首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on data from Norwegian streams with sympatric populations of Atlantic salmon and brown trout, it is suggested that temporal segregation is the main mechanism segregating Atlantic salmon and brown trout during spawning. Peak spawning of trout was about 15 days earlier than that of salmon. Physical factors, such as water depth, water velocity and distance from the river banks segregate spawning sites of salmon and trout poorly. Gravel sizes of the redds of salmon and trout were significantly different, though with a considerable overlap, and mean egg depth of salmon and trout were 0.18 and 0.12 m, respectively, probably attributable to the different size of spawners of salmon and trout. None of the temporal or spatial parameters analysed segregate spawners of salmon and trout completely. Species determination of eggs and alevins from the redds showed no interspecific superimposition of redds. It is, therefore, concluded that low survival of hybrids after hatching does not explain the low frequency of hybrids observed in sympatric populations of salmon and trout.  相似文献   

2.
A method is described in which a single bone, the first vertebra, is used to distinguish bone remains of juvenile salmon ( Salmo salar ) and trout ( Salmo trutta ) with 90% certainty. A single regression of salmon and trout first vertebra-width versus fish-length of fish predicted the latter with an accuracy of ±<10 mm (95% confidence limits) for salmonids of 45–150 mm fish-length. First vertebrae were assigned to salmon or trout based on three visual characters with 89%,–90% certainty. Salmon are more variable than trout for the three characters. Of first vertebrae, 6.5% were not readily identifiable as either salmon or trout, and a further 3.0%) were misclassified using our criteria.  相似文献   

3.
鲑鳟鱼类是典型的冷水性鱼类,经济价值高,市场前景广阔,是世界重要经济鱼类之一。我国鲑鳟鱼类养殖近年来蓬勃发展,产量及规模不断提高,养殖模式不断创新,与此同时,各地鲑鳟鱼类流行疾病的暴发日趋频繁,国内疫病防控体系与挪威、智利等主产国仍存在较大差距,严重制约了产业的健康发展。基于此,概述了细菌、病毒及其他病原引起的鲑鳟鱼类主要流行性疫病的发病症状、发病条件等方面的研究成果,系统介绍了相应的诊断技术,并重点介绍了国内鲑鳟鱼类免疫防控手段,以期为研究人员提供较为系统的鲑鳟鱼类常见流行疫病相关基础知识、常用的检测技术以及免疫防控手段,为从业者和研究人员对鲑鳟鱼类疫病防控提供参考。  相似文献   

4.
Physiological, immunological and biochemical parameters of blood and mucus, as well as skin histology, were compared in 3 salmonid species (rainbow trout Oncorhynchus mykiss, Atlantic salmon Salmo salar and coho salmon O. kisutch) following experimental infection with sea lice Lepeophtheirus salmonis. The 3 salmonid species were cohabited in order to standardize initial infection conditions. Lice density was significantly reduced on coho salmon within 7 to 14 d, while lice persisted in higher numbers on rainbow trout and Atlantic salmon. Lice matured more slowly on coho salmon than on the other 2 species, and maturation was slightly slower on rainbow trout than on Atlantic salmon. Head kidney macrophages from infected Atlantic salmon had diminished respiratory burst and phagocytic capacity at 14 and 21 d post-infection (dpi), while infected rainbow trout macrophages had reduced respiratory burst and phagocytic capacities at 21 dpi, compared to controls. The slower development of lice, coupled with delayed suppression of immune parameters, suggests that rainbow trout are slightly more resistant to lice than Atlantic salmon. Infected rainbow trout and Atlantic salmon showed increases in mucus lysozyme activities at 1 dpi, which decreased over the rest of the study. Mucus lysozyme activities of infected rainbow trout, however, remained higher than controls over the entire period. Coho salmon lysozyme activities did not increase in infected fish until 21 dpi. Mucus alkaline phosphatase levels were also higher in infected Atlantic salmon compared to controls at 3 and 21 dpi. Low molecular weight (LMW) proteases increased in infected rainbow trout and Atlantic salmon between 14 and 21 dpi. Histological analysis of the outer epithelium revealed mucus cell hypertrophy in rainbow trout and Atlantic salmon following infection. Plasma cortisol, glucose, electrolyte and protein concentrations and hematocrit all remained within physiological limits for each species, with no differences occurring between infected and control fish. Our results demonstrate that significant differences in mucus biochemistry and numbers of L. salmonis occur between these species.  相似文献   

