首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The dehydrogenation of substituted 3,5-cyclohexadiene-1,2-diol-1-carboxylic acids by dihydrodihydroxybenzoic acid dehydrogenases from benzoate grown cells of Alcaligenes eutrophus and Pseudomonas sp. B 13 and 3-chlorobenzoate grown cells of the latter organism was examined. No significant differences (Km and Vrel values) were detected for the enzymes from both organisms. The same dihydrodihydroxybenzoic acid dehydrogenase is formed in Pseudomonas sp. B13 during growth on benzoate as well as on 3-chlorobenzoate. The lower turnover rates of 3- and 5-chlorodrodihydroxybenzoic acid compared to dihydrodihydroxybenzoic acid are counterbalanced by an increase in specific activity. With the exception of 4-substituted dihydrodihydroxybenzoic acids exhibiting relative high Km values, only slight sterical and electronic substituent effects are evident. Reaction rates were never reduced to a critical level.  相似文献   

2.
Pseudomonas sp. B13 was grown in continuous culture on 4-chlorophenol as the only carbon source. Maximum growth rate of 0.4h-1 was observed at a substrate concentration of >0.01 mM and <0.15 mM. In addition to the enzymes of phenol catabolism, high specific 1,2-dioxygenase activities with chlorocatechols as substrates were found. The isomeric monochlorinated phenols were also totally degraded by 4-chlorophenol grown cells. (+)-2,5-Dihydro-4-methyl- and (+)-2,5-dihydro-2-methyl-5-oxo-furan-2-acetic acid were formed in high yield as dead-end catabolites from cooxidation of cresoles.Several dichlorophenols except 2,6-dichlorophenol were removed from the culture fluid by chlorophenol grown cells. Ring cleavage of chlorinated catechols were shown to be one of the critical steps in chlorophenol catabolism. A catabolic pathway for isomeric chlorophenols is discussed.Non-Standard Abbreviations HPLC High performance liquid chromatography - DHB Dihydrodihydroxybenzoate 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid  相似文献   

3.
DNA fragments containing the xylD and xylL genes, which specify the broad-specificity enzymes toluate-1,2-dioxygenase and 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid dehydrogenase, respectively, of TOL plasmid pWW0-161 of Pseudomonas putida have previously been cloned in the pBR322 vector plasmid (P.R. Lehrbach, J. Zeyer, W. Reinecke, H.-J. Knackmuss, and K. N. Timmis, J. Bacteriol. 158:1025-1032, 1984). In this study, Escherichia coli cells containing hybrid plasmids carrying the cloned xylD or xylDL genes quantitatively transformed 14C-ring- and 14C-carboxy-labeled benzoate to the pathway intermediates 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (cis-dihydrodiol) and catechol, respectively. Like P. putida cells, E. coli cells containing the xylD gene transformed a variety of chloro- and hydrocarbon-substituted benzoates. The toluate-1,2-dioxygenase produced in E. coli thus exhibited the broad-substrate-specificity properties of the enzyme in P. putida. Turnover rates by the enzymes in these two bacteria are compared.  相似文献   

4.
DNA fragments containing the xylD and xylL genes, which specify the broad-specificity enzymes toluate-1,2-dioxygenase and 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid dehydrogenase, respectively, of TOL plasmid pWW0-161 of Pseudomonas putida have previously been cloned in the pBR322 vector plasmid (P.R. Lehrbach, J. Zeyer, W. Reinecke, H.-J. Knackmuss, and K. N. Timmis, J. Bacteriol. 158:1025-1032, 1984). In this study, Escherichia coli cells containing hybrid plasmids carrying the cloned xylD or xylDL genes quantitatively transformed 14C-ring- and 14C-carboxy-labeled benzoate to the pathway intermediates 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (cis-dihydrodiol) and catechol, respectively. Like P. putida cells, E. coli cells containing the xylD gene transformed a variety of chloro- and hydrocarbon-substituted benzoates. The toluate-1,2-dioxygenase produced in E. coli thus exhibited the broad-substrate-specificity properties of the enzyme in P. putida. Turnover rates by the enzymes in these two bacteria are compared.  相似文献   

