首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of glucagon and the protein content of the diet on the activity of N-acetylglutamate synthetase was studied. The activity of N-acetylglutamate synthetase depended on the protein content of the diet. Glucagon increased the activity of N-acetylglutamate synthetase and reduced the stimulatory effect of arginine. The enzyme of glucose-fed animals became arginine independent. It was concluded that glucagon induced some kind of covalent modification of the synthetase.  相似文献   

2.
The effect of glucagon on hepatic respiratory capacity   总被引:1,自引:0,他引:1  
Data from numerous laboratories show that mitochondria isolated from livers treated acutely with glucagon have higher rates of state 3 respiration than control mitochondria. The purpose of the present study was to learn whether this phenomenon is an isolation artifact resulting from a stabilization of the mitochondrial membrane or whether it represents a real increase in the maximal respiratory capacity of liver cells due to glucagon treatment. Electron transport was measured through different spans of the electron transport chain by using ferricyanide as an alternate electron acceptor to O2. With isolated intact liver mitochondria, pretreatment with glucagon was found to cause an increase in electron flow, through both Complex I and Complex III, suggesting that the effect of glucagon was not specific for a single site in the electron transport chain. Using intact isolated hepatocytes, different results are obtained. Respiration was measured in isolated hepatocytes after quantitation of the hepatocyte mitochondrial content by assay of citrate synthase. Hepatocyte respiration could therefore be reported per mg of mitochondrial protein. By providing durohydroquinone to the cells, it was possible to measure electron flow from coenzyme Q to O2 in the absence of the physiological regulation of substrate supply. Likewise, the addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone released the in situ mitochondria from control by the cytosolic ATP/ADP ratio and it was possible to measure maximal electron flow rates through Complex III. In the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, electron flow was higher in mitochondria in the cell than in isolated mitochondria. Glucagon caused no increase in mitochondrial respiration in situ either in the presence of the physiological substrates or in the presence of durohydroquinone. The data obtained do not support a role for the electron transport chain as a target of glucagon action in hepatocytes.  相似文献   

3.
Glucagon forms discoidal particles with dimyristoylphosphatidylcholine at temperatures below the phase transition. Under these conditions and at a lipid to protein molar ratio of 20 : 1, glucagon is observed to induce a closer packing of the phospholipid bilayer. Similar effects are observed upon the interaction of glucagon with dilauroylphosphatidylcholine. In the region of the phase transition the discoidal particles are observed by freeze-fracture electron microscopy to undergo end-to-end association leading to the formation of multilamellar structures containing only a few layers and having a large internal volume. Above the phase transition temperature the properties of the lipid appear to be unperturbed by glucagon according to either freeze-fracture or densitometer studies. These results further support the importance of phospholipid phase transitions in peptide-lipid interactions.  相似文献   

4.
5.
In order to elucidate the effect of glucagon antiserum on the endocrine pancreas, the release of somatostatin, glucagon, and insulin from the isolated perfused rat pancreas was studied following the infusion of arginine both with and without pretreatment by glucagon antiserum. Various concentrations of arginine in the presence of 5.5 mM glucose stimulated both somatostatin and glucagon secretion. However, the responses of somatostatin and glucagon were different at different doses of arginine. The infusion of glucagon antiserum strongly stimulated basal secretion in the perfusate total glucagon (free + antibody bound glucagon) and also enhanced its response to arginine, but free glucagon was undetectable in the perfusate during the infusion. On the other hand, the glucagon antiserum had no significant effect on either insulin or somatostatin secretion. Moreover, electron microscopic study revealed degrannulation and vacuolization in the cytoplasm of the A cells after exposure to glucagon antiserum, suggesting a hypersecretion of glucagon, but no significant change was found in the B cells or the D cells. We conclude that in a single pass perfusion system glucagon antiserum does not affect somatostatin or insulin secretion, although it enhances glucagon secretion.  相似文献   

6.
7.
Hyperglycemia in diabetes mellitus is generally associated with elevated levels of glucagon in the blood. A glucagon analog, des-His1[Glu9] glucagon amide, has been designed and synthesized and found to be an antagonist of glucagon in several systems. It has been a useful tool for investigating the mechanisms of glucagon action and for providing evidence that glucagon is a contributing factor in the pathogenesis of diabetes. The in vitro and in vivo activities of the antagonist are reported here. The analog bound 40% as well as glucagon to liver membranes, but did not stimulate the release of cyclic AMP even at 106 higher concentration. However, it did activate a second pathway, with the release of inositol phosphates. In addition, the analog enhanced the glucose-stimulated release of insulin from pancreatic islet cells. Of particular importance were the findings that the antagonist also showed only very low activity (<0.2%) in the in vivo glycogenolysis assay, and that at a ratio of 100:1 the analog almost completely blocked the hyperglycemic effects of added glucagon in normal rabbits. In addition, it reduced the hyperglycemia produced by endogenous glucagon in streptozotocin diabetic rats. Thus, we have an analog that possesses properties that are necessary for a glucagon antagonist to be potentially useful in the study and treatment of diabetes.  相似文献   

8.
The circular dichroism of glucagon solutions   总被引:2,自引:0,他引:2  
  相似文献   

9.
Twelve highly conditioned long-distance runners were studied to determine the effects of marathon (42 km) and 10,000 m running on plasma immunoreactive glucagon (IRG), serum immunoreactive insulin (IRI), and serum glucose (G) levels. Blood samples were drawn just prior to and immediately upon completion of the run. Marathon running resulted in no significant change in G, IRI, or IRG levels. After running 10,000 m, plasma IRG levels did not change significantly, while IRI and G increased significantly. In evaluating the pooled data from both runs, a significant inverse correlation was observed between delta G and delta IRG. This relationship between delta G and delta IRG suggests that glucagon plays a role in maintaining normal blood glucose levels during strenuous exercise.  相似文献   

