首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Approximately 400 million allergic patients are sensitized against group 1 grass pollen allergens, a family of highly cross-reactive allergens present in all grass species. We report the eukaryotic expression of the group 1 allergen from Timothy grass, Phl p 1, in baculovirus-infected insect cells. Domain elucidation by limited proteolysis and mass spectrometry of the purified recombinant glycoprotein indicates that the C-terminal 40% of Phl p 1, a major IgE-reactive segment, represents a stable domain. This domain also exhibits a significant sequence identity of 43% with the family of immunoglobulin domain-like group 2/3 grass pollen allergens. Circular dichroism analysis demonstrates that insect cell-expressed rPhl p 1 is a folded species with significant secondary structure. This material is well behaved and is adequate for the growth of crystals that diffract to 2.9 A resolution. The importance of conformational epitopes for IgE recognition of Phl p 1 is demonstrated by the superior IgE recognition of insect-cell expressed Phl p 1 compared to Escherichia coli-expressed Phl p 1. Moreover, insect cell-expressed Phl p 1 induces potent histamine release and leads to strong up-regulation of CD203c in basophils from grass pollen allergic patients. Deglycosylated Phl p 1 frequently exhibits higher IgE binding capacity than the recombinant glycoprotein suggesting that rather the intact protein structure than carbohydrate moieties themselves are important for IgE recognition of Phl p 1. This study emphasizes the important contribution of conformational epitopes for the IgE recognition of respiratory allergens and provides a paradigmatic tool for the structural analysis of the IgE allergen interaction.  相似文献   

2.
Almost 500 million people worldwide suffer from Type I allergy, a genetically determined immunodisorder which is based on the production of IgE antibodies against per se harmless antigens (allergens). Due to their worldwide distribution and heavy pollen production, grasses represent a major allergen source for approximately 40% of allergic patients. We purified Phl p 4, a major timothy grass (Phleum pratense) pollen allergen with a molecular mass of 61.3 kDa and a pl of 9.6 to homogeneity. Circular dichroism spectroscopical analysis indicates that Phl p 4 contains a mixed alpha-helical/beta-pleated secondary structure and, unlike many other allergens, showed no reversible unfolding after thermal denaturation. We show that Phl p 4 is a major allergen which reacts with IgE antibodies of 75% of grass pollen allergic patients (n=150) and induces basophil histamine release as well as immediate type skin reactions in sensitized individuals. Phl p 4-specific IgE from three patients as well as two rabbit-anti Phl p 4 antisera cross-reacted with allergens present in pollen of trees, grasses, weeds as well as plant-derived food. Rabbit antibodies raised against Phl p 4 also inhibited the binding of allergic patients IgE to Phl p 4. Phl p 4 may thus be used for diagnosis and treatment of sensitized allergic patients.  相似文献   

3.
Worldwide more than 200 million individuals are allergic to group 1 grass pollen allergens. We have used the major timothy grass pollen allergen Phl p 1, which cross-reacts with most grass-, corn-, and monocot-derived group 1 allergens to develop a generally applicable strategy for the production of hypoallergenic allergy vaccines. On the basis of the experimentally determined B cell epitopes of Phl p 1, we have synthesized five synthetic peptides. These peptides are derived from the major Phl p 1 IgE epitopes and were between 28-32 amino acids long. We demonstrate by nuclear magnetic resonance that the peptides exhibit no secondary and tertiary structure and accordingly failed to bind IgE antibodies from grass pollen allergic patients. The five peptides, as well as an equimolar mixture thereof, lacked allergenic activity as demonstrated by basophil histamine release and skin test experiments in grass pollen allergic patients. When used as immunogens in mice and rabbits, the peptides induced protective IgG antibodies, which recognized the complete Phl p 1 wild-type allergen and group 1 allergens from other grass species. Moreover, peptide-induced antibodies inhibited the binding of grass pollen allergic patients IgE antibodies to the wild-type allergen. We thus demonstrate that synthetic hypoallergenic peptides derived from B cell epitopes of major allergens represent safe vaccine candidates for the treatment of IgE- mediated allergies.  相似文献   