5.
The dehydrogenation of substituted 3,5-cyclohexadiene-1,2-diol-1-carboxylic acids by dihydrodihydroxybenzoic acid dehydrogenases from benzoate grown cells of Alcaligenes eutrophus and Pseudomonas sp. B 13 and 3 -chlorobenzoate grown cells of the latter organism was examined. No significant differences (Km and Vrel values) were detected for the enzymes from both organisms. The same dihydrodihydroxybenzoic acid dehydrogenase is formed in Pseudomonas sp. B13 during growth on benzoate as well as on 3-chlorobenzoate. The lower turnover rates of 3- and 5-chlorodihydrodihydroxybenzoic acid compared to dihydrodihydroxybenzoic acid are counterbalanced by an increase in specific activity. With the exception of 4-substituted dihydrodihydroxybenzoic acids exhibiting relative high Km values, only slight sterical and electronic substituent effects are evident. Reaction rates were never reduced to a critical level.  相似文献   

6.
Alcaligenes eutrophus B9 and Pseudomonas sp. B13 could be adapted to 2-fluorobenzoate as the sole source of carbon and energy. The ability of the A. eutrophus B9 to use this new substrate is clearly based on the defective dihydrodihydroxybenzoate dehydrogenase. Nontoxic 6-fluoro-3,5-cyclohexadiene-1,2-diol-1-carboxylic acid is accumulated instead of 3-fluorocatechol. About 84% of the substrate is dioxygenated to catechol and utilized via the 3-oxoadipate pathway. During continuous adaptation of Pseudomonas sp. B13 regioselectivity of dioxygenation of 2-fluorobenzoate is drastically changed in favor of a 1,2-attack. Consequently, approximately 97% of the substrate is utilized via catechol. A three- to fourfold overproduction of key enzymes of the 3-oxoadipate pathway compensates for the slower turnover rates of the fluorinated substrates.  相似文献   

7.
Of eleven substituted phenoxyacetic acids tested, only three (2,4-dichloro-, 4-chloro-2-methyl- and 2-methylphenoxyacetic acid) served as growth substrates for Alcaligenes eutrophus JMP 134. Whereas only one enzyme seems to be responsible for the initial cleavage of the ether bond, there was evidence for the presence of three different phenol hydroxylases in this strain. 3,5-Dichlorocatechol and 5-chloro-3-methylcatechol, metabolites of the degradation of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid, respectively, were exclusively metabolized via the ortho-cleavage pathway. 2-Methylphenoxyacetic acid-grown cells showed simultaneous induction of meta- and ortho-cleavage enzymes. Two catechol 1,2-dioxygenases responsible for ortho-cleavage of the intermediate catechols were partially purified and characterized. One of these enzymes converted 3,5-dichlorocatechol considerably faster than catechol or 3-chlorocatechol. A new enzyme for the cycloisomerisation of muconates was found, which exhibited high activity against the ring-cleavage products of 3,5-dichlorocatechol and 4-chlorocatechol, but low activities against 2-chloromuconate and muconate.Non-standard abbreviations MCPA 4-chloro-2-methylphenoxyacetic acid - 2MPA 2-methylphenoxyacetic acid - PA phenoxyacetic acid  相似文献   

8.
Benzoate 1,2-dioxygenase (BDO) of Rhodococcus opacus 1CP, which carried out the initial attack on benzoate, was earlier shown to be the enzyme with a narrow substrate specificity. A kinetics of interaction between benzoate 1,2-dioxygenase and substituted benzoates was assessed taking into account the enlarged list of the type of inhibition and using whole cells grown on benzoate. The type of inhibition was determined and the constants of a reaction of BDO with benzoate in the presence of 2-chlorobenzoate (2CBA), 3,5-dichlorobenzoate (3,5DCBA), and 3-methylbenzoate (3MBA) were calculated. For 2CBA and 3MBA, the types of inhibition were classified as biparametrically disсoordinated inhibition and transient inhibition (from activation towards inhibition), respectively. The process of not widely recognized pseudoinhibition of a BDO reaction with benzoate by 3,5DCBA was assessed by the vector method for the representation of enzymatic reactions. Ki value was determined for 2CBA, 3MBA, and 3,5DCBA as 337.5, 870.3, and 14.7 μM, respectively.  相似文献   