5.
A comparative investigation of tissue carotenoid distribution between rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, was undertaken to identify the relative efficiency of utilization of astaxanthin and canthaxanthin. Higher apparent digestibility coefficients (ADCs) (96% in trout vs. 28-31% in salmon; P<0.05), and pigment retention efficiencies (11.5-12.5% in trout vs. 5.5% in salmon; P<0.05), for both astaxanthin and canthaxanthin, were observed for rainbow trout. Astaxanthin deposition was higher than canthaxanthin in rainbow trout, while the reverse was true for Atlantic salmon, suggesting species-specificity in carotenoid utilization. The white muscle (95% in trout vs. 93% in salmon) and kidneys (0.5% in trout vs. 0.2% in salmon) represented higher proportions of the total body carotenoid pool in rainbow trout than in Atlantic salmon (P<0.05), whereas the liver was a more important storage organ in Atlantic salmon (2-6% in salmon vs. 0.2% in trout; P<0.05). The liver and kidney appeared to be important sites of carotenoid catabolism based on the relative proportion of the peak chromatogram of the fed carotenoid in both species, with the pyloric caecae and hind gut being more important in Atlantic salmon than in the rainbow trout. Liver catabolism is suspected to be a critical determinant in carotenoid clearance, with higher catabolism expected in Atlantic salmon than in rainbow trout.  相似文献   

6.
The relative effects of inter- and intra-specific competition on the survival and growth of stocked salmon were investigated in an upland trout stream during summer and winter sampling periods. The stream was divided into two areas by an impassable fish barrier, and trout were removed from the upstream section prior to 2 years of salmon stocking. Salmon fry stocked into the cleared area survived more than twice as well and grew significantly larger than those stocked into the area containing trout and older salmon. Intra-specific competition from older salmon in the second year of stocking in the cleared area significantly reduced the survival and growth of the O+ salmon. However, these were still significantly larger and survived better than those in the control area where inter-specific competition from trout was maintained. Some immigration of trout to the cleared area occurred; these showed greatly enhanced growth rates compared to those in the control area, reflecting low intra-specific trout competition in the former. Inter-specific competition effects of older salmon on both trout fry growth and survival were also detected, although the latter did not become apparent until the winter. This is discussed in terms of the relative importance of biotic and abiotic regulating mechanisms. Evidence of allopatric niche segregation is also discussed, since salmon in the cleared area did not have a biomass equivalent to that in the area which also contained trout.  相似文献   

7.
The survival of salmon stocked in upland trout streams in the presence of salmon parr was found to be only about half the value recorded when trout alone made up the resident stock. Changes in the trout population were also recorded following the two years of salmon stocking, and these suggested that the presence of salmon parr may also influence trout fry survival. The findings are discussed in the context of habitat competition and total stream holding capacity.  相似文献   

8.
In rainbow trout (Onchorhynchus mykiss) it has been shown that high affinity IgM antibodies have a higher degree of disulfide polymerization and a longer half life time. In the present study, distinct IgM sub-variants related to ancestral tetraploidy in salmonid fish were analyzed to reveal possible characteristic differences between these. A monoclonal antibody (MAb4C10) which distinguishes between IgM-A and IgM-B in Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) was further characterized. It was shown that substitution of a proline located in the loop between the B and C beta strands of the third constant domain (μ3) of salmon μA eliminated MAb4C10 reactivity. Accordingly, the reverse substitution in salmon μB restored MAb4C10 reactivity. Molecular cloning of μ cDNA from arctic char (Salvelinus alpinus) revealed two sub-variants (μA-1 and μA-2), i.e. a similar situation as in Atlantic salmon and brown trout. However, arctic char IgM eluted in one peak by anion exchange chromatography, in contrast to salmon and brown trout IgM that are eluted in two peaks. The only characteristic residue of salmon and brown trout μB is an additional cysteine in the C-terminal part of μ4. Most likely, this cysteine is involved in inter-chain disulfide bonding and influences the elution profiles of IgM-A and IgM-B on anion exchange chromatography. Neither of the μ sub-variants in arctic char have the additional cysteine, and char IgM, as well as salmon and brown trout IgM-A, showed a lower degree of inter-chain disulfide bonding than IgM-B when subjected to denaturation and gel electrophoresis under non-reducing conditions. Hybrids of char/salmon expressed μA-1, μA-2, μA and μB, indicating that there are two paralogous Ig heavy chain gene complexes in the haploid genome of char, like in Atlantic salmon. A comparison of salmonid μ sequences is presented, including representatives of Salmoninae (trout, salmon and char), Thymallinae (grayling) and Coregoninae (whitefish).  相似文献   

