首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract The β-ketothiolase gene ( phaA ) and acetoacetyl-CoA reductase gene ( phaB ) were isolated from Paracoccus denitrificans . Nucleotide sequence analysis showed that they encoded proteins of 391 amino acids with a molecular mass of 40744 Da and of 242 amino acids with a molecular mass of 25614 Da, respectively. The predicted gene products exhibited high amino acid identities with those from other bacteria: 64.4–74.0% for the phaA gene product and 47.6–80.6% for the phaB gene product, respectively. Both genes were co-transcribed in a recombinant Escherichia coli . In addition, promoter activity was detected upstream of the phaA gene. Hence, the two genes are organized as an operon, phaA - phaB , in P. denitrificans . NADH was preferred to NADPH as a cofactor of acetoacetyl-CoA reductase.  相似文献   

2.
R Tuli  R Fisher  R Haselkorn 《Gene》1982,19(1):109-116
Regulation of the synthesis of glutamine synthetase and of the arginine and glutamine transport systems (Ntr phenotype) in Salmonella have been shown to require two regulatory genes on the C-terminal side of the glnA gene (McFarland et al., 1981). We have cloned a HindIII-EcoRI DNA fragment from Escherichia coli coding for analogous properties with respect to the Ntr phenotype in E. coli. A plasmid containing this E. coli DNA fragment joined to another fragment carrying a cyanobacterial glnA gene (but no functional regulatory genes) was introduced into a Klebsiella pneumoniae mutant with a Gln-Ntr- phenotype, i.e., which could not derepress nitrogenase. The cyanobacterial gene made the Klebsiella strain Gln+ and the E. coli DNA fragment made the strain Ntr+, including the ability to derepress nitrogenase fully. Thus the products of the glnA-linked ntr genes of E. coli can regulate expression of the Ntr-dependent genes of Klebsiella.  相似文献   

3.
The pullulanase gene (pul) of Klebsiella aerogenes was cloned into a pBR322 vector in Escherichia coli. Deletion analysis of the recombinant plasmid showed that the pul coding sequence, probably with the regulator gene, was located entirely within a 4.2-kilobase segment derived from the chromosomal DNA of K. aerogenes. E. coli cells carrying the recombinant plasmids produced about three- to sevenfold more pullulanase than did the wild-type strain of K. aerogenes W70. When the cloned cells of E. coli were grown with pullulan or maltose, most pullulanase was produced intracellularly, whereas K. aerogenes produced pullulanase extracellularly. Transfer of the plasmid containing the pul gene into K. aerogenes W70 resulted in about a 20- to 40-fold increase in total production of pullulanase, and the intracellular enzyme level was about 100- to 150-fold higher than that of the parent strain W70. The high level of pullulanase activity in K. aerogenes cells carrying the recombinant plasmid was maintained for at least 2 weeks.  相似文献   

4.
A series of six expression vectors, pXM184Lac.A, B, C, pXM184Z.A, B, C, based on the low copy plasmid pACYC184 that allow for expression of proteins fused to beta-galactosidase in Escherichia coli is described. A level of 50,000 units of beta-galactosidase is routinely observed and is easily identifiable on protein gels. This paper also reports the tight regulation of expression of the Trc promoter in these vectors using the LacIq repressor.  相似文献   

5.
AIMS: Among 365 Escherichia coli isolated in 2003, 31 cefotaxime-resistant isolates were obtained from clinical specimens taken from adults hospitalized in Busan, Korea. Six extended-spectrum beta-lactamase (ESBL)-producing isolates were investigated further to determine the mechanism of resistance. METHODS AND RESULTS: These isolates were analysed by antibiotic susceptibility testing, pI determination, plasmid profiles, transconjugation test, PCR-restriction fragment length polymorphism (RFLP), enterobacterial repetitive consensus (ERIC)-PCR and DNA sequencing. All six of these isolates were found to contain the CTX-M-type ESBL genes. Five clinical isolates and their transconjugants produced CTX-M-3. One clinical isolate (K17391) and its transconjugant (trcK17391) produced CTX-M-15. Five clinical isolates also produced another TEM-1. One clinical isolate (K12776) also contained another TEM-52. CTX-M-3 ESBL gene was responsible for the resistance to piperacillin, cephalothin, cefotaxime, cefepime and aztreonam. CTX-M-15 or TEM-52 was especially responsible for the resistance to ceftazidime. CONCLUSIONS: These results appear to represent the in vivo evolution of CTX-M-type beta-lactamase genes (bla(CTX-M-3) --> bla(CTX-M-15)) under the selective pressure of antimicrobial therapy (especially ceftazidime). PCR-RFLP is a reliable method to discriminate CTX-M-15 gene from CTX-M-3 gene. ERIC-PCR analysis revealed that dissemination of CTX-M-3 was not due to a clonal outbreak of a resistant strain but to the intra-species spread of resistance to piperacillin, cephalothin, cefotaxime, cefepime and aztreonam in Korea. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of the occurrence of CTX-M-1 cluster ESBLs in Korea. A more comprehensive survey of these ESBL types from Korea is urgently needed because of the in vivo evolution of CTX-M-15 from CTX-M-3. The emergence of these CTX-M-type ESBLs suggests that diagnostic laboratories should screen for ESBLs with ceftazidime as well as cefotaxime; they should still perform clavulanate synergy tests on resistant isolates.  相似文献   