9.
Pseudomonas putida P111 was isolated by enrichment culture on 2,5-dichlorobenzoate and was also able to grow on 2-chloro-, 3-chloro-, 4-chloro-, 2,3-dichloro-, 2,4-dichloro-, and 2,3,5-trichlorobenzoates. However, 3,5-dichlorobenzoate completely inhibited growth of P111 on all ortho-substituted benzoates that were tested. When 3,5-dichlorobenzoate was added as a cosubstrate with either 3- or 4-chlorobenzoate, cell yields and chloride release were greater than those observed from growth on either monochlorobenzoate alone. Moreover, resting cells of P111 grown on 4-chlorobenzoate released chloride from 3,5-dichlorobenzoate and produced no identifiable intermediate. In contrast, resting cells grown on 2,5-dichlorobenzoate metabolized 3,5-dichlorobenzoate without release of chloride and accumulated a degradation product, which was identified as 1-carboxy-1,2-dihydroxy-3,5-dichlorocyclohexadiene on the basis of gas chromatography-mass spectrometry confirmation of its two acid-hydrolyzed products, 3,5- and 2,4-dichlorophenol. Since 3,5-dichlorocatechol was rapidly metabolized by cells grown on 2,5-dichlorobenzoate, it is apparent that 1-carboxy-1,2-dihydroxy-3,5-dichlorocyclohexadiene is not further metabolized by these cells. Moreover, induction of a functional dihyrodiol dehydrogenase would not be required for growth of P111 on other ortho-chlorobenzoates since the corresponding chlorodihydrodiols produced from a 1,2-dioxygenase attack would spontaneously decompose to the corresponding catechols. In contrast, growth on 3-chloro-, 4-chloro-, or 3,5-dichlorobenzoate requires a functional dihydrodiol dehydrogenase, yet only the two monochlorobenzoates appear to induce for it.  相似文献   

10.
Pseudomonas sp. WR912 was isolated by continuous enrichment in three steps with 3-chloro-, 4-chloro-, and finally 3,5-dichlorobenzoate as sole source of carbon and energy. The doubling times of the pure culture with these growth substrates were 2.6, 3.3, and 5.2 h, respectively. Stoichiometric amounts of chloride were eliminated during growth. Oxygen uptake rates with chlorinated benzoates revealed low stereospecificity of the initial benzoate 1,2-dioxygenation. Dihydrodi-hydroxybenzoate dehydrogenase, catechol 1,2-dixoygenase, and muconate cycloisomerase activities were found in cell-free extracts. The ortho cleavage activity for catechols appeared to involve induction of isoenzymes with different stereospecificity towards chlorocatechols. A catabolic pathway for chlorocatechols was proposed on the basis of similarity to chlorophenoxyacetate catabolism, and cometabolism of 3,5-dimethylbenzoate by chlorobenzoate-induced cells yielded 2,5-dihydro-2,4-dimethyl-5-oxo-furan-2-acetic acid.  相似文献   

11.
Pseudomonas sp. WR912 was isolated by continuous enrichment in three steps with 3-chloro-, 4-chloro-, and finally 3,5-dichlorobenzoate as sole source of carbon and energy. The doubling times of the pure culture with these growth substrates were 2.6, 3.3, and 5.2 h, respectively. Stoichiometric amounts of chloride were eliminated during growth. Oxygen uptake rates with chlorinated benzoates revealed low stereospecificity of the initial benzoate 1,2-dioxygenation. Dihydrodi-hydroxybenzoate dehydrogenase, catechol 1,2-dixoygenase, and muconate cycloisomerase activities were found in cell-free extracts. The ortho cleavage activity for catechols appeared to involve induction of isoenzymes with different stereospecificity towards chlorocatechols. A catabolic pathway for chlorocatechols was proposed on the basis of similarity to chlorophenoxyacetate catabolism, and cometabolism of 3,5-dimethylbenzoate by chlorobenzoate-induced cells yielded 2,5-dihydro-2,4-dimethyl-5-oxo-furan-2-acetic acid.  相似文献   