4.
Grass pollen belong to the most important allergen sources involved in the elicitation of allergic asthma. We have isolated cDNAs coding for Bermuda grass (Cynodon dactylon) and timothy grass (Phleum pratense) pollen allergens, belonging to a family of pectin-degrading enzymes (i.e., polygalacturonases). The corresponding allergens, termed Cyn d 13 and Phl p 13, represent glycoproteins of approximately 42 kDa and isoelectric points of 7.5. rPhl p 13 was expressed in Escherichia coli and purified to homogeneity. Immunogold electron microscopy using rabbit anti-rPhl p 13 Abs demonstrated that in dry pollen group 13, allergens represent primarily intracellular proteins, whereas exposure of pollen to rainwater caused a massive release of cytoplasmic material containing submicronic particles of respirable size, which were coated with group 13 allergens. The latter may explain respiratory sensitization to group 13 allergens and represents a possible pathomechanism in the induction of asthma attacks after heavy rainfalls. rPhl p 13 was recognized by 36% of grass pollen allergic patients, showed IgE binding capacity comparable to natural Phl p 13, and induced specific and dose-dependent basophil histamine release. Epitope mapping studies localized major IgE epitopes to the C terminus of the molecule outside the highly conserved functional polygalacturonase domains. The latter result explains why rPhl p 13 contains grass pollen-specific IgE epitopes and may be used to diagnose genuine sensitization to grass pollen. Our finding that rabbit anti-rPhl p 13 Abs blocked patients' IgE binding to the allergen suggests that rPhl p 13 may be used for immunotherapy of sensitized patients.  相似文献   

5.
Group 1 grass pollen allergens are recognized by IgE antibodies of almost 40% of allergic individuals and therefore belong to the most important elicitors of Type I allergy worldwide. We have previously isolated the cDNA coding for the group 1 allergen from timothy grass, Phl p 1, and demonstrated that recombinant Phl p 1 contains most of the B cell as well as T cell epitopes of group 1 allergens from a variety of grass and corn species. Here we determine continuous B cell epitopes of Phl p 1 by gene fragmentation. IgE antibodies of grass pollen allergic patients identified five continuous epitope-containing areas that on an average bound 40% of Phl p 1-specific IgE antibodies and were stably recognized in the course of disease. In contrast to untreated patients, patients undergoing grass pollen immunotherapy started to mount IgG(4) antibodies to the recombinant IgE-defined fragments in the course of immunotherapy. The protective role of these IgG(4) antibodies is demonstrated by observations that 1) increases in rPhl p 1 fragment-specific IgG(4) were in parallel with decreases in Phl p 1-specific IgE, and 2) preincubation of rPhl p 1 with patients sera containing rPhl p 1 fragment-specific IgG(4) blocked histamine release from basophils of an untreated grass pollen allergic patient. We propose to use recombinant Phl p 1 fragments for active immunotherapy in order to induce protective IgG responses against IgE epitopes in grass pollen allergic patients. This concept may be applied for the development of allergy vaccines whenever the primary sequence or structure of an allergen is available.  相似文献   

6.
Due to the wide distribution and heavy pollen production of grasses, approximately 50% of allergic patients are sensitized against grass pollen allergens. cDNAs coding for two isoforms and four fragments of a major timothy grass (Phleum pratense) pollen allergen, Phl p 6, were isolated by IgE immunoscreening from a pollen expression cDNA library. Recombinant Phl p 6 (rPhl p 6), an acidic protein of 11.8 kDa, was purified to homogeneity as assessed by mass spectrometry and exhibited almost exclusive alpha-helical secondary structure as determined by circular dichroism spectroscopy. Phl p 6 reacted with serum IgE from 75% of grass pollen-allergic patients (n = 171). IgE binding experiments with rPhl p 6 fragments indicated that the N terminus of the allergen is required for IgE recognition. Purified rPhl p 6 elicited dose-dependent basophil histamine release and immediate type skin reactions in patients allergic to grass pollen. A rabbit antiserum raised against purified rPhl p 6 identified it as a pollen-specific protein that, by immunogold electron microscopy, was localized on the polysaccharide-containing wall-precursor bodies (P-particles). The association of Phl p 6 with P-particles may facilitate its intrusion into the deeper airways and thus be responsible for the high prevalence of IgE recognition of Phl p 6. Recombinant native-like Phl p 6 can be used for in vitro as well as in vivo diagnoses of grass pollen allergy, whereas N-terminal deletion mutants with reduced IgE binding capacity may represent candidates for immunotherapy of grass pollen allergy with a low risk of anaphylactic side effects.  相似文献   

7.