9.
The experiment was made in an attempt to modify the usual relationship in which young trout grow faster than young salmon in streams in which they occur together. A stretch of a trout stream was stocked with advanced salmon eggs, which produced fry earlier than the trout eggs laid naturally. The salmon grew faster than the trout and were longer than the trout at the end of the growing season. The mean length of 77.7 mm attained by the salmon is the largest known size reached by salmon in their first year when feeding on natural food supplies in streams in Scotland. Survival rate from egg planting to production of salmon of this mean length was high.  相似文献   

10.
Otoliths of Atlantic salmon, Salmo salar L., are more slender than the otoliths of brown trout, Salmo trutta L. Discriminant analysis on otolith measurements of juvenile Atlantic salmon and brown trout from four river systems revealed a discriminant function which distinguished more than 94% of the cases. This function was tested by using data from a fifth river with cohabiting Atlantic salmon and brown trout: all Atlantic salmon and 91 % of the brown trout were correctly classified.  相似文献   

11.
The chromosomes of the Atlantic salmon, Salmo salar (2n=58) are, on average, larger than those of the trout, S. trutta (2n=80). If the difference in chromosome size represents a permanent change in chromosome structure as between the two species the expectation is that the size difference between salmon and trout chromosomes will be maintained in the hybrid. If, alternatively, the size difference between salmon and trout chromosomes is genotypically determined the difference will not be maintained in nuclei of hybrid genotype. Measurements of a specific chromosome, S, of the salmon complement and of another, S 1, of the trout complement in nuclei of parent species and of the hybrid show that the difference in size is maintained in hybrid nuclei. It is concluded therefore that the size difference between salmon and trout chromosomes is due to structural change rather than to genotypic control.  相似文献   

12.
Interactions between birds and fish are often overlooked in aquatic ecosystems. We studied the influence of Atlantic salmon and brown trout on the breeding population size and reproductive output of the white‐throated dipper in a Norwegian river. Acidic precipitation led to the extinction of salmon, but salmon recolonized after liming was initiated in 1991. We compared the dipper population size and reproductive output before (1978–1992) and after (1993–2014) salmon recolonization. Despite a rapid and substantial increase in juvenile salmon, the breeding dipper population size and reproductive output were not influenced by juvenile salmon, trout, or total salmonid density. This might be due to different feeding strategies in salmonids and dippers, where salmonids are mainly feeding on drift, while the dipper is a benthic feeder. The correlation between the size of the dipper population upstream and downstream of a salmonid migratory barrier was similar before and after recolonization, indicating that the downstream territories were not less attractive after the recolonization of salmon. Upstream dipper breeding success rates declined before the recolonization event and increased after, indicating improved water quality due to liming, and increasing invertebrate prey abundances and biodiversity. Surprisingly, upstream the migratory barrier, juvenile trout had a weak positive effect on the dipper population size, indicating that dippers may prey upon small trout. It is possible that wider downstream reaches might have higher abundances of alternative food, rending juvenile trout unimportant as prey. Abiotic factors such as winter temperatures and acidic precipitation with subsequent liming, potentially mediated by prey abundance, seem to play the most important role in the life history of the dipper.  相似文献   

13.
Males are the heterogametic sex in salmonid fishes. In brown trout (Salmo trutta) the sex-determining locus, SEX, has been mapped to the end of linkage group BT-28, which corresponds to linkage group AS-8 and chromosome SSA15 in Atlantic salmon (Salmo salar). We set out to identify the sex chromosomes in brown trout. We isolated Atlantic salmon BAC clones containing microsatellite markers that are on BT-28 and also on AS-8, and used these BACs as probes for fluorescent in situ hybridization (FISH) analysis. SEX is located on the short arm of a small subtelocentric/acrocentric chromosome in brown trout, which is consistent with linkage analysis. The acrocentric chromosome SSA15 in Atlantic salmon appears to have arisen by a centric fusion of 2 small acrocentric chromosomes in the common ancestor of Salmo sp. We speculate that the fusion process that produced Atlantic salmon chromosome SSA15 disrupted the ancestral sex-determining locus in the Atlantic salmon lineage, providing the impetus either for the relocation of SEX or selection pressure for a novel sex-determining gene to arise in this species. Thus, the sex-determining genes may differ in Atlantic salmon and brown trout.  相似文献   