10.
BACKGROUND: Glucagon is a 29-residue peptide produced in the alpha cells of the pancreas that interacts with hepatic receptors to stimulate glucose production and release, via a cAMP-mediated pathway. Type 2 diabetes patients may have an excess of glucagon and, as such, glucagon antagonists might serve as diabetes drugs. The antagonists that bind to the glucagon receptor but do not exhibit activity could be analogs of glucagon. The presence of salt bridges between some residues of glucagons (such as aspartic acid) and others (such as lysine) might influence both the binding to the receptor and the activity. MATERIALS AND METHODS: Experimental-The solid phase method with 4-methylbenzilhydrilamine resin (p-MBHA resin) was used for the synthesis of glucagon analogs. Rat liver membranes were prepared from male Sprague-Dawley rats by the Neville procedure. The receptor binding essay was performed in 1% BSA, 1 mM dithiothreitol, 25 mM Tris-HCl buffer, pH 7.2. Adenyl cyclase activity was measured in an assay medium containing 1% serum albumin, 25 mM MgCl2, 2 mM dithiothreitol, 0.025 mM GTP, 5 mM ATP, 0.9 mM theophylline, 17.2 mM creatine phosphate, and 1 mg/ml creatine phosphokinase. Theoretical-Quantum chemical calculations using the Titan program with the 6-31G* basis set were performed to calculate the binding energies of salt bridges between aspartic or glutamic acids and lysine. The relative stability of cyclic conformations of glucagon segments versus the extended segments was determined. RESULTS: It was found that the cyclic Glu9-Lys12 amide compound displayed a 20-fold decrease in binding affinity. DesHis1 cyclic compounds Glu20-Lys24 amide and DesHis1Glu9 Glu20-Lys24 amide behave as glucagon antagonists. The calculations show that cyclic conformations of tetrapeptidic and pentapeptidic segments of glucagon are more stable than the extended species. CONCLUSIONS: The biological data and the theoretical calculations show that an intramolecular salt bridge might impart stability to some glucagon antagonists and, when situated at the C-terminus of glucagon, might facilitate induction of an alpha-helix upon initial hormone association with the membrane bilayer. These findings might be a useful tool for the design of new glucagon antagonists.  相似文献   

11.
12.
13.
A double-isotope procedure was used to measure the effects of insulin and glucagon on ketone-body production and utilization (i.e. turnover) in the starved rat. Somatostatin was infused during the experiment to suppress the pancreatic release of either hormone. The immediate action of insulin in terms of ketone-body turnover that was most evident was a decreased production of 3-hydroxybutyrate, with no significant change in the turnover of acetoacetate. Similarly, the significant effect of glucagon infusion was to increase the production of 3-hydroxybutyrate, with minimum increase in acetoacetate turnover. The data support a direct effect of both hormones on the distribution of acetyl units derived from fatty acid beta-oxidation.  相似文献   

14.
15.
The production of glucagon antibodies in rabbits   总被引:1,自引:0,他引:1  
  相似文献   

16.
The problem of identifying the glucagon receptor   总被引:2,自引:0,他引:2  
  相似文献   

17.
18.
Summary Examination of glucagon structure-activity relationships and their use for the development of glucagon antagonists (inhibitors) have been hampered until recently by the lack of high purity of semisynthetic glucagon analogs and inadequate study of full dose-response curves for these analogs in sensitive bioassay systems. Recently a number of highly purified glucagon fragments and semi-synthetic analogs have been prepared and their full dose-response activities examined over a wide concentration range using the hepatic membrane adenylate cyclase assay, the hepatic membrane receptor binding assay, and glycogenolytic activity in isolated rat hepatocytes. The results of these studies have enabled us to identify and dissociate the structural (and in some cases conformational) features of glucagon important for binding from those most responsible for biological activity (transduction). Key findings in these studies were the observation that: (1) the C-terminal region of glucagon is primarily of importance for hormone binding to receptors; (2) glucagon1–21 and glucagon1–6 have low potency, but are essentially fully active glucagon derivatives; and (3) highly purified glucagon2–29 ([1-des-histidine]-glucagon), [1-N-carbamoylhistidine]-glucagon and [1-N-carbamoylhistidine, 12-N-carbamoyllysine]-glucagon are all partial agonists.These and other findings led us to synthesize several semisynthetic analogs of glucagon which were found to possess no intrinsic biological activity in the hepatic adenylate cyclase assay system, but which could block the effect of glucagon (competitive inhibitors) in activating adenylate cyclase in this system. Two of these highly purified analogs [1-des-histidine] [2-N-trinitrophenylserine, 12-homoarginine]-glucagon and [1-N-trinitrophenylhistidine, 12-homoarginine]-glucagon were quite potent glucagon antagonists (inhibitors) with pA2 values of 7.41 and 8.16 respectively. The latter compound has also been demonstrated to decrease dramatically blood glucose levels of diabetic animals in vivo. These results demonstrate that glucagon is a major contributor to the hyperglycemia of diabetic animals.Examination of the known and calculated conformational properties of glucagon provide insight into the structural and conformational properties of glucagon and its analogs most responsible for its biological activity. Consideration of these features and the mechanism of glucagon action at the membrane receptor level provide a framework for further developing glucagon analogs for theoretical and therapeutic applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号