Background

Grass pollen, in particular from Lolium multiflorum is a major allergen source in temperate climate zones of Southern Brazil. The IgE sensitization profile of Brazilian grass pollen allergic patients to individual allergen molecules has not been analyzed yet.

Objective

To analyze the IgE sensitization profile of a Brazilian grass pollen allergic population using individual allergen molecules.

Methods

We analyzed sera from 78 grass pollen allergic patients for the presence of IgE antibodies specific for 103 purified micro-arrayed natural and recombinant allergens by chip technology. IgE-ELISA inhibition experiments with Lolium multiflorum, Phleum pratense extracts and a recombinant fusion protein consisting of Phl p 1, Phl p 2, Phl p 5 and Phl p 6 were performed to investigate cross-reactivities.

Results

Within the Brazilian grass pollen allergic patients, the most frequently recognized allergens were Phl p 1 (95%), Phl p 5 (82%), Phl p 2 (76%) followed by Phl p 4 (64%), Phl p 6 (45%), Phl p 11 (18%) and Phl p 12 (18%). Most patients were sensitized only to grass pollen allergens but not to allergens from other sources. A high degree of IgE cross-reactivity between Phleum pratense, Lolium multiflorum and the recombinant timothy grass fusion protein was found.

Conclusions

Component-resolved analysis of sera from Brazilian grass pollen allergic patients reveals an IgE recognition profile compatible with a typical Pooideae sensitization. The high degree of cross-reactivity between Phleum pratense and Lolium multiflorum allergens suggests that diagnosis and immunotherapy can be achieved with timothy grass pollen allergens in the studied population.  相似文献   

8.
Primary structures of the N-glycans of two major pollen allergens (Lol p 11 and Ole e 1) and a major peanut allergen (Ara h 1) were determined. Ole e 1 and Ara h 1 carried high mannose and complex N-glycans, whereas Lol p 11 carried only the complex. The complex structures all had a beta(1,2)-xylose linked to the core mannose. Substitution of the proximal N-acetylglucosamine with an alpha(1, 3)-fucose was observed on Lol p 11 and a minor fraction of Ole e 1 but not on Ara h 1. To elucidate the structural basis for IgE recognition of plant N-glycans, radioallergosorbent test analysis with protease digests of the three allergens and a panel of glycoproteins with known N-glycan structures was performed. It was demonstrated that both alpha(1,3)-fucose and beta(1,2)-xylose are involved in IgE binding. Surprisingly, xylose-specific IgE antibodies that bound to Lol p 11 and bromelain did not recognize closely related xylose-containing structures on horseradish peroxidase, phytohemeagglutinin, Ole e 1, and Ara h 1. On Lol p 11 and bromelain, the core beta-mannose is substituted with just an alpha(1,6)-mannose. On the other xylose-containing N-glycans, an additional alpha(1,3)-mannose is present. These observations indicate that IgE binding to xylose is sterically hampered by the presence of an alpha(1,3)-antenna.  相似文献   

9.
Type I allergy, an immunodisorder that affects almost 20% of the population worldwide, is based on the immunoglobulin E (IgE) recognition of per se innocuous antigens (allergens). Pollen from wind-pollinated plants belong to the most potent allergen sources. We report the isolation of a cDNA coding for a 8.6 kDa two EF-hand calcium binding allergen, Phl p 7, from a timothy grass (Phleum pratense) pollen expression cDNA library, using serum IgE from a grass pollen allergic patient. Sequence analysis identified Phl p 7 as a member of a recently discovered subfamily of pollen-specific calcium binding proteins. Recombinant Phl p 7 was expressed in Escherichia coli and purified to homogeneity as determined by mass spectroscopy. Approximately 10% of pollen allergic patients displayed IgE reactivity to rPhl p 7 and Phl p 7-homologous allergens present in pollens of monocotyledonic and dicotyledonic plants. Circular dichroism analysis of the calcium-bound and apo-rPhl p 7 indicated that differences in IgE recognition may be due to calcium-induced changes in the protein conformation. The fact that patients mount IgE antibodies against different protein conformations is interpreted as a footprint of a preferential sensitization against either form. The biological activity of rPhl p 7 was demonstrated by its ability to induce basophil histamine release and immediate type skin reactions in sensitized individuals. In conclusion, IgE binding to Phl p 7 represents an example for the conformation-dependent IgE recognition of an allergen. Recombinant Phl p 7 may be used for diagnosis and perhaps treatment of a group of patients who suffer from allergy to pollens of many unrelated plant species.  相似文献   

