首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in myosin isozymes during development of chicken gizzard muscle   总被引:3,自引:0,他引:3  
The distribution of myosin isozymes in embryonic and adult chicken gizzard muscle were examined by electrophoresis in a non-denaturing gel system (pyrophosphate acrylamide gel electrophoresis), and both light and heavy chains of embryonic and adult myosin isozymes were compared. In pyrophosphate acrylamide gel electrophoresis, there were three isozyme components in embryonic gizzard myosin, but only one isozyme in adult gizzard myosin. The mobility of the fastest migrating embryonic isozyme was similar to that of the adult isozyme. The three embryonic isozymes differ from each other in the light chain distribution. Two of them contain an embryo-specific myosin light chain, which is characterized by its molecular weight and isoelectric point, whereas the other embryonic myosin isozyme contained the same light chains as the adult myosin. The pattern of peptide fragments of embryonic heavy chain produced by digestion with alpha-chymotrypsin in the presence of SDS was not distinguishable from that of adult myosin heavy chain. Thus there are myosin isozymes specific to embryonic gizzard muscle which exhibit embryo-specific light chain compositions, but are similar to adult gizzard myosin in their heavy chain structure.  相似文献   

2.
We have determined the myosin heavy chain (MHC) composition (using a sensitive sodium dodecyl sulfate-polyacrylamide gel electrophoresis system) and the maximal velocity of shortening (Vmax) of single cells from neonatal and adult chicken anterior latissimus dorsi (ALD) muscles. In addition, the MHC, myosin light chain, and regulatory protein (i.e., troponin and tropomyosin subunits) compositions of bundles of ALD fibers were determined at late embryonic, neonatal, and adult ages. At young ages, there are two MHCs in ALD muscle, SM1 and SM2, with SM1 decreasing in relative amount with increasing age, as shown previously by others. The mean Vmax of single fibers also decreases from neonatal to adult ages. A strong quantitative correlation is demonstrated between the specific MHC composition and Vmax among individual cells of the ALD muscle at several ages. Since virtually no changes occur in the regulatory protein and myosin light chain compositions of the ALD muscle between late embryonic and adult ages, it appears that the MHC composition of an individual cell in this muscle is the primary determinant of the maximal shortening velocity. These results are the first to illustrate the functional significance of the developmental transition in myosin heavy chain composition of an avian slow skeletal muscle, consistent with our previous findings on mammalian muscle.  相似文献   

3.
Two monoclonal antibodies specific for smooth muscle myosin (designated SM-E7 and SM-A9) and one monoclonal anti-(human platelet myosin) antibody (designated NM-G2) have been used to study myosin heavy chain composition of smooth muscle cells in adult and in developing rabbit aorta. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis and Western blotting experiments revealed that adult aortic muscle consisted of two myosin heavy chains (MCH) of smooth muscle type, named MHC-1 (205 kDa), and MHC-2 (200 kDa). In the fetal/neonatal stage of development, vascular smooth muscle was found to contain only MHC-1 but not MHC-2. Non-muscle myosin heavy chain, which showed the same electrophoretic mobility as the slower migrating MHC, was expressed in an inverse manner with respect to MHC-2, i.e. it was detectable only in the early stages of development. The distinct pattern of smooth and non-muscle myosin isoform expression during development may be related to the different functional properties of smooth muscle cells during vascular myogenesis.  相似文献   

4.
Myosin heavy chains prepared from the pectoralis major and from the posterior latissimus dorsi of the same adult chicken exhibit different peptide maps when cleaved with Staphylococcus aureus V8 protease. These differences were observed at five different enzyme concentrations and in chickens of various strains. The cleavage pattern of pectoralis major myosin heavy chain from different adult chickens was always identical, as was that of posterior latissimus dorsi myosin heavy chain, demonstrating the reproducibility of the technique. However, when RNAs extracted from the pectoralis major and from the posterior latissimus dorsi were translated in a cell-free reticulocyte lysate, the myosin heavy chain encoded by pectoralis major RNA and the myosin heavy chain encoded by posterior latissimus dorsi RNA exhibited identical peptide maps. These results suggest that the different peptide maps of myosin heavy chains from the pectoralis major and posterior latissimus dorsi may arise from posttranslational modifications.  相似文献   