6.
7.
Ammonia-nitrogen-limited continuous cultures of Escherichia coli and Klebsiella aerogenes contain induced levels of glutamine synthetase that is deadenylyated (i.e., fully active). In the presence of excess ammonia or glutamate in glucose-limited cultures of E. coli, glutamine synthetase is repressed and adenylylated (inactive). The average state of adenylylation (n) is a linear function of the specific growth rate. At low specific growth rates, glutamine synthetase is adenylylated; as the specific growth rate increases, n decreases, approaching 0 to 2 at rapid growth rates. The average state of adenylylation correlates well with the intracellular concentrations and ratios of alpha-ketoglutarate and glutamine, which are key effectors in the adenylylation-deadenylylation systems. E. coli and K. aerogenes differ markedly in their growth yields, growth rates, and enzymatic composition during nitrogen limitation. The data suggest that, unlike K. aerogenes, E. coli W uses glutamate dehydrogenase to incorporate ammonia during nitrogen limitation. In E. coli, glutamate dehydrogenase is progressively induced during nitrogen limitation when mu (growth rate) approaches mumax. In contrast, in K. aerogenes glutamate dehydrogenase is repressed during nitrogen limitation, whereas glutamate synthase, an alternative supplier of glutamate to the cell, is induced. Data are presented that support the regulatory schemes proposed for the control of glutamine synthetase activity by induction-repression phenomena and adenylylation-deadenylylation reaction. We propose that the intracellular ratio of alpha-ketoglutarate to glutamine may be the most important physiological parameter in determining the activity of glutamine synthetase.  相似文献   

8.
The pullulanase gene (pul) of Klebsiella aerogenes was cloned into a pBR322 vector in Escherichia coli. Deletion analysis of the recombinant plasmid showed that the pul coding sequence, probably with the regulator gene, was located entirely within a 4.2-kilobase segment derived from the chromosomal DNA of K. aerogenes. E. coli cells carrying the recombinant plasmids produced about three- to sevenfold more pullulanase than did the wild-type strain of K. aerogenes W70. When the cloned cells of E. coli were grown with pullulan or maltose, most pullulanase was produced intracellularly, whereas K. aerogenes produced pullulanase extracellularly. Transfer of the plasmid containing the pul gene into K. aerogenes W70 resulted in about a 20- to 40-fold increase in total production of pullulanase, and the intracellular enzyme level was about 100- to 150-fold higher than that of the parent strain W70. The high level of pullulanase activity in K. aerogenes cells carrying the recombinant plasmid was maintained for at least 2 weeks.  相似文献   

9.
The normal hut (histidine utilization) operons, as well as those with mutations affecting the regulation of their expression, of Salmonella typhimurium were introduced on an F' episome into cells of S. typhimurium and Klebsiella aerogenes whose chromosomal hut genes had been deleted and into cells of Escherichia coli, whose chromosome does not carry hut genes. The episomal hut operons respond in a manner very similar to induction and catabolite repression in all three organisms. The small differences found reflect both different abilities to take up inducers from the medium and different degrees of catabolite repression exerted by glucose.  相似文献   