10.
Cross-linking of cell-bound IgE on mast cells or basophils by polyvalent antigens causes the release of histamine and other mediators of the allergic response which then lead to the development of allergic symptoms. In this event not only peptide epitopes, but also carbohydrates can act as cross-linking elements. Since peptide epitopes of allergens are subject of most published studies, this review is focused on glycosidic epitopes. The current knowledge of the structures and possible epitopes of oligosaccharides linked to allergenic glycoproteins is briefly reviewed, showing that complex plant N-glycans containing 1,3 fucose and 1,2 xylose are most frequently involved in the structures of IgE epitopes. In own studies a prevalence of up to 29% anti-glycan IgE was determined among pollen-allergic patients. The clinical relevance of these carbohydrate specific IgE antibodies is still a matter of controversial discussions.  相似文献   

11.
Hev b 4 is a heavily glycosylated latex allergen with seven attached N-glycans, comprising of both oligomannose and complex type structures. Treatment with a mixture of N-glycosidase A and N-glycosidase F resulted in lowering Hev b 4 protein on SDS-gel from 53 to 55kDa to circa 40kDa, this being comparable to the 38.53kDa mass predicted by its cDNA. In Western-immunoblots, the enzymatically deglycosylated Hev b 4 showed negligible binding to IgE from latex allergic patients; the results indicated that IgE essentially binds to Hev b 4 via its N-glycan moiety. Structural modelling of the Hev b 4 was carried out based on the template protein and carbohydrate crystal coordinates of rhamnogalacturonan acetylesterase (PDB ID 1DEO). We managed to link four N-glycan structures on to the Hev b 4 model; the glycans were scattered over the surface of the model. The structural and functional features of Hev b 4 could prove useful to elucidate its exposed epitopes which are important for IgE binding.  相似文献   

12.
糖蛋白是一种含有寡糖链的蛋白质,糖链与蛋白质之间以共价键相连。N-糖蛋白为常见过敏原之一,主要来源于食物、吸入物、昆虫毒素等,能够引起过敏反应。N-糖蛋白过敏原的N-糖链结构影响过敏原与IgE的结合,影响抗原提呈细胞(APC)对过敏原的识别和提呈。本文在介绍与过敏相关的N-糖蛋白、常见N-糖蛋白过敏原的N-糖链结构及与过敏相关的糖基化酶的基础上,进一步分析过敏原N-糖链影响过敏的机制,为临床预防与治疗过敏性疾病提供新的思路。  相似文献   

13.
Two EF-hand calcium-binding allergens (polcalcins) occur in the pollen of a wide variety of unrelated plants as highly cross-reactive allergenic molecules. We report the expression, purification, immunological characterization, and the 1.75-A crystal structure of recombinant Che a 3 (rChe a 3), the polcalcin from the weed Chenopodium album. The three-dimensional structure of rChe a 3 resembles an alpha-helical fold that is essentially identical with that of the two EF-hand allergens from birch pollen, Bet v 4, and timothy grass pollen, Phl p 7. The extensive cross-reactivity between Che a 3 and Phl p 7 is demonstrated by competition experiments with IgE Abs from allergic patients as well as specific Ab probes. Amino acid residues that are conserved for the two EF-hand allergen family were identified in multiple sequence alignments of polcalcins from 15 different plants. Next, the three-dimensional structures of rChe a 3, rPhl p 7, and rBet v 4 were used to identify conserved amino acids with high surface exposition to visualize surface patches as potential targets for the polyclonal IgE Ab response of allergic patients. The essentially identical three-dimensional structures of rChe a 3, rPhl p 7, and rBet v 4 explain the extensive cross-reactivity of allergic patients IgE Abs with two EF-hand allergens from unrelated plants. In addition, analyzing the three-dimensional structures of cross-reactive Ags for conserved and surface exposed amino acids may be a first approach to mapping the conformational epitopes on disease-related Ags that are recognized by polyclonal patient Abs.  相似文献   