5.
Immunochemical studies have identified a distinct myosin heavy chain (MHC) in the chicken embryonic skeletal muscle that was undetectable in this muscle in the posthatch period by both immunocytochemical and the immunoblotting procedures. This embryonic isoform, identified by antibody 96J, which also recognises the cardiac and SM1 myosin heavy chains, differs from the embryonic myosin heavy chain belonging to the fast class described previously. Although the fast embryonic isoform is a major species present in the leg and pectoral embryonic muscles, slow embryonic isoform was present in significant amounts during early embryonic development. Immunocytochemical studies using another monoclonal antibody designated 9812, which is specific for SM1 MHC, showed this isoform to be restricted to only presumptive slow muscle cells. From these studies and those reported on the changes in SM2 MHC, it is proposed that as is the case for the fast class, there also exists a slow class of myosin heavy chains composed of slow embryonic, SM1 and SM2 isoforms. The differentiation of a muscle cell involves transitions in a series of myosin isozymes in both presumptive fast and slow skeletal muscle cells.  相似文献   

6.
Myosin heavy-chain isoforms in human smooth muscle   总被引:2,自引:0,他引:2  
The myosin heavy-chain composition of human smooth muscle has been investigated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, enzyme immunoassay, and enzyme-immunoblotting procedures. A polyclonal and a monoclonal antibody specific for smooth muscle myosin heavy chains were used in this study. The two antibodies were unreactive with sarcomeric myosin heavy chains and with platelet myosin heavy chain on enzyme immunoassay and immunoblots, and stained smooth muscle cells but not non-muscle cells in cryosections and cultures processed for indirect immunofluorescence. Two myosin heavy-chain isoforms, designated MHC-1 and MHC-2 (205 kDa and 200 kDa, respectively) were reactive with both antibodies on immunoblots of pyrophosphate extracts from different smooth muscles (arteries, veins, intestinal wall, myometrium) electrophoresed in 4% polyacrylamide gels. In the pulmonary artery, a third myosin heavy-chain isoform (MHC-3, 190 kDa) electrophoretically and antigenically distinguishable from human platelet myosin heavy chain, was specifically recognized by the monoclonal antibody. Analysis of muscle samples, directly solubilized in a sodium dodecyl sulfate solution, and degradation experiments performed on pyrophosphate extracts ruled out the possibility that MHC-3 is a proteolytic artefact. Polypeptides of identical electrophoretic mobility were also present in the other smooth muscle preparations, but were unreactive with this antibody. The presence of three myosin heavy-chain isoforms in the pulmonary artery may be related to the unique physiological properties displayed by the smooth muscle of this artery.  相似文献   

7.
A modified method of electrophoresis under nondenaturing conditions made it possible to separate rat muscle extracts of defined myosin heavy chain (HC) and light chain (LC) composition into subsets of developmental, fast and slow myosin heavy-chain-based isomyosins. The fastest migrating isomyosins were the neonatal isomyosins (nM1, nM2, nM3), followed by the slightly slower migrating embryonic isomyosins (eM1, eM2, eM3, eM4). Of the nine adult fast isomyosins, the HCIIb-based isomyosins (FM1b, FM2b, FM3b) were the fastest migrating. These were followed by the HCIId-based isomyosins (FM1d, FM2d, FM3d). The HCIIa-based isomyosins (FM1a, FM2a, FM3a) were the slowest. Our results suggest that FM3a is identical with the so-called intermediate isomyosin (IM) described in the literature. The slow myosin heavy-chain-based isomyosins (SM1, SM2, SM3) migrated far behind the fast isomyosins. Whereas the gross electrophoretic mobilities of each of these isomyosin triplets is determined by the specific heavy chain complement, the different mobilities of the bands within each triplet result from different alkali light chain combinations. Thus, the fastest triplet bands of the neonatal (nM1) and adult fast isomyosins (FM1b, FM1d, FM1a) represent the LC3f homodimers, the slowest (nM3, FM3b, FM3d, FM3a) the LC1f homodimers, and the intermediate bands (nM2, FM2b, FM2d, FM2a) the LC1f/LC3f heterodimers. Different proportions of the adult fast isomyosin triplet bands indicate that the affinity for LC3f decreases in the order HCIIb, HCIId, HCIIa. The three slow isomyosins represent LC1sa (SM1) and LC1sb (SM3) homodimers and a LC1sa/LC1sb heterodimer (SM2). Circumstantial evidence suggests an inverse order in rabbit muscle where SM1 and SM3 most likely represent LC1sb and LC1sa homodimers, respectively.  相似文献   

