首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative localization of three classes of cell wall proteins.   总被引:15,自引:1,他引:14  
The localization of the cell wall proline-rich proteins (PRPs), and the gene expression of the cell wall glycine-rich proteins (GRPs) and the hydroxyproline-rich glycoproteins (HRGPs) were examined in several dicot species. The PRPs are accumulated in the corner walls of the cortex where several cells are joined together and in the protoxylem cell walls of 3-day-old soybean root. In 1-month-old soybean plants, the PRPs are specifically deposited in xylem vessel elements of the young stem, and they are accumulated in both phloem fibers and xylem vessel elements and fibers of the older stem. Likewise, the PRPs are localized in xylem vessel elements and fibers in tomato, petunia, potato and tobacco stems. They are also found in outer and inner phloem fiber cell walls of tomato stem and in outer phloem fiber cell walls of petunia stem. The gene expression of the HRGPs and the GRPs is developmentally regulated in tomato, petunia and tobacco stems. HRGP mRNAs are abundant in outer and inner phloem regions, while GRP mRNAs are present mostly in primary xylem and in the cambium region. Immunocytochemical localization showed that the GRPs have a localization pattern similar to that of the PRPs in tomato, petunia and tobacco stems.  相似文献   

2.
Root-specific cDNAs of glycine-rich protein (cucumber root glycine rich protein-1 and -2; CRGRP-1 and CRGRP-2) were cloned previously by use of an antiserum raised against whole xylem sap of Cucumis sativus. The accumulation of the corresponding mRNA at high levels was detected in the root-hair zone of cucumber tap root [Sakuta et al. (1998) Plant Cell Physiol. 39: 1330]. The RNA gel blot analysis with the CRGRP-1- and -2-specific probes revealed that the CRGRP genes expressed only in root but not at all in aboveground organs. When the localization of these mRNAs were examined by in situ hybridization, CRGRP mRNAs were found only in the parenchyma cells in the central cylinder of young lateral roots and it was most abundant in the cells that surrounded xylem vessels in the root-hair zone of the tap root. In immunoblotting of xylem sap collected from cucumber stem with an antiserum raised against CRGRP-1 that had been produced in an E. coli expression system, the antibodies, which did not cross-react with GRP1.8 of kidney bean, reacted with two proteins, whose mobilities corresponded to those of proteins deduced from the CRGRP-1 and -2 cDNAs. Immunohistochemical staining revealed that the CRGRPs accumulated specifically in the lignified walls of metaxylem vessels in the root, stem and leaf and in the lignified cell walls of perivascular fibers in cucumber stems. Immunostaining was also detected in the walls of metaxylem vessels and in the cell walls of adjacent sclerenchyma in the hypocotyl of kidney bean. These data clearly indicate that the novel glycine-rich proteins were produced in the vascular tissue of the root, transported systemically over a long distance via the xylem sap and immobilized in the walls of metaxylem vessels and sclerechyma cells in aboveground organs.  相似文献   

3.
Indoleacetic acid (IAA)-oxidase from both secondary phloem and xylem was dependent on 2,4-dichlorophenol for activity, and was enhanced by addition of Mn2+. The pH optimum was 6.0 from both tissues. IAA-oxidase and its inhibitors were distributed differently in the secondary phloem and secondary xylem of carrot root. In the phloem a high IAA-oxidase activity was distributed uniformly along the radius but in the xylem a somewhat lower concentration decreased from the cambium. IAA-oxidase inhibitor in the phloem increased exponentially from a very low concentration near the cambium, whereas in the xylem an appreciable concentration was present near the cambium, decreasing linearly with distance from the cambium. Longitudinal gradients in the xylem parallel studies by other workers with the greatest IAA-destroying capacity present in older tissues. In the xylem inhibitor decreased and IAA-oxidase increased from the root apex. In the phloem IAA-oxidase was uniform, whereas the inhibitor increased in older tissue.

The IAA-oxidase inhibitors in phloem and xylem may be different. In the xylem the IAA-oxidase inhibitor may be a lignin precursor present in young cells which disappears as lignification proceeds. In the phloem IAA-oxidase reacting with endogenous IAA appears to form a physiologically active product.

  相似文献   

4.
Anomalous secondary thickening occurs in the main axis of Bougainvillea spectabilis as a result of a primary thickening meristem which differentiates in pericycle. The primary thickening meristem first appears in the base of the primary root about 6 days after germination and differentiates acropetally as the root elongates. It begins differentiating from the base of the hypocotyl toward the shoot apex about 33 days after germination. The primary thickening meristem is first observable at the base of the first internode about 60 days after germination. It then becomes a cylinder in the main axis of the seedling. No stelar cambial cylinder forms in the primary root, hypocotyl, or stem because vascular cambium differentiation occurs neither in the pericycle opposite xylem points in the primary root nor in interfascicular parenchyma in the hypocotyl or stem. The primary vascular system of the stem appears anomalous because an inner and an outer ring of vascular bundles differentiate in the stele. Bundles of the inner ring anastomose in internodes, whereas those of the outer ring do not. Desmogen strands each of which is composed of phloem, xylem with both tracheids and vessels, and a desmogic cambium, differentiate from prodesmogen strands in conjunctive tissue. The parenchymatous cells surrounding desmogen strands then differentiate into elongated simple-pitted fibers and thick-walled fusiform cells that are about the same length as the primary thickening meristem initials.  相似文献   

