pH-based process initiated in a pregranule compartment. Rather, unstimulated secretion may arise by a negative sorting (or exclusion) process that occurs during compaction of proteins for storage within maturing granules and that is perturbed by weak base addition. Sorted (or excluded) proteins would appear to follow the vesicular (nongranular) secretory pathway that originates in maturing granules (von Zastrow, M., and Castle, J.D. (1987) J. Cell Biol. 105, 2675-2684).  相似文献   

15.
THE FINE STRUCTURE OF VON EBNER''S GLAND OF THE RAT   总被引:7,自引:6,他引:1       下载免费PDF全文
The fine structure of von Ebner's gland was studied in untreated rats and rats stimulated to secrete by fasting-refeeding or injection of pilocarpine. Cytological features were similar to those reported for pancreas and parotid gland. Abundant granular endoplasmic reticulum filled the basal portion of the cell, a well-developed Golgi complex was located in the vicinity of the nucleus, and the apical portion of the cell was filled with dense secretory granules. Dense heterogeneous bodies resembling lysosomes were closely associated with the Golgi complex. Coated vesicles were seen in the Golgi region and also in continuity with the cell membrane. Granule discharge occurred by fusion of the granule membrane with the cell membrane at the secretory surface. Successive fusion of adjacent granules to the previously fused granule formed a connected string of granules in the apical cytoplasm. Myoepithelial cells were present within the basement membrane, and nerve processes were seen adjacent to acinar and myoepithelial cells. Duct cells resembled the intercalated duct cells of the major salivary glands.  相似文献   

16.
The intracellular transport of venom proteins has been studied in active and resting venom glands of the snake Vipera palaestinae by electron microscope radioautography after an intra-arterial injection of [3H]leucine. In the active gland, most of the label is initially (10 min) found over the RER. By 30 min, the relative grain density of the Golgi complex reaches its maximum, with concomitant increase in the labeling of the condensing vacuoles. Later on, a steep increase in radioactivity of the secretory granules is observed. At 3 h, these granules, which comprise about 2% of the cell volume, contain 22% of the total grains. At the following hour, their labeling declines and at the same time the radioactivity of the secreted venom is increased. It is concluded that, in the active cell, venom proteins are transported via the Golgi apparatus into membrane-bounded granules which are the immediate source of the secreted venom. An alternative pathway, which involves the RER cisternae as a storage compartment, seems unlikely, since incorporated label does not accumulate in this compartment after prolonged postpulse intervals. The route of intracellular transport of proteins in the resting glands is similar to that of the active ones, but the rate of synthesis and transport is much slower. The present results and earlier data, thus, show that the increase in the rate of secretion after initiation of a new venom regeneration cycle is the result of accelerated rates of both synthesis and transport.  相似文献   

17.
We have studied by electron microscopy and immunocytochemistry the formation of secretory granules containing adrenocorticotropic hormone (ACTH) in murine pituitary cells of the AtT20 line. The first compartment in which condensed secretory protein appears is a complex reticular network at the extreme trans side of the Golgi stacks beyond the TPPase-positive cisternae. Condensed secretory protein accumulates in dilated regions of this trans Golgi network. Examination of en face and serial sections revealed that "condensing vacuoles" are in fact dilations of the trans Golgi network and not detached vacuoles. Only after presumptive secretory granules have reached an advanced stage of morphological maturation do they detach from the trans Golgi network. Frequently both the dilations of the trans Golgi network containing condensing secretory protein and the detached immature granules in the peri-Golgi region have surface coats which were identified as clathrin by immunocytochemistry. Moreover both are the site of budding (or fusion) of coated vesicles, some of which contain condensed secretory protein. The mature granules below the plasma membrane do not, however, have surface coats. Immunoperoxidase labeling with an antiserum specific for ACTH and its precursor polypeptide confirmed that many of the coated vesicles associated with the trans Golgi network contain ACTH. The involvement of the trans Golgi network and coated vesicles in the formation of secretory granules is discussed.  相似文献   

18.
Frog exocrine pancreatic tissue was studied in vitro under conditions which maintain the differences between tissues from fasted and fed animals. Sodium dodecyl sulfate (SDS) gel electrophoresis after labeling with [14C]amino acids showed that feeding stimulated the synthesis of secretory proteins to the same relative degree as the overall protein synthesis. The intracellular transport of secretory proteins was studied by electronmicroscopy autoradiography after pulse-labeling with [3H]leucine. It was found that the transport route is similar under both feeding conditions. After their synthesis in the rough endoplasmic reticulum (RER), the proteins move through the peripheral elements and cisternae of the Golgi system into the condensing vacuoles. The velocity of the transport increases considerably after feeding. When frogs are fasted, the release of labeled proteins from the RER takes greater than 90 min, whereas after feeding, this happens within 30 min. Comparable differences were observed for transport through the Golgi system. The apparent differences between the frog and mammalian pancreas in the regulation of synthesis, intracellular transport, and secretion of proteins are discussed.  相似文献   

19.
The posttranslational processing enzyme peptidylglycine alpha-amidating monooxygenase (PAM) occurs naturally in integral membrane and soluble forms. With the goal of understanding the targeting of these proteins to secretory granules, we have compared the maturation, processing, secretion, and storage of PAM proteins in stably transfected AtT-20 cells. Integral membrane and soluble PAM proteins exit the ER and reach the Golgi apparatus with similar kinetics. Biosynthetic labeling experiments demonstrated that soluble PAM proteins were endoproteolytically processed to a greater extent than integral membrane PAM; this processing occurred in the regulated secretory pathway and was blocked by incubation of cells at 20 degrees C. 16 h after a biosynthetic pulse, a larger proportion of soluble PAM proteins remained cell-associated compared with integral membrane PAM, suggesting that soluble PAM proteins were more efficiently targeted to storage granules. The nonstimulated secretion of soluble PAM proteins peaked 1-2 h after a biosynthetic pulse, suggesting that release was from vesicles which bud from immature granules during the maturation process. In contrast, soluble PAM proteins derived through endoproteolytic cleavage of integral membrane PAM were secreted in highest amount during later times of chase. Furthermore, immunoprecipitation of cell surface-associated integral membrane PAM demonstrated that very little integral membrane PAM reached the cell surface during early times of chase. However, when a truncated PAM protein lacking the cytoplasmic tail was expressed in AtT-20 cells, > 50% of the truncated PAM-1 protein reached the cell surface within 3 h. We conclude that the trafficking of integral membrane and soluble secretory granule-associated enzymes differs, and that integral membrane PAM proteins are less efficiently retained in maturing secretory granules.  相似文献   

20.
A stereological model which provides detailed quantitative information on the structure of the fasted, nonstimulated gland has been developed for the guinea pig pancreas. The model consists of morphologically defined space and membrane compartments which were used to describe the general composition of the tissue and the specific components of exocrine cells. The results are presented, where appropriate, relative to a cubic centimeter of pancreas, a cubic centimeter of exocrine cell cytoplasm, and to the volume of an average exocrine cell. The exocrine cells, accounting for 82% of the pancreas volume, consisted of 54% cytoplasmic matrix, 22% rough-surfaced endoplasmic reticulum (RER), 8.3% nuclei, 8.1% mitochondria, 6.4% zymogen granules, and 0.7% condensing vacuoles. Their total membrane surface area was distributed as follows: 60% RER, 21% mitochondria, 9.9% Golgi apparatus, 4.8% plasma membranes, 2.6% zymogen granules, 1.8% plasma membrane vesicles, and 0.4% condensing vacuoles. The application of this model to the study of membrane movements associated with the secretory process is discussed within the framework of an analytical approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号