首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ERM proteins, ezrin, radixin, and moesin, act as linkers between the plasma membrane and actin cytoskeleton. They are involved in a variety of cellular functions, such as cell adhesion, migration, and the organization of cell surface structures, and are highly homologous, both in protein sequence and in functional activity, with merlin/schwannomin, a neurofibromatosis-2-associated tumor-suppressor protein. We report here the genomic structure and intron junction sequences of the human ezrin gene. Ezrin consists of 13 exons and spans approximately 24 kb genomic DNA. The coding parts of the exons range in size from 12 bp to 275 bp and the introns from 182 bp to 7 kb. The genomic structures of ezrin and moesin are highly conserved, suggesting their recent divergence. Radiation hybrid mapping has refined the location of ezrin to the interval between D6S442 and D6S281. Received: 1 June 1998 / Accepted: 25 August 1998  相似文献   

2.
Linkage analysis of the dominant distal myopathy we previously identified in a large Australian family demonstrated one significant linkage region located on chromosome 7 and encompassing 18.6 Mbp and 151 genes. The strongest candidate gene was FLNC because filamin C, the encoded protein, is muscle-specific and associated with myofibrillar myopathy. Sequencing of FLNC cDNA identified a c.752T>C (p.Met251Thr) mutation in the N-terminal actin-binding domain (ABD); this mutation segregated with the disease and was absent in 200 controls. We identified an Italian family with the same phenotype and found a c.577G>A (p.Ala193Thr) filamin C ABD mutation that segregated with the disease. Filamin C ABD mutations have not been described, although filamin A and filamin B ABD mutations cause multiple musculoskeletal disorders. The distal myopathy phenotype and muscle pathology in the two families differ from myofibrillar myopathies caused by filamin C rod and dimerization domain mutations because of the distinct involvement of hand muscles and lack of pathological protein aggregation. Thus, like the position of FLNA and B mutations, the position of the FLNC mutation determines disease phenotype. The two filamin C ABD mutations increase actin-binding affinity in a manner similar to filamin A and filamin B ABD mutations. Cell-culture expression of the c.752T>C (p.Met251)Thr mutant filamin C ABD demonstrated reduced nuclear localization as did mutant filamin A and filamin B ABDs. Expression of both filamin C ABD mutants as full-length proteins induced increased aggregation of filamin. We conclude filamin C ABD mutations cause a recognizable distal myopathy, most likely through increased actin affinity, similar to the pathological mechanism of filamin A and filamin B ABD mutations.  相似文献   

3.
4.
5.
6.
Myofibrillar myopathy (MFM) is a human disease that is characterized by focal myofibrillar destruction and pathological cytoplasmic protein aggregations. In an extended German pedigree with a novel form of MFM characterized by clinical features of a limb-girdle myopathy and morphological features of MFM, we identified a co-segregating, heterozygous nonsense mutation (8130G-->A; W2710X) in the filamin c gene (FLNC) on chromosome 7q32.1. The mutation is the first found in FLNC and is localized in the dimerization domain of filamin c. Functional studies showed that, in the truncated mutant protein, this domain has a disturbed secondary structure that leads to the inability to dimerize properly. As a consequence of this malfunction, the muscle fibers of our patients display massive cytoplasmic aggregates containing filamin c and several Z-disk-associated and sarcolemmal proteins.  相似文献   

7.
The gene encoding the mouse analogue of the human complement regulator CD59 was cloned using a combination of long range PCR and genomic library screening. Sequence obtained showed that its genomic structure closely resembled that of the human CD59 gene, comprising 4 exons, each separated by a long intron region. The sizes of introns and exons were comparable to those of the human gene with the exception of the third intron which is 2.5 kb in the mouse compared to 7 kb in the human gene. All exon/intron boundaries conformed to the GT-AG rules for splicing. Radiation hybrid mapping localised mouse Cd59 between D2Mit333 and D2Mit127 on chromosome 2, a region homologous with human chromosome 11p13 where the human CD59 gene is localised. These data have permitted the construction of a gene targeting vector for the generation of transgenic mice deficient in CD59.  相似文献   