5.
Transfer of soybean seedlings to low-water-potential vermiculite (w = –0.3 MPa) results in a reversible decrease in hypocotyl growth and modulation of several polysomal mRNAs (Plant Physiol 92: 205–214). We report here the isolation of two cDNA clones (pGE16 and pGE95) which correspond to genes whose mRNA levels are increased, and one cDNA clone (pGE23) which corresponds to a gene whose mRNA level is decreased in the hypocotyl zone of cell elongation by water deficit. In well-watered seedlings mRNAs hybridizing to pGE16 and pGE95 are most abundant in mature regions of the seedling, but in water-deficient seedlings mRNA levels are reduced in mature regions and enhanced in elongating regions. RNA corresponding to soybean proline-rich protein 1 (sbPRP1) shows a similar tissue distribution and response to water deficit. In contrast, in well-watered seedlings, the gene corresponding to pGE23 was highly expressed in the hypocotyl and root growing zones. Transfer of seedlings to low-water-potential vermiculite caused a rapid decrease in mRNA hybridizing to pGE23. Sequence analysis revealted that pGE23 has high homology with -tubulin. Water deficit also reduced the level of mRNA hybridizing to JCW1, an auxin-modulated gene, although with different kinetics. Furthermore, mRNA encoding actin, glycine-rich proteins (GRPs), and hydroxyproline-rich glycoproteins (HRGPs) were down-regulated in the hypocotyl zone of elongation of seedlings exposed to water deficit. No effect of water deficit was observed on the expression of chalcone synthase. Decreased expression of -tubulin, actin, JCW1, HRGP and GRP and increased expression of sbPRP1, pGE95 and pGE16 in the hypocotyl zone of cell elongation could participate in the reversible growth inhibition observed in water-deficient soybean seedlings.  相似文献   

6.
Ryser U  Keller B 《The Plant cell》1992,4(7):773-783
A polyclonal antibody was used to localize a glycine-rich cell wall protein (GRP 1.8) in French bean hypocotyls with the indirect immunogold method. GRP 1.8 could be localized mainly in the unlignified primary cell walls of the oldest protoxylem elements and also in cell corners of both proto- and metaxylem elements. In addition, GRP 1.8 was detected in phloem using tissue printing. The labeled primary walls of dead protoxylem cells showed a characteristically dispersed ultrastructure, resulting from the action of hydrolases during the final steps of cell maturation and from mechanical stress due to hypocotyl growth. Primary walls of living protoxylem and adjacent parenchyma cells were only weakly labeled. This was true also for the secondary walls of proto- and metaxylem cells, which in addition showed high background labeling. Inhibition of lignification with a specific and potent inhibitor of phenylalanine ammonia-lyase did not lead to enhanced labeling of secondary walls, showing that lignin does not mask the presence of GRP 1.8 in these walls. Dictyosomes of living proto- and metaxylem cells were not labeled, but dictyosomes of xylem parenchyma cells without secondary walls, adjacent to strongly labeled protoxylem elements, were clearly labeled. These observations suggest that GRP 1.8 is not produced by xylem vessels but by xylem parenchyma cells that export the protein to the wall of protoxylem vessels.  相似文献   

7.
本研究采用常规石蜡切片结合荧光显微镜技术对银州柴胡根的发育解剖学进行了研究。结果表明:(1)银州柴胡根顶端分生组织由原分生组织及其衍生的初生分生组织组成。原生分生组织细胞体积小、排列紧密、细胞质浓厚、细胞核大而明显,具有典型的分生组织的特点;(2)初生分生组织由根冠原、表皮原、皮层原和中柱原组成。在根发育过程中,表皮、皮层和维管柱共同组成其初生结构。银州柴胡根初生木质部为二原型或三原型,外始式;同时在根表皮细胞的径向壁观察到径向壁的细胞壁加厚;(3)在根次生生长过程中,位于初生木质部和初生韧皮部之间的原形成层恢复分裂能力产生维管形成层,维管形成层不断地向外产生次生韧皮部,向内产生次生木质部;同时位于根内皮层内方的中柱鞘细胞恢复分裂能力产生木栓形成层,木栓形成层向外形成木栓层,向内形成栓内层。在维管形成层和木栓形成层分裂的过程中,在次生韧皮部和中柱鞘组织中产生形态大小不同的分泌道,均为次生的裂生型分泌道。研究认为,银州柴胡根的结构类似于药典收录的北柴胡和红柴胡根的结构特点,但其根表皮细胞径向壁加厚、木纤维的分布、分泌道的大小和数量等有别于柴胡属其它植物,可作为柴胡属植物重要的分类鉴定依据。  相似文献   