8.
T J Eddinger  R A Murphy 《Biochemistry》1988,27(10):3807-3811
Smooth muscle myosin heavy chains [SM1, approximately 205 kilodaltons (kDa), and SM2, approximately 200 kDa] were separated on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Peptide maps of the two heavy chains showed unique patterns. Limited proteolytic cleavage of purified swine stomach myosin was performed by using a variety of proteases to produce the major myosin fragments which were resolved on SDS gels. A single band was obtained for heavy meromyosin in the soluble fraction following chymotrypsin digestion. However, a variable number of bands were observed for light meromyosin fragments in the insoluble fraction after chymotrypsin digestion. Peptide mapping indicated that the two bands observed after short digestion times with chymotrypsin had relative mobility and solubility properties consistent with approximately 100- and 95-kDa light meromyosin (LMM) fragments. These results indicate that the region of difference between SM1 and SM2 lies in the LMM fragment.  相似文献   

9.
V G Nare?ko 《Ontogenez》1988,19(6):601-605
Changes in the myosin isozyme spectrum were studied in the loach developing skeletal muscle. It was shown using disk-electrophoresis in polyacrylamide gel and peptide mapping that light and heavy myosin chains from the larval muscles, as well as from the red and white muscle of adult fish differ from each other. Forms of myosin light and heavy chains were found which were characteristic of the larval muscle only.  相似文献   

10.
A messenger ribonucleoprotein (mRNP) particle containing the mRNA coding for the myosin heavy chain (MHC mRNA) has been isolated from the postpolysomal fraction of homogenates of 14-day-old chick embryonic muscles. The mRNP sediments in sucrose gradient as 120 S and has a characteristic buoyant density of 1.415 g/cm3, which corresponds to an RNA:protein ratio of 1:3.8. The RNA isolated from the 120 S particle behaved like authentic MHC mRNA purified from chick embryonic muscles with respect to electrophoretic mobility and ability to program the synthesis of myosin heavy chain in a rabbit reticulocyte lysate system as judged by multi-step co-purification of the in vitro products with chick embryonic leg muscle myosin added as carrier. The RNA obtained from the 120 S particle was as effective as purified MHC mRNA in stimulating the synthesis of the complete myosin heavy chains in rabbit reticulocyte lysate under conditions where non-muscle mRNAs had no such effect. Analysis of the protein moieties of the 120 S particle by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows the presence of seven distinct polypeptides with apparent molecular weights of 44,000, 49,000, 53,000, 81,000, 83,000, and 98,000, whereas typical ribosomal proteins are absent. These results indicate that the 120 S particles are distinct cellular entities unrelated to ribosomes or initiation complexes. The presence of muscle-specific mRNAs as cytoplasmic mRNPs suggests that these particles may be involved in translational control during myogenesis in embryonic muscles.  相似文献   

11.
The CNBr peptides of [14C]carboxymethylated cardiac myosin heavy chains from euthyroid and thyrotoxic rabbits have been compared using a two-dimensional electrophoretic system. The results indicated that there were extensive differences in the peptide "maps" of these heavy chains, which included differences in the distribution of radiolabeled thiol peptides. Also, the patterns of heavy chain peptides from the cardiac myosins have been compared with those produced by the heavy chain myosin isozymes from skeletal muscles. Peptide maps of heavy chains from red skeletal muscle myosin closely resembled the pattern of peptides found with cardiac myosin heavy chains from euthyroid rabbits. However, peptide maps of heavy chains from white skeletal muscle myosin were dissimilar to those of the cardiac myosin isozymes. We conclude that thyroxine administration stimulates the synthesis of a cardiac myosin isozyme with a heavy chain primary structure which is different from either of the skeletal muscle myosin isozymes.  相似文献   