8.
9.
A recombinant phage, SpC3, containing a 17 kb genomic DNA insert representing approximately 60% of the 3' portion of the sheep collagen alpha 2 gene, was evaluated by electron microscopic R loop analysis. A minimum of 17 intervening sequences (introns) and 18 alpha 2 coding sequences (exons) were mapped. With the exception of the 850 base pair exon located at the extreme 3' end of the insert, all exons contained 250 base pairs or less. The total length of all the exons in SpC3 was 3,014 base pairs. The length distribution of the 17 introns ranged from 300 to 1600 base pairs; together, all of the introns comprised 14,070 base pairs of SpC3 DNA. Thus, the DNA region required for coding the interspersed 3 kb of alpha 2 collagen genetic information was 5.6 fold longer than the corresponding alpha 2 mRNA coding sequences.  相似文献   

10.
The gene responsible for cystic fibrosis, the most common severe autosomal recessive disorder, is located on the long arm of human chromosome 7, region q31-q32. The gene has recently been identified and shown to be approximately 250 kb in size. To understand the structure and to provide the basis for a systematic analysis of the disease-causing mutations in the gene, genomic DNA clones spanning different regions of the previously reported cDNA were isolated and used to determine the coding regions and sequences of intron/exon boundaries. A total of 22,708 bp of sequence, accounting for approximately 10% of the entire gene, was obtained. Alignment of the genomic DNA sequence with the cDNA sequence showed perfect colinearity between the two and a total of 27 exons, each flanked by consensus splice signals. A number of repetitive elements, including the Alu and Kpn families and simple repeats, such as (GT)17, (GATT)7, and (TA)14, were detected in close vicinity of some of the intron/exon boundaries. At least three of the simple repeats were found to be polymorphic in the population. Although an internal amino acid sequence homology could be detected between the two halves of the predicted polypeptide, especially in the regions of the two putative nucleotide-binding folds (NBF1 and NBF2), the lack of alignment of the nucleotide sequence as well as the different positions of the exon/intron boundaries does not seem to support the hypothesis of a recent gene duplication event. To facilitate detection of mutations by direct sequence analysis of genomic DNA, 28 sets of oligonucleotide primers were designed and tested for their ability to amplify individual exons and the immediately flanking sequences in the introns.  相似文献   

11.
Mono(ADP-ribosyl)transferases regulate the function of target proteins by attaching ADP-ribose to specific amino acid residues in their target proteins. The purpose of this study was to determine the structure, chromosomal localization, and expression profile of the gene for mouse ecto-ADP-ribosyltransferase ART5. Southern blot analyses indicate that Art5 is a single copy gene which maps to mouse chromosome 7 at offset 49.6 cM in close proximity to the Art1, Art2a and Art2b genes. Northern blot and RT-PCR analyses demonstrate prominent expression of Art5 in testis, and lower levels in cardiac and skeletal muscle. Sequence analyses reveal that the Art5 gene encompasses six exons spanning 8 kb of genomic DNA. The 5' end of the Art5 gene overlaps with that of the Art1 gene. A single long exon encodes the predicted ART5 catalytic domain. Separate exons encode the N-terminal leader peptide and a hydrophilic C-terminal extension. Sequencing of RT-PCR products and ESTs identified six splice variants. The deduced amino acid sequence of ART5 shows 87% sequence identity to its orthologue from the human, and 37 and 32% identity to its murine paralogues ART1 and ART2. Unlike ART1 and ART2, ART5 lacks a glycosylphosphatidylinositol-anchor signal sequence and is predicted to be a secretory enzyme. This prediction was confirmed by transfecting an Art5 cDNA expression construct into Sf9 insect cells. The secreted epitope-tagged ART5 protein resembled rat ART2 in exhibiting potent NAD-glycohydrolase activity. This study provides important experimental tools to further elucidate the function of ART5.  相似文献   