12.
Pseudomonas putida P111 was isolated by enrichment culture on 2,5-dichlorobenzoate and was also able to grow on 2-chloro-, 3-chloro-, 4-chloro-, 2,3-dichloro-, 2,4-dichloro-, and 2,3,5-trichlorobenzoates. However, 3,5-dichlorobenzoate completely inhibited growth of P111 on all ortho-substituted benzoates that were tested. When 3,5-dichlorobenzoate was added as a cosubstrate with either 3- or 4-chlorobenzoate, cell yields and chloride release were greater than those observed from growth on either monochlorobenzoate alone. Moreover, resting cells of P111 grown on 4-chlorobenzoate released chloride from 3,5-dichlorobenzoate and produced no identifiable intermediate. In contrast, resting cells grown on 2,5-dichlorobenzoate metabolized 3,5-dichlorobenzoate without release of chloride and accumulated a degradation product, which was identified as 1-carboxy-1,2-dihydroxy-3,5-dichlorocyclohexadiene on the basis of gas chromatography-mass spectrometry confirmation of its two acid-hydrolyzed products, 3,5- and 2,4-dichlorophenol. Since 3,5-dichlorocatechol was rapidly metabolized by cells grown on 2,5-dichlorobenzoate, it is apparent that 1-carboxy-1,2-dihydroxy-3,5-dichlorocyclohexadiene is not further metabolized by these cells. Moreover, induction of a functional dihyrodiol dehydrogenase would not be required for growth of P111 on other ortho-chlorobenzoates since the corresponding chlorodihydrodiols produced from a 1,2-dioxygenase attack would spontaneously decompose to the corresponding catechols. In contrast, growth on 3-chloro-, 4-chloro-, or 3,5-dichlorobenzoate requires a functional dihydrodiol dehydrogenase, yet only the two monochlorobenzoates appear to induce for it.  相似文献   

13.
Mutants of Pseudomonas putida mt-2 that are unable to convert benzoate to catechol were isolated and grouped into two classes: those that did not initiate attack on benzoate and those that accumulated 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (benzoate diol). The latter mutants, represents by strain PP0201, were shown to lack benzoate diol dehydrogenase (benD) activity. Mutants from the former class were presumed either to carry lesions in one or more subunit structural genes of benzoate dioxygenase (benABC) or the regulatory gene (benR) or to contain multiple mutations. Previous work in this laboratory suggested that benR can substitute for the TOL plasmid-encoded xylS regulatory gene, which promotes gene expression from the OP2 region of the lower or meta pathway operon. Accordingly, structural and regulatory gene mutations were distinguished by the ability of benzoate-grown mutant strains to induce expression from OP2 without xylS by using the TOL plasmid xylE gene (encoding catechol 2,3-dioxygenase) as a reporter. A cloned 12-kb BamHI chromosomal DNA fragment from the P. aeruginosa PAO1 chromosome complemented all of the mutations, as shown by restoration of growth on benzoate minimal medium. Subcloning and deletion analyses allowed identification of DNA fragments carrying benD, benABC, and the region possessing xylS substitution activity, benR. Expression of these genes was examined in a strain devoid of benzoate-utilizing ability, Pseudomonas fluorescens PFO15. The disappearance of benzoate and the production of catechol were determined by chromatographic analysis of supernatants from cultures grown with casamino acids. When P. fluorescens PFO15 was transformed with plasmids containing only benABCD, no loss of benzoate was observed. When either benR or xylS was cloned into plasmids compatible with those plasmids containing only the benABCD regions, benzoate was removed from the medium and catechol was produced. Regulation of expression of the chromosomal structural genes by benR and xylS was quantified by benzoate diol dehydrogenase enzyme assays. The results obtained when xylS was substituted for benR strongly suggest an isofunctional regulatory mechanism between the TOL plasmid lower-pathway genes (via the OP2 promoter) and chromosomal benABC. Southern hybridizations demonstrated that DNA encoding the benzoate dioxygenase structural genes showed homology to DNA encoding toluate dioxygenase from the TOL plasmid pWW0, but benR did not show homology to xylS. Evolutionary relationships between the regulatory systems of chromosomal and plasmid-encoded genes for the catabolism of benzoate and related compounds are suggested.  相似文献   