14.
Food resource partitioning between similar‐sized, sympatric Atlantic salmon Salmo salar and brook trout Salvelinus fontinalis was examined as a possible mechanism enabling their coexistence in a stream (Allaire) of the Sainte‐Marguerite River ecosystem, Quebec, Canada. Fish stomach contents and invertebrate drift were collected concurrently during three diel cycles in August to September 1996. The food and feeding habits of an allopatric brook trout population in a nearby stream (Epinette) were studied for comparison. The diel feeding rhythms of the two coexisting fish species were similar. The composition of their diet, however, showed significant differences. Atlantic salmon predominantly (60–90%) fed on aquatic insects, mainly Ephemeroptera (35–60% of the diet). The brook trout mostly (50–80%) fed upon the allochthonous terrestrial insects (mainly adults of Coleoptera, Hymenoptera and Diptera) which comprised 5–40% of the stream drift. The allopatric brook trout fed opportunistically on the more abundant aquatic insects and terrestrial insects rarely formed 25% of its diet. The allopatric trout fed nearly twice as much as the sympatric brook trout during a day. The results suggest that the differences in feeding by brook trout in the two streams (with and without Atlantic salmon) are the result of inter‐specific interaction with Atlantic salmon and are not related to the differences in food availability between the two streams. Food resource partitioning between Atlantic salmon and brook trout may be viewed as an adaptive response resulting in a greater exploitation of available resources and coexistence.  相似文献   

15.
Dynamics of biological invasions may be complicated in size-structured animal populations. Differences in timing of life history events such as juvenile emergence create complex interaction webs where different life stages of native and non-native species act as predators, competitors, and prey. Stream salmonids are an ideal group for studying these phenomena because they display competition and predation in size-structured populations and have been introduced worldwide. For example, introduced rainbow trout (Oncorhynchus mykiss) are invading streams of Hokkaido Island, Japan and have caused declines in native masu salmon (O. masou) populations. However, age-0 rainbow trout emerge later than age-0 masu salmon and are smaller, which raises the question of why they are able to recruit and therefore invade in the face of a larger competitor. We conducted experiments in laboratory stream channels to test effects of increasing density of age-0 and age-1 rainbow trout on age-0 masu salmon. Age-1 rainbow trout dominated age-0 masu salmon by aggressive interference, relegating them to less favorable foraging positions downstream and reducing their foraging frequency and growth. The age-1 trout also reduced masu salmon survival by predation of about 40% of the individuals overall. In contrast, age-0 rainbow trout had little effect on age-0 masu salmon. Instead, the salmon dominated the age-0 trout by interference competition and reduced their survival by predation of 60% of the individuals. In each case, biotic interactions by the larger species on the smaller were strongly negative due to a combination of interspecific competition and intraguild predation. We predict that together these produce a positive indirect effect in the interaction chain that will allow the recruitment of rainbow trout in the face of competition and predation from age-0 masu salmon, and thereby facilitate their invasion in northern Japan.  相似文献   

16.
Investigations of the growth, survival and production of young salmon Salmo salar , brown trout and sea trout S. trutta in sections of a stream in Scotland were made during 1966–75. At the end of the growing season, in autumn, the size of the 0+ salmon ranged from a mean weight of 1.12 g in 1966 to 2.82 g in 1973, and the size of the 0+ trout ranged from a mean of 2.20 g in 1966 to 3.56 g (68.0 mm) in 1974. Growth rates of 0+ salmon between July to September were similar from year to year, as was the case with the 0+ trout. The greater size attained in their first year by trout, resulted from the longer feeding season, provided by earlier emergence of fry and ability to continue growing in colder weather in autumn. The lengths attained by 0+ salmon and 0+ trout in September were related to the population densities of 0+ salmon and the number of days above 0° C from 1 December. There was no discernible relationship between lengths of 0+ trout and the population densities of 0+ trout. Salmon and trout lost weight during the winter, which was made up by April. The densities of 0+ salmon in June varied between 2–12m –2. Rates of decrease of the population densities in their first year were related to their densities at the beginning of the season, and, more closely, to the densities of salmon and trout combined. At the end of the second year's growth there were between 0.06 and 0.25 salmon m –2. Size of the trout populations varied less from year to year than those of salmon. The life of a year class of salmon and trout could be divided into several stages characterized by different rates of decrease of the population.  相似文献   