10.
11.
The yellow pigments of Erwinia herbicola Eho 10 and of a transformed Escherichia coli LE392 pPL376 have been identified as carotenoids. HPLC separation, spectra and in some cases mass spectroscopy demonstrated the presence of phytoene (15-cis isomer), beta-carotene (all-trans, 9-cis and 15-cis), beta-cryptoxanthin ( = 3-hydroxy beta-carotene), zeaxanthin (3,3'-dihydroxy beta-carotene) and corresponding carotene glycosides. In addition, lycopene and gamma-carotene accumulated in the presence of the inhibitor 2-(4-chlorophenylthio)-triethylamine.HCl. Carotenoid content in the transformed E. coli was two-fold higher than in E. herbicola. The pattern of the carotenoids was similar in the two organisms. Inactivation of the katF gene in E. coli resulted in an 85% lowering of carotenoid formation, as did the addition of 0.5% glucose to the medium. Suppression of carotenoid formation by inactivation of the katF gene lowered, but did not abolish, the protection offered by carotenoids against inactivation by alpha-terthienyl plus near-ultraviolet light (320-400 nm).  相似文献   

12.
Genes can be classified as essential or nonessential based on their indispensability for a living organism. Previous researches have suggested that essential genes evolve more slowly than nonessential genes and the impact of gene dispensability on a gene’s evolutionary rate is not as strong as expected. However, findings have not been consistent and evidence is controversial regarding the relationship between the gene indispensability and the rate of gene evolution. Understanding how different classes of genes evolve is essential for a full understanding of evolutionary biology, and may have medical relevance in the design of new antibacterial agents. We therefore performed an investigation into the properties of essential and nonessential genes. Analysis of evolutionary conservation, protein length distribution and amino acid usage between essential and nonessential genes in Escherichia coli K12 demonstrated that essential genes are relatively preserved throughout the bacterial kingdom when compared to nonessential genes. Furthermore, results show that essential genes, compared to nonessential genes, have a significantly higher proportion of large (>534 amino acids) and small proteins (<139 amino acids) relative to medium-sized proteins. The pattern of amino acids usage shows a similar trend for essential and nonessential genes, although some notable exceptions are observed. These findings help to clarify our understanding of the evolutionary mechanisms of essential and nonessential genes, relevant to the study of mutagenesis and possibly allowing prediction of gene properties in other poorly understood organisms.  相似文献   

13.
The genus Tripterygion is the unique genus of the family Tripterygiidae in the Mediterranean Sea and in the northeastern Atlantic coast. Three species and four subspecies had been described: Tripterygion tripteronotus and Tripterygion melanurus (T. m. melanurus and T. m. minor) are endemic of the Mediterranean, and T. delaisi (T. d. delaisi and T. d. xanthosoma) is found in both areas. We used five different genes (12S, 16S, tRNA-val, COI, and 18S) to elucidate their taxonomy status and their phylogenetic relationships. We employed different phylogenetic reconstructions that yielded different tree topologies. This discrepancy may be caused by the speciation process making difficult the reconstruction of a highly supported tree. All pair comparisons between these three species showed the same genetic divergence indicating that the speciation process could have been resolved by a rapid radiation event after the Messinian Salinity Crisis (5.2Mya) leading to a trichotomy. Our molecular data revealed two clearly supported clades within T. tripteronotus, whose divergence largely exceeded that found between other fish species, consequently these two groups should be considered two cryptic species diverging 2.75-3.32Mya along the Pliocene glaciations. On the contrary, none of the genes studied supported the existence of two subspecies of T. melanurus. Finally, the two subspecies of T. delaisi were validated and probably originated during the Quaternary climatic fluctuations (1.10-1.23Mya), however their distribution ranges should be redefined.  相似文献   

14.
We conducted a survey of extended-spectrum beta-lactamases (ESBLs) among 16805 Escherichia coli and 9794 Klebsiella pneumoniae clinical isolates recovered from 196 separate medical institutions during the period January 1997 to January 1998. Using the criteria for minimal inhibitory concentrations (MICs) of oxyimino-cephalosporins of >/=8 microg ml(-1) and confirmation by double-disk test, we detected 15 E. coli and 34 K. pneumoniae isolates producing ESBLs. Genotypes of ESBLs determined by PCR with type-specific primers included one TEM-derived and 24 SHV-derived ESBLs, in addition to 24 Toho-1-type ESBLs, one of the major types of ESBLs reported in Japan. Nucleotide sequence analysis of SHV-specific PCR products revealed that SHV-12 was the dominant type of SHV-derived ESBL. In addition, we also identified TEM-26 and SHV-2. This is the first report characterizing TEM- and SHV-derived ESBLs in Japan.  相似文献   