12.
Hypertrophy was produced in the anterior latissimus dorsi (ALD) muscle of 5-wk-old chickens by application of a load to the humerus. After 4 wk, hypertrophied ALD muscles were greater than 2.5 times heavier than contralateral control ALD muscles. Two isomyosins are distinguishable in normal ALD muscles by their different electrophoretic mobilities. It is shown here that the faster migrating SM-1 isomyosin decreases in abundance with age and that the application of an overload enhances both the rate and extent of this process. Monoclonal antibodies were selected by an immunotransfer technique that were specific for the heavy chains associated with either SM-1 or SM-2, or cross-reacted with both isoforms. The cellular distribution of the SM-1 and SM-2 isomyosins was analyzed by immunofluorescent technique using these antibodies. Anti-SM-1 and anti-SM-2 antibodies reacted with separate populations of cells, whereas the third antibody reacted with all myocytes in the normal ALD muscle. These data suggest that there is an exclusive cellular distribution of myosin heavy chains associated with SM-1 and SM-2 proteins. Immunofluorescent analysis of hypertrophied muscle showed the anti-SM-2-specific antibody reacting with all myocytes, whereas the anti-SM-1-specific antibody reacted with none. This is consistent with the elimination of the SM-1 isoform in hypertrophied muscles.  相似文献   

13.
The stoichiometry of the two heavy chains of myosin in smooth muscle was determined by electrophoresing extracts of native myosin and of dissociated myosin on sodium dodecyl sulfate (SDS) 4%-polyacrylamide gels. The slower migrating heavy chain was 3.6 times more abundant in toad stomach, 2.3 in rabbit myometrium, 2.0 in rat femoral artery, 1.3 in guinea pig ileum, 0.93 in pig trachea and 0.69 in human bronchus, than the more rapidly migrating chain. Both heavy chains were identified as smooth muscle myosin by immunoblotting using antibodies to smooth muscle and non-muscle myosin. The unequal proportion of heavy chains suggested the possibility of native isoforms of myosin comprised of heavy-chain homodimers. To test this, native myosin extracts wer electrophoresed on non-dissociating (pyrophosphate) gels. When each band was individually analysed on SDS-polyacrylamide gel the slowest was found to be filamin and the other bands were myosin in which the relative proportion of the heavy chains was unchanged from that found in the original tissue extracts. Since this is incompatible with either a heterodimeric or a homodimeric arrangement it suggests that pyrophosphate gel electrophoresis is incapable of separating putative isoforms of native myosin.  相似文献   

14.
Myosin subunit composition in human developing muscle.   总被引:5,自引:2,他引:3       下载免费PDF全文
Previous pyrophosphate-gel studies have reported the existence of embryonic neonatal myosin isoenzymes in human developing muscle. The present investigation was undertaken to characterize their subunit composition more precisely. Two immature muscle myosins are contrasted with adult myosin: neonatal myosin and foetal myosin. The neonatal form of myosin is weakly cross-reactive with rabbit slow myosin and contains only fast-type light chains (LC), LC1F and LC2F. The associated heavy chains consist of a single electrophoretic component that reacts exclusively with antibodies against human foetal myosin and has a mobility and peptide pattern distinct from that of adult fast and slow heavy chains. Foetal myosin is distinguished by the presence of low amounts of a heavy chain immunologically cross-reactive with the adult slow form and of two additional light-chain components: a LC2S light chain and a foetal-specific light chain (LCemb.). The foetal-specific light chain, as shown by one-dimensional-peptide-map analysis, is structurally unrelated to both LC1S and LC1F light chains of human adult myosin. We conclude from these results that the ontogenesis of human muscle myosin shares certain common features with that observed in other species, except for the persistence until birth of a foetal form of heavy chain (HCemb.).  相似文献   

15.
1. Actomyosin extracts of trunk, heart, and head muscles from barbel (Barbus barbus L.) were analyzed by SDS-polyacrylamide gel electrophoresis to study their myosin heavy chain composition. 2. Four heavy chain isoforms were found: trunk white, trunk red, and ventricle muscles yielded one heavy chain typical of the muscle type; head muscles devoid of red fibers displayed two heavy chain isoforms, the slow migrating one corresponding to the trunk white muscle type. 3. The electrophoretic mobility of red and ventricle myosin heavy chains related to that of white isoforms appeared highly modified by the glycerol content of the gels.  相似文献   