12.
J Nathans  D S Hogness 《Cell》1983,34(3):807-814
We have isolated cDNA clones generated from the mRNA encoding the opsin apoprotein of bovine rhodopsin and used these cDNAs to isolate genomic DNA clones containing the complete opsin gene. Nucleotide sequence analysis of the cloned DNAs has yielded a complete amino acid sequence for bovine rhodopsin and provided an intron-exon map of its gene. The mRNA homologous sequences in the 6.4 kb gene consist of a 96 bp 5' untranslated region, a 1044 bp coding region, and a surprisingly long approximately 1400 bp 3' untranslated region, and are divided into five exons by four introns that interrupt the coding region. Secondary structure analysis predicts that the bovine rhodopsin chain, like that of bacteriorhodopsin, contains seven transmembrane segments. Interestingly, three of the four introns are immediately distal to the codons for three of these segments, and one of these introns marks the boundary between the C-terminal domain and a transmembrane domain.  相似文献   

13.
We have isolated five genomic clones for human butyrylcholinesterase (BChE), using cDNA probes encoding the catalytic subunit of the hydrophilic tetramer [McTiernan et al. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 6682-6686]. The BChE gene is at least 73 kb long and contains four exons. Exon 1 contains untranslated sequences and two potential translation initiation sites at codons -69 and -47. Exon 2 (1525 bp) contains 83% of the coding sequence for the mature protein, including the N-terminal and the active-site serine, and a third possible translation initiation site (likely functional), at codon -28. Exon 3 is 167 nucleotides long. Exon 4 (604 bp) codes for the C-terminus of the protein and the 3' untranslated region where two polyadenylation signals were identified. Intron 1 is 6.5 kb long, and the minimal sizes of introns 2 and 3 are estimated to be 32 kb each. Southern blot analysis of total human genomic DNA is in complete agreement with the gene structure established by restriction endonuclease mapping of the genomic clones: this strongly suggests that the BChE gene is present in a single copy.  相似文献   

14.
15.
Decay accelerating factor (DAF) is a glycophospholipid-anchored membrane protein that is part of the regulators of complement activation (RCA) gene family located on human chromosome 1, band q32. These proteins, beginning at their amino terminus, consist largely of multiple copies of an approximately 60 amino acid short consensus repeat (SCR). A DAF cDNA clone was used to identify overlapping bacteriophage genomic clones. The human DAF gene spans approximately 40 kb and consists of 11 exons. The length of these exons and introns varies considerably, with the exons ranging from 21 to 956 bp and the introns ranging from approximately 0.5 to 19.8 kb. SCR I, II, and IV are all encoded by single exons; however, SCR III is encoded by two separate exons, with the splice junction occurring after the second nucleotide of the codon for the glycine residue at position 34 of the consensus sequence. This feature has also been found in CR1, CR2, membrane cofactor protein, and murine factor H. Following the SCR in DAF is a 76 amino acid serine/threonine-rich domain encoded on three separate exons. Exon 10 encodes the Alu family sequence that has been found as an insert in a minor class of DAF cDNA, thus indicating that this mRNA arises by standard alternative splicing. The last DAF exon, which comes after the largest intron of 19.8 kb, encodes the hydrophobic carboxy terminus and the 3'UT region. The nature of the signal that directs posttranslational attachment of a glycophospholipid anchor to DAF is not known, but that signal is apparently spread over three exons and greater than 20 kb. An analysis of the DAF gene provides additional evidence for the common evolutionary heritage of the RCA gene family. The exon/intron structure of this gene will facilitate experiments aimed at understanding the functions of the various domains of DAF.  相似文献   