14.
Cupriavidus sp. strain SK-3, previously isolated on polychlorinated biphenyl mixtures, was found to aerobically utilize a wide spectrum of substituted aromatic compounds including 4-fluoro-, 4-chloro- and 4-bromobenzoic acids as a sole carbon and energy source. Other chlorobenzoic acid (CBA) congeners such as 2-, 3-, 2,3-, 2,5-, 3,4- and 3,5-CBA were all rapidly transformed to respective chlorocatechols (CCs). Under aerobic conditions, strain SK-3 grew readily on 4-CBA to a maximum concentration of 5 mM above which growth became impaired and yielded no biomass. Growth lagged significantly at concentrations above 3 mM, however chloride elimination was stoichiometric and generally mirrored growth and substrate consumption in all incubations. Experiments with resting cells, cell-free extracts and analysis of metabolite pools suggest that 4-CBA was metabolized in a reaction exclusively involving an initial hydrolytic dehalogenation yielding 4-hydroxybenzoic acid, which was then hydroxylated to protocatechuic acid (PCA) and subsequently metabolized via the β-ketoadipate pathway. When strain SK-3 was grown on 4-CBA, there was gratuitous induction of the catechol-1,2-dioxygenase and gentisate-1,2-dioxygenase pathways, even if both were not involved in the metabolism of the acid. While activities of the modified ortho- and meta-cleavage pathways were not detectable in all extracts, activity of PCA-3,4-dioxygenase was over ten-times higher than those of catechol-1,2- and gentisate-1,2-dioxygenases. Therefore, the only reason other congeners were not utilized for growth was the accumulation of CCs, suggesting a narrow spectrum of the activity of enzymes downstream of benzoate-1,2-dioxygenase, which exhibited affinity for a number of substituted analogs, and that the metabolic bottlenecks are either CCs or catabolites of the modified ortho-cleavage metabolic route.  相似文献   

15.
3,5-Cyclohexadiene-1,2-diol-1-carboxylic acid (1,2-dihydro-1,2-dihydroxy-benzoic acid) is converted enzymatically to catechol in cell extracts from Acinetobacter, Alcaligenes, Azotobacter, and three Pseudomonas species. This enzymatic activity is present only in cultures which have been grown in the presence of benzoic acid, and which convert benzoic acid to catechol rather than to protocatechuic acid. The reaction is assayed by the concomitant formation of reduced nicotinamide adenine dinucleotide from nicotinamide adenine dinucleotide. The conversion of [(14)C]benzoic acid to [(14)C]dihydrodihydroxybenzoic acid is demonstrated in cell extracts. A scheme for the conversion of benzoic acid to catechol in bacteria is presented, involving the formation of dihydrodihydroxybenzoic acid from benzoic acid by a dioxygenase which is unstable in cell extracts, followed by the dehydrogenation and decarboxylation of dihydrodihydroxybenzoic acid to catechol by a previously undescribed enzyme. Experiments with anthranilic acid and phthalic acid suggest that dihydrodihydroxybenzoic acid is a metabolite unique to benzoic acid metabolism. Two new methods for assaying benzoic acid dioxygenase are suggested.  相似文献   