15.
16.
The genes for cellobiose utilization are normally cryptic in Escherichia coli. The cellobiose system was used as a model to understand the process by which silent genes are maintained in microbial populations. Previously reported was (1) the isolation of a mutant strain that expresses the cellobiose-utilization (Cel) genes and (2) that expression of those genes allows utilization of three beta- glucoside sugars: cellobiose, arbutin, and salicin. The Cel gene cluster has now been cloned from that mutant strain. In the course of locating the Cel genes within the cloned DNA segment, it was discovered that inactivation of the Cel-encoded hydrolase rendered the host strain sensitive to all three beta-glucosides as potent inhibitors. This sensitivity arises from the accumulation of the phosphorylated beta- glucosides. Because even the fully active genes conferred some degree of beta-glucoside sensitivity, the effects of cellobiose on a series of five Cel+ mutants of independent origin were investigated. Although each of those strains utilizes cellobiose as a sole carbon and energy source, cellobiose also acts as a potent inhibitor that reduces the growth rate on glycerol 2.5-16.5-fold. On the other hand, wild-type strains that cannot utilize cellobiose are not inhibited. The observation that the same compound can serve either as a nutrient or as an inhibitor suggests that, under most conditions in which cellobiose will be present together with other resources, there is a strong selective advantage to having the cryptic (Cel0) allele. In those environments in which cellobiose is the sole, or the best, resource, mutants that express the genes (Cel+) will have a strong selective advantage. It is suggested that temporal alternation between these two conditions is a major factor in the maintenance of these genes in E. coli populations. This alternation of environments and fitnesses was predicted by the model for cryptic-gene maintenance that was previously published.   相似文献   

17.
A new cryptic plasmid from a multi-resistant, multi-plasmid clinical strain of Escherichia coli has been isolated. The sequence of the 4072-base-pair pIGWZ12 (GenBank Accession No. DQ311641) was determined and analyzed. Two open-reading frames that code for proteins involved in plasmid mobilization and initiation of replication were identified. The putative origin of replication possesses all characteristic features of the theta mechanism for replicating plasmids. pIGWZ12 is stably maintained without selective pressure in bacterial cultures (for up to 80 generations), making it a good candidate for engineering a new cloning vector.  相似文献   

18.
Thirteen clinical isolates of Escherichia coli resistant to ceftazidime that possessed an AmpC and other (beta-lactamases were identified. The effectiveness of different formulations of piperacillin/tazobactam to other beta-lactams was compared. Antibiotic susceptibility testing, polymerase chain reaction, amplification of blaTEM, blaSHV and blaAmpC, and enzyme-linked immunosorbent assays to identify AmpC beta-lactamases were performed. Hydrolysis rates were obtained and residual enzymatic activity was determined. Cefepime and ertapenem were more active than piperacillin/tazobactam. In contrast, increasing the relative proportion of tazobactam improved susceptibility testing. Twenty micromolar tazobactam inhibited total beta-lactamase activity (as measured by nitrocefin hydrolysis rates) by greater than 75% against all isolates tested: in 11 of 13 E. coli isolates, total beta-lactamase activity was inhibited by 90%. The observed differences between MIC determinations and susceptibility to enzymatic inactivation by tazobactam against E. coli containing AmpC and other -lactamases may be due to the final tazobactam concentration achieved in the periplasmic space. Factors determining this are critical considerations in assessing beta-lactamase inhibitor potency.  相似文献   

19.
Although there is increasing evidence that eukaryotic gene order is not always random, there is no evidence that putatively favourable gene arrangements are preserved by selection more than expected by chance. In yeast (Saccharomyces cerevisiae), for example, co-expressed genes tend to be linked, but whether such gene pairs tend to remain linked more often than expected under null neutral expectations is not known. We show using gene pairs in the S. cerevisiaeCandida albicans comparison that highly co-expressed gene pairs are conserved as pairs at about twice the average rate. However, co-expressed genes also tend to be in close physical proximity and, as expected from a null neutral model, genes (be they co-expressed or not) that are physically close together tend to be retained more often. This physical proximity, however, only accounts for a small proportion of the enhanced degree of conservation of co-expressed gene pairs. These results demonstrate that purely neutralist models of gene order evolution are not realistic.  相似文献   

20.
We have cloned genes from Klebsiella pneumoniae which are required for pyrroloquinoline quinone (PQQ) biosynthesis. The cloned 6.7 kb fragment can complement several chromosomal pqq mutants. Escherichia coli strains are unable to synthesize PQQ but E. coli strains containing the cloned 6.7 kb K. pneumoniae fragment can synthesize PQQ in large amounts and E. coli pts mutants can be complemented on minimal glucose medium by this clone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号