16.
The complete structure of the mouse lactoferrin gene is presented. Mouse lactoferrin (mLF) is encoded by a single copy gene of approximately 30 kilobases (kb) in size. The gene is organized into 17 exons separated by 16 introns. The exons range in size from 48 base pairs (bp) to 190 bp whereas the introns range from 0.2 kb to 4.3 kb. Structural analysis of the mouse lactoferrin gene reveals that this gene shares a similar intron-exon distribution pattern with both human transferrin and chicken ovotransferrin.  相似文献   

17.
Schistosomes are considered the most important of the helminth parasites of humans in terms of morbidity and mortality. Schistosomes employ proteolytic enzymes to digest host hemoglobin from ingested human blood, including a cathepsin D-like, aspartic protease that is overexpressed in the gut of the adult female schistosome. Because of its key role in parasite nutrition, this enzyme represents a potential intervention target. To continue exploration of this potential, here we have determined the sequence, structure and genomic organization of the cathepsin D gene locus of Schistosoma mansoni. Using the cDNA encoding S. mansoni cathepsin D as a probe, we isolated several positive bacterial artificial chromosomes (BAC) from a BAC library that represents an approximately 8-fold coverage of the schistosome genome. Sequencing of BAC clone 25-J-24 revealed that the cathepsin D gene locus was approximately 13 kb in length, and included seven exons interrupted by six introns. The exons ranged in length from 49 to 294 bp, and the introns from 30 to 5025 bp. The genomic organization of schistosome cathepsin D was similar in sequence, structure and complexity to human cathepsin D, including to a greater or lesser extent the conservation of all six exon/intron boundaries of the schistosome gene. It was less similar to aspartic protease genes of the nematodes Caenorhabditis elegans and Haemonchus contortus, and dissimilar to those of plasmepsins from malarial parasites. Examination of the introns revealed the presence of endogenous mobile genetic elements including SR2, the ASL-associated retrotransposon, and the SINE-like element, SMalpha. Phylogenetically, schistosome cathepsin D appeared to be more closely related to mammalian cathepsin D than to other sub-families of eukaryotic aspartic proteases known from mammals. Taken together, these features indicated that schistosome cathepsin D is a platyhelminth orthologue of mammalian lysosomal cathepsin D.  相似文献   

18.
19.
A series of overlapping recombinant clones, which cover the vitellogenin gene, has been isolated from a phage-lambda linked chicken gene library. The DNA of the overlapping clones spans 28 kb of contiguous DNA sequences in the chicken genome. Electron microscopic analysis of hybrids between vitellogenin mRNA and the genomic clones indicates that the chicken vitellogenin gene has a length of approximately 22 kb, about 3.8 times the size of the mRNA. The mRNA sequence is interrupted by at least 33 intervening sequences (introns). Comparison with the vitellogenin gene A2 from Xenopus laevis (Wahli et al., 1980, Cell 20: 107-117) indicates conservation of the number and length of the exons during evolution. Heteroduplex analysis reveals a short stretch of sequence homology between the genes from chicken and frog.  相似文献   

20.
A novel porcine gene, alpha-1-antichymotrypsin 2 (SERPINA3-2), a member of the serpin superfamily, was isolated from a porcine genomic library and sequenced. The genomic organization of the approximately 9.0 kb gene was determined on the basis of the porcine liver cDNA of SERPINA3-1 and SERPINA3-2, and comprises five exons and four introns. The coding sequence of SERPINA3-2 shares 86% identity with the paralogue, SERPINA3-1. Porcine SERPINA3-2 was found to be an orthologue of human SERPINA3 (71% identity of the coding sequences) and both genes have a similar genomic organization. Polymorphisms were found in intron 4 of the porcine gene using polymerase chain reaction-restriction fragment length polymorphism. The gene was mapped by linkage analysis and radiation hybrid mapping to the distal end of chromosome 7q, to the gene cluster of the protease inhibitors including PI1 (SERPINA1), PI2, PI3, PI4 (apparently paralogues of SERPINA3), and PO1A and PO1B. SERPINA3-2 is the first porcine serpin gene whose genomic organization has been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号