16.
Dioxygenases induced during benzoate degradation by the actinobacterium Rhodococcus wratislaviensis G10 strain degrading haloaromatic compounds were studied. Rhodococcus wratislaviensis G10 completely degraded 2 g/liter benzoate during 30 h and 10 g/liter during 200 h. Washed cells grown on benzoate retained respiration activity for more than 90 days, and a high activity of benzoate dioxygenase was recorded for 10 days. Compared to the enzyme activities with benzoate, the activity of benzoate dioxygenases was 10-30% with 13 of 35 substituted benzoate analogs. Two dioxygenases capable of cleaving the aromatic ring were isolated and characterized: protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase. Catechol inhibited the activity of protocatechuate 3,4-dioxygenase. Protocatechuate did not affect the activity of catechol 1,2-dioxygenase. A high degree of identity was shown by MALDI-TOF mass spectrometry for protein peaks of the R. wratislaviensis G10 and Rhodococcus opacus 1CP cells grown on benzoate or LB. DNA from the R. wratislaviensis G10 strain was specifically amplified using specific primers to variable regions of genes coding αand β-subunits of protocatechuate 3,4-dioxygenase and to two genes of theR. opacus 1CP coding catechol 1,2-dioxygenase. The products were 99% identical with the corresponding regions of the R. opacus 1CP genes. This high identity (99%) between the genes coding degradation of aromatic compounds in the R. wratislaviensis G10 and R. opacus 1CP strains isolated from sites of remote location (1400 km) and at different time (20-year difference) indicates a common origin of biodegradation genes of these strains and a wide distribution of these genes among rhodococci.  相似文献   

17.
A procedure for purifying to homogeneity a microbially produced biocatalyst useful for deblocking intermediates in the manufacture of beta-lactam antibiotics is reported. In aqueous solution the purifiedp-nitrobenzyl (PNB) carboxy-esterase was soluble, monomeric (molecular weight: 54 000 by SDS-PAGE or by gel filtration) and exhibited an acidic pl, 4.1. The PNB carboxy-esterase catalyzed rapid ester hydrolysis for simple organic esters such as PNB-acetate, benzyl acetate and -naphthyl acetate and catalyzed deblocking (ester hydrolysis) of beta-lactam antibiotic PNB esters such as cephalexin-PNB and loracarbef-PNB. TheN-terminal amino acid sequence and the amino acid composition are reported. A serine residue is involved in ester hydrolysis: the PNB carboxy esterase was inhibited by phenylmethylsulfonyl fluoride and diethylp-nitrophenyl phosphate; one mole of diisopropyl fluorophosphate titration was required per mole of PNB carboxy-esterase for complete inhibition. When the [3H]-diisopropyl fluorophosphate-treated biocatalyst was digested with Lys C and the resulting peptides separated by HPLC, a single [3H]-labeled peptide was obtained; its amino acid sequence is reported. Inhibition of the PNB carboxy esterase by diethyl pyrocarbonate suggests that a histidinyl residue (or residues) is (are) also involved in the catalytic site of the esterase.Abbreviations used -ME -mercaptoethanol - Cf cefaclor - Cf nucleus-PNB - (6R, 7R) 7-amino-3-chloro-8-oxo-5-thia-1-azabicyclo[4.2.0]-oct-2-ene-2-carboxylic acid, (4-nitrophenyl)methyl ester - Cp cephalexin - Cp-PNB p-nitrobenzyl carboxy-ester of cephalexin - DEPC diethyl, pyrocarbonate - DFP diisopropyl fluorophosphate - DMSO dimethyl sulfoxide - DNP diethylp-nitrophenyl phosphate - EDTA ethylenediaminetetraacetic acid - EGTA ethylene, glycol-bis(aminoethyl ether) - N,N,NN tetracetic acid - Lc loracarbef - Lc-PNB p-nitrobenzyl carboxy-ester of loracarbef - Lc nucleus-PNB - (6R, 7S) 7-amino-3-chloro-8-oxo-1-azabicyclo[4.2.0]-oct-2-ene-2-carboxylic acid, (4-nitrophenyl)methyl ester - Lys C an endoproteinase specifically cleaving at C terminal lysine residues - MWr relative molecular weight - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonylfluoride - PNB p-nitrobenzyl - PNBCE p-nitrobenzyl carboxy-esterase - SDS sodium dodecyl sulfate  相似文献   