16.
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (+/-2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37 degrees C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 muM Ca2+ concentration (CaEGTA binding constant equals 4.4 - 10(5) at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6-9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8- and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6-10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle.  相似文献   

17.
Gary Bailin 《BBA》1976,449(2):310-326
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (±2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37°C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 μM Ca2+ concentration (CaEGTA binding constant = 4.4 · 105 at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6–9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8-and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6–10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle  相似文献   

18.
A library of monoclonal antibodies specific for myosin heavy chain (HC) was used to study myosin expression in regenerating fibers. The response to cold injury of slow skeletal ALD muscle previously induced to eliminate SM1 myosin by weight overload was compared to that of its contralateral control. Native gel electrophoresis combined with immunoblotting demonstrated that slow SM1 myosin HC eliminated from hypertrophic muscle reappeared both at the site of active regeneration and unexpectedly, also distal to the site of injury. The regeneration response of hypertrophied muscles was similar to that of the controls. In addition to SM1 myosin HC, ventricular-like and embryonic/fast isoforms were also expressed in both muscles during the early stages of regeneration and disappeared as the muscle fibers matured. These observations demonstrate that regenerating slow muscle fibers reexpress myosins' characteristic of developing muscle irrespective of the myosin phenotype prior to injury. The reappearance of repressed myosin HC in the hypertrophied ALD muscle is consistent with the presence of newly differentiated myonuclei.  相似文献   

19.
A chicken embryonic polysome fraction that contains 50–60 monoribosomes and synthesizes the heavy chains of myosin is separated from other polysomes of smaller sizes by centrifugation through two cycles of discontinuous and continuous sucrose gradients. The unique properties of the polyadenylic acid segment present at the 3′-end of eukaryotic messenger RNA (mRNA) were used to purify the mRNA for myosin heavy chain from the phenol-extracted total RNA obtained from this polysome fraction. The total RNA was filtered thro ugh millipore filters resulting in partition of the riboscmal RNA (rRNA) and mRNA species. This millipore-bound RNA fraction, which consists of the mRNA and some ribosomal RNAs, was eluted from the filters with sodium dodecyl sulfate (SDS). Subsequent chromatography of this fraction on a cellulose column gave two well-separated peaks: an unadsorbed peak of ribosomal RNAs which was eluted with buffers of high ionic strength and an adsorbed peak of mRNA which was eluted only with a buffer of low ionic strength. Polyacrylamide gel electrophoresis of the mRNA peak fraction showed a single band with no detectable amounts of other RNAs, the mRNA migrating slower than 28S rRNA. The product of in vitro translation of the purified mRNA using a homologous cell-free system was identified as the myosin heavy chain by the following criteria: coprecipitation with carrier myosin at low ionic strength; elution properties on DEAE-cellulose column; and comigration with the heavy chain in polyacrylamide gel electrophoresis. In order to demonstrate the fidelity of translation of the mRNA, 14C-labeled products of the in vitro translation were copurified with unlabeled myosin heavy chains added as a carrier. The mixture of polypeptides was then cleaved with CNBr and the resulting peptides were separated by molecular sieving. The correlation between the radioactivity and the UV absorbance in the separated peptides indicates that total synthesis of the myosin heavy chain was achieved.  相似文献   

20.
The alternatively spliced SM1 and SM2 smooth muscle myosin heavy chains differ at their respective carboxyl termini by 43 versus 9 unique amino acids. To determine whether these tailpieces affect filament assembly, SM1 and SM2 myosins, the rod region of these myosin isoforms, and a rod with no tailpiece (tailless), were expressed in Sf 9 cells. Paracrystals formed from SM1 and SM2 rod fragments showed different modes of molecular packing, indicating that the tailpieces can influence filament structure. The SM2 rod was less able to assemble into stable filaments than either SM1 or the tailless rods. Expressed full-length SM1 and SM2 myosins showed solubility differences comparable to the rods, establishing the validity of the latter as a model for filament assembly. Formation of homodimers of SM1 and SM2 rods was favored over the heterodimer in cells coinfected with both viruses, compared with mixtures of the two heavy chains renatured in vitro. These results demonstrate for the first time that the smooth muscle myosin tailpieces differentially affect filament assembly, and suggest that homogeneous thick filaments containing SM1 or SM2 myosin could serve distinct functions within smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号