14.
The grass pollen allergen, Phl p 7, belongs to a family of highly cross-reactive calcium-binding pollen allergens. Because Phl p 7 contains most of the disease-eliciting epitopes of pollen-derived calcium-binding allergens, hypoallergenic variants were engineered according to the x-ray crystal structure of Phl p 7 for allergy vaccination. In three recombinant variants, amino acids essential for calcium binding were mutated, and two peptides comprising the N- and C-terminal half were obtained by synthetic peptide chemistry. As determined by circular dichroism analysis and size exclusion chromatography coupled to mass spectrometry, recombinant mutants showed altered structural fold and lacked calcium-binding capacity, whereas the two synthetic peptides had completely lost their structural fold. Allergic patients' IgE Ab binding was strongest reduced to the variant containing two mutations in each of the two calcium-binding sites and to the peptides. Basophil histamine release and skin test experiments in allergic patients identified the peptides as the vaccine candidates with lowest allergenic activity. Immunization of rabbits with the peptides induced IgG Abs that blocked allergic patients' IgE binding to Phl p 7 and inhibited allergen-induced basophil degranulation. Our results indicate that disruption of an allergen's three-dimensional structure represents a general strategy for the generation of hypoallergenic allergy vaccines, and demonstrate the importance of allergen-specific IgG Abs for the inhibition of immediate allergic symptoms.  相似文献   

15.
Profilins are highly cross-reactive allergens in pollens and plant food. In a paradigmatic approach, the cDNA coding for timothy grass pollen profilin, Phl p 12, was used as a template to develop a new strategy for engineering an allergy vaccine with low IgE reactivity. Non-IgE-reactive fragments of Phl p 12 were identified by synthetic peptide chemistry and restructured (rs) as a new molecule, Phl p 12-rs. It comprised the C terminus of Phl p 12 at its N terminus and the Phl p 12 N terminus at its C terminus. Phl p 12-rs was expressed in Escherichia coli and purified to homogeneity. Determination of secondary structure by circular dichroism indicated that the restructuring process had reduced the IgE-reactive alpha-helical contents of the protein but retained its beta-sheet conformation. Phl p 12-rs exhibited reduced IgE binding capacity and allergenic activity but preserved T cell reactivity in allergic patients. IgG Abs induced by immunization of mice and rabbits with Phl p 12-rs cross-reacted with pollen and food-derived profilins. Recombinant Phl p 12-rs, rPhl p 12-rs, induced less reaginic IgE to the wild-type allergen than rPhl p 12. However, the rPhl p 12-rs-induced IgGs inhibited allergic patients' IgE Ab binding to profilins to a similar degree as those induced by immunization with the wild type. Phl p 12-rs specific IgG inhibited profilin-induced basophil degranulation. In conclusion, a restructured recombinant vaccine was developed for the treatment of profilin-allergic patients. The strategy of tail-to-head reassembly of hypoallergenic allergen fragments within one molecule represents a generally applicable strategy for the generation of allergy vaccines.  相似文献   

16.
Grass pollen is one of the most important vectors of aeroallergens. Under atmospheric conditions, pollen grains can release pollen cytoplasmic granules (PCGs). The allergens associated with these intrinsic subfractions induce, in laboratory animals as well as in asthmatic patients, allergic and inflammatory responses. The objectives of this study were to characterize the PCGs' intrinsic allergens and to compare them with those of pollen grains. The water-soluble proteins were extracted from pollen grains and their PCGs. IgE-binding proteins were analyzed and characterized through an allergomic strategy: 1- and 2-dimensional gel electrophoresis (1-DE and 2-DE), immunoblotting, using grass-pollen-sensitized patient sera, mass spectrometry (MS) analysis, and database searching. Several of the allergens listed in the IUIS nomenclature, Phl p 1, 4, 5, 6, and 12, were detected in pollen and PCG extracts, whereas Phl p 11 was found only in PCGs, and Phl p 2 as well as Phl p 13 were found only in pollen extract. Some other allergens not listed in the IUIS nomenclature were also characterized in both pollen and PCG extracts. Since the major grass pollen allergens were found in PCGs and because of their small size, these submicronic particles should be considered as very potent sensitizing and challenging respirable vectors of allergens.  相似文献   