17.
The river Nidelva, situated in central Norway, is regulated for production of electricity. Water discharge may vary from 150 to 30 m3 s -1 over a period of 10 min at the outlet of the power stations. The water level then sinks 50 cm during the next 30 min. The Nidelva produces both salmon and trout. Water fluctuations were found responsible for large losses of O+ salmon and trout. The recruitment of salmon was concluded as satisfactory, while recruitment of trout was reduced as a result of stranding.  相似文献   

18.
Susceptibility to different diseases among related species, such as coho salmon (Oncorhynchus kisutch), rainbow trout (Oncorhyncus mykiss) and Atlantic salmon (Salmo salar), is variable. The prominence of these species in aquaculture warrants investigation into sources of this variability to assist future disease management. To develop a better understanding of the basis for species variability, several important non-specific humoral parameters were examined in juvenile fish of these three economically important species. Mucous protease, alkaline phosphatase and lysozyme, as well as plasma lysozyme activities and histological parameters (epidermal thickness and mucous cell density, and size) were characterized and compared for three salmonids: rainbow trout, Atlantic salmon and coho salmon. Rainbow trout had a thicker epidermis and significantly more mucous cells per cross-sectional area than the other two species. Rainbow trout also had significantly higher mucous protease activity than Atlantic salmon and significantly higher lysozyme (plasma and mucus) activities than coho and Atlantic salmon, in seawater. Atlantic salmon, on the other hand, had the lowest activities of mucous lysozyme and proteases, the thinnest epidermal layer and the sparsest distribution of mucous cells, compared with the two other salmonids in seawater. Only coho salmon had sacciform cells. Atlantic and coho salmon had higher mucous lysozyme activities in freshwater as compared to seawater. There was no significant difference between mucous lysozyme activities in any of the three species reared in freshwater; however, rainbow trout still had a significantly higher plasma lysozyme activity compared with the other two species. All three species exhibited significantly lower mucous alkaline phosphatase and protease activities in freshwater than in seawater. Our results demonstrate that there are significant histological and biochemical differences between the skin and mucus of these three salmonid species, which may change as a result of differing environments. Variation in these innate immune factors is likely to have differing influences on each species response to disease processes.  相似文献   

19.
I studied inter- and intraspecific competition in two hatchery stocks: landlocked salmon with long-hatchery background and a heterogenic brown trout stock. These species are potential competitors in the natural environment when landlocked salmon is being restored to wild by stocking hatchery juveniles. Behavioural responses were studied in four indoor laboratory flumes (400 cm long and 37 cm wide) and habitat use in six semi-natural outdoor streams (26 m long and 1.5 m long). Video recordings were used to monitor fish behaviour and electrofishing for fish positioning in the outdoor channels. The study design included five treatments: two densities of brown trout and salmon in solitary and both species together. The results of the study demonstrated that juvenile brown trout changed their behaviour in laboratory streams in response to presence of the landlocked salmon and the density of the conspecifics also tended to alter the habitat use by brown trout in semi-natural streams. Landlocked salmon juveniles showed no response to treatments. I conclude that possible poor adaptive ability to conditions outside hatchery by the hatchery salmon together and more competitive brown trout stocks may limit the success of management action in restoring landlocked salmon back to their natural streams of stocking.  相似文献   

20.
Swimming ability of wild brook trout Salvelinus fontinalis , brown trout Salmo trutta , anadromous Atlantic salmon Salmo salar , and landlocked Atlantic salmon was examined using fixed and increasing velocity tests. Although brook trout and salmon parr were collected from the same site, brook trout were found generally in slow-moving pools whereas salmon were more common in faster riffle areas. Salmon parr could hold station indefinitely in currents in which brook trout could only maintain themselves briefly. Therefore, selection of fast-water areas by salmon parr may impose a velocity barrier to sympatric juvenile brook trout, reducing competition between the species. Performance comparisons also indicate that anadromous Atlantic salmon possess slightly greater sustained ability than landlocked salmon, possibly due to altered selective pressure associated with their different life histories. Finally, fishways and culverts in Newfoundland can now be designed using models generated from performance data collected from native salmonid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号