18.
Catechol 1,2-dioxygenase has been purified 46-fold from cells of Rhizobium trifolii TA1 grown on benzoate plus glucose. The dioxygenase had a molecular weight of 107,000 and a sub-unit molecular weight of 59,000. The enzyme had a K m of 2 M for catechol and also cleaved 4-methylcatechol. The dioxygenase contained 2 g atoms of Fe3+ per mole of enzyme which could be removed by treatment with 1,10-phenanthroline, resulting in a complete loss of activity; reactivation of the enzyme occurred specifically with Fe3+.  相似文献   

19.
An analysis was made of the specific enzyme activities of the TCA and glyoxylate cycle in Thiobacillus versutus cells grown in a thiosulphate- or acetate-limited chemostat. Activities of all enzymes of the TCA cycle were detected, irrespective of the growth substrate and they were invariably lower in the thiosulphate-grown cells. Of the glyoxylate cycle enzymes, isocitrate lyase was absent but malate synthase activity was increased from 15 nmol·min-1·mg-1 protein in thiosulphate-grown cells to 58 nmol·min-1·mg-1 protein in acetate-grown cells. Suspensions of cells grown on thiosulphate were able to oxidize acetate, although the rate was 3 times lower than that observed with acetate-grown cells. The respiration of acetate was completely inhibited by 10 mM fluoroacetate or 5 mM arsenite. Partially purified citrate synthase from both thiosulphate- and acetate-grown cells was completely inhibited by 0.5 mM NADH and was insensitive to inhibition by 1 mM 2-oxoglutarate or 1 mM ATP. The specific enzyme activities of the TCA and glyoxylate cycle in T. versutus were compared with those of Pseudomonas fluorescens, an isocitrate lyase positive organism, after growth in a chemostat limited by acetate, glutarate, succinate or glutamate. The response of the various enzyme activities to a change in substrate was similar in both organisms, with the exception of isocitrate lyase.Abbreviations TCA tricarboxylic acid - DNTB 2,2-dinitro-5,5-dithiobenzoic acid - APAD acetylpyridine adenine dinucleotide - PMS phenazine methosulphate - DCPIP 2,6-dichlorophenol-indophenol - DOC dissolved organic carbon  相似文献   

20.
Using both 1-mm segments of corn (Zea mays L.) coleoptiles and a preparation of membranes isolated from the same source, we have compared the effectiveness of several inhibitors of geotropism and polar transport in stimulating uptake of auxin (indole-3-acetic acid, IAA) into the tissue and in competing with N-1-naphthylphthalamic acid (NPA) for a membrane-bound site. Low concentrations of 2,3,5-triiodobenzoic acid (TIBA), NPA, 2-chloro-9-hydroxyfluorene-9-carboxylic acid (morphactin), and fluorescein, eosin, and mercurochrome all stimulated net uptake of [3H]IAA by corn coleoptile tissues while higher concentrations reduced the uptake of both [3H]IAA and another lipophilic weak acid, [14C]benzoic acid. Since low concentrations of fluorescein and its derivatives competed for the same membrane-bound site in vitro as did morphactin and NPA, the basis for both the specific stimulation of auxin accumulation and the inhibition of polar auxin transport by all these compounds may be their ability to interfere with the carrier-mediated efflux of auxin anions from cells. At higher concentrations, the decrease in accumulation of weak acids was nonspecific and thus may be the result of acidification of the cytoplasm and a general decrease in the driving force for uptake of the weak acids. Triiodobenzoic acid was an exception. Low concentration of TIBA (0.1–1 M) were much less effective than NPA in competing for the NPA receptor in vitro, but little different from NPA in ability to stimulate auxin uptake. One possibility is that TIBA, a substance which is polarly transported, may compete with auxin for the polar transport site while NPA, morphactin, and the fluorescein derivatives may render this site inactive.Abbreviations C1-NPA 2,3,4,5-tetrachloro-N-1-naphthylphthalamic acid - IAA indole-3-acetic acid - -NAA -naphthaleneacetic acid - -NAA -naphthalenacetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号