17.
Proteins or glycoproteins bearing epitopes for human IgE antibodies are designated as allergens causing type I allergic diseases. In this study, recombinant allergens were compared with their natural counterparts either as part of extracts or as purified molecules with respect to several biochemical and immunological properties.Natural and recombinant Bet v 1 and Phl p 1, major allergens of birch pollen extracts and Phleum pratense pollen extracts, were analyzed by SDS-PAGE, immunoblotting, EAST inhibition and size exclusion chromatography (SEC).Differences of IgE-binding capacities between recombinant Bet v 1 as well as recombinant Phl p 1 variants were detected by EAST inhibition. These results were confirmed by size exclusion chromatography in that the recombinant proteins showed differences of their elution volumes being equivalent to the natural molecules only with the more active recombinant form. In contrast, SDS-PAGE and immunoblot analysis resulted in divergent characteristics, as either migrations of the variants were similar or no differences of IgE binding were detectable.In conclusion, size exclusion chromatography is the method of choice for quality control of well characterized recombinant allergens, comprising control of purity, protein content and conformation.  相似文献   

18.
On the basis of IgE epitope mapping data, we have produced three allergen fragments comprising aa 1-33, 1-57, and 31-110 of the major timothy grass pollen allergen Phl p 6 aa 1-110 by expression in Escherichia coli and chemical synthesis. Circular dichroism analysis showed that the purified fragments lack the typical alpha-helical fold of the complete allergen. Superposition of the sequences of the fragments onto the three-dimensional allergen structure indicated that the removal of only one of the four helices had led to the destabilization of the alpha helical structure of Phl p 6. The lack of structural fold was accompanied by a strong reduction of IgE reactivity and allergenic activity of the three fragments as determined by basophil histamine release in allergic patients. Each of the three Phl p 6 fragments adsorbed to CFA induced Phl p 6-specific IgG Abs in rabbits. However, immunization of mice with fragments adsorbed to an adjuvant allowed for human use (AluGel-S) showed that only the Phl p 6 aa 31-110 induced Phl p 6-specific IgG Abs. Anti-Phl p 6 IgG Abs induced by vaccination with Phl p 6 aa 31-110 inhibited patients' IgE reactivity to the wild-type allergen as well as Phl p 6-induced basophil degranulation. Our results are of importance for the design of hypoallergenic allergy vaccines. They show that it has to be demonstrated that the hypoallergenic derivative induces a robust IgG response in a formulation that can be used in allergic patients.  相似文献   

19.
A Japanese cypress (Chamaecyparis obtusa) pollen allergen, Cha o 1, is one of the major allergens that cause allergic pollinosis in Japan. Although it has been found that Cha o 1 is glycosylated and that the amino acid sequence is highly homologous with that of Japanese cedar pollen allergen (Cry j 1), the structure of N-glycans linked to Cha o 1 remains to be determined. In this study, therefore, we analyzed the structures of the N-glycans of Cha o1. The N-glycans were liberated by hydrazinolysis from purified Cha o 1, and the resulting sugar chains were N-acetylated and pyridylaminated. The structures of pyridylaminated N-glycans were analyzed by a combination of exoglycosidase digestion, two dimensional (2D-) sugar chain mapping, and electrospray ionization mass spectrometry analysis. Structural analysis indicated that the major N-glycan structure of Cha o1 is GlcNAc2Man3Xyl1Fuc1GlcNAc2 (89%), and that high-mannose type structures (Man9GlcNAc2, Man7GlcNAc2) occur as minor components (11%).  相似文献   

20.
The recognition of conformational epitopes on respiratory allergens by IgE Abs is a key event in allergic inflammation. We report a molecular strategy for the conversion of allergens into vaccines with reduced allergenic activity, which is based on the reassembly of non-IgE-reactive fragments in the form of mosaic proteins. This evolution process is exemplified for timothy grass pollen-derived Phl p 2, a major allergen for more than 200 million allergic patients. In a first step, the allergen was disrupted into peptide fragments lacking IgE reactivity. cDNAs coding for these peptides were reassembled in altered order and expressed as a recombinant mosaic molecule. The mosaic molecule had lost the three-dimensional structure, the IgE reactivity, and allergenic activity of the wild-type allergen, but it induced high levels of allergen-specific IgG Abs upon immunization. These IgG Abs crossreacted with group 2 allergens from other grass species and inhibited allergic patients' IgE binding to the wild-type allergen. The mosaic strategy is a general strategy for the reduction of allergenic activity of protein allergens and can be used to convert harmful allergens into safe vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号