8.
Hebanthe eriantha (Poir.) Pedersen, a climbing species of the Amaranthaceae increases in stem thickness by forming successive cambia. The family is dominated by herbaceous species and is constantly under discussion due to its disputed nature of the meristem. In the young stem small alternate segments of vascular cambium cease to divide and new arc of cambium initiates outside to it. The newly formed arcs connect with pre-existing alternate segments of cambium to complete the ring. On the contrary, in thick stems, instead of small segments, complete ring of cambium is replaced by new one. These new alternate segments/cambia originate from the parenchyma cells located outside to the phloem produced by previous cambium. Cambium is storied and exclusively composed of fusiform initials while ray cells remain absent at least in the early part of the secondary growth. However, large heterocellular rays are observed in 15-mm diameter stems but their frequency is much lower. In some of the rays, ray cells become meristematic and differentiate into radially arranged xylem and phloem elements. In fully grown plants, stems are composed of several successive rings of secondary xylem alternating with secondary phloem. Secondary xylem is diffuse-porous and composed of vessels, fibres, axial parenchyma while exceptionally large rays are observed only in the outermost regions of thick stems. Vessel diameter increases progressively from the centre towards the periphery of stems. Although the origin of successive cambia and composition of secondary xylem of H. eriantha remains similar to other herbaceous members of Amaranthaceae, the occurrence of relatively wider and thick-walled vessels and large rays in fully grown plants is characteristic to climbing habit.  相似文献   

9.
Seedlings of Atriplex hortensis were studied to ascertain; 1) in which organ the primary thickening meristem (PTM) first differentiates; 2) the direction of differentiation of the PTM, and 3) the pattern of differentiation of conjunctive tissue. The PTM initially differentiates in pericycle of the primary root base 11 days after emergence of the primary root. It then differentiates in the transition region of the hypocotyl, mostly in cells of pericycle between pairs of vascular bundles. In the upper hypocotyl, PTM differentiates by day 20 in the inner layer of cortical parenchyma. In the epicotyl, PTM apparently differentiates in the inner layer of cortex, by day 24. Desmogic xylem differentiates from radial files of internal conjunctive tissue cells and desmogic phloem differentiates opposite desmogic xylem strands from newly formed cells of external conjunctive tissue. No interfascicular cambium differentiates in the root, hypocotyl, or epicotyl.  相似文献   

10.
Stem anatomy and development of medullary phloem are studied in the dwarf subshrub Cressa cretica L. (Convolvulaceae). The family Convolvulaceae is dominated by vines or woody climbers, which are characterized by the presence of successive cambia, medullary- and included phloem, internal cambium and presence of fibriform vessels. The main stems of the not winding C. cretica shows presence of medullary (internal) phloem, internal cambium and fibriform vessels, whereas successive cambia and included phloem are lacking. However, presence of fibriform vessels is an unique feature which so far has been reported only in climbing members of the family. Medullary phloem develops from peri-medullary cells after the initiation of secondary growth and completely occupies the pith region in fully grown mature plants. In young stems, the cortex is wide and formed of radial files of tightly packed small and large cells without intercellular air spaces. In thick stems, cortical cells become compressed due to the pressure developed by the radial expansion of secondary xylem, a feature actually common to halophytes. The stem diameter increases by the activity of a single ring of vascular cambium. The secondary xylem is composed of vessels (both wide and fibriform), fibres, axial parenchyma cells and uni-seriate rays. The secondary phloem consists of sieve elements, companion cells, axial and ray parenchyma cells. In consequence, Cressa shares anatomical characteristics of both climbing and non-climbing members. The structure of the secondary xylem is correlated with the habit and comparable with that of other climbing members of Convolvulaceae.  相似文献   

11.
Miller , Robert H. (U. Nevada, Reno.) Morphology of Humulus luppulus. II. Secondary growth in the root and seedling vascularization. Amer. Jour. Bot. 46(4): 269–277. Illus. 1959.—In the primary state the roots of Humulus lupulus L. have a diarch xylem plate with 2 strands of primary phloem lying on either side of the primary xylem. Secondary histogenesis is described for the primary root. Fibrous and fleshy storage roots are developed by the hop plant and their respective developmental and anatomical structures are described. Lateral roots are initiated in the pericycle opposite the protoxylem poles. The architecture of these secondary roots is similar to that of the primary root. The seedling develops a fleshy storage organ through secondary growth of the primary root and the hypocotyl. The hypocotyl eventually resembles a fleshy taproot throughout most of its extent. The vascular cambium differentiates large amounts of parenchymatous tissues. A relatively smaller amount of tracheary tissue is formed. The secondary phloem comprises a high percentage of phloem parenchyma and ray cells containing numerous large starch grains, and constitutes the larger portion of the fleshy storage root. Numerous thick-walled lignified fibers occur throughout the secondary vascular tissues. Resin and tannin cells are abundantly distributed. A phellogen is differentiated from the pericycle and develops a persistent periderm on the outer surface of the fleshy storage organ. A relatively short transition region occurs in the upper part of the hypocotyl. The transition takes place from a radially alternate arrangement of the vascular tissues in the root to a collateral arrangement in the cotyledons.  相似文献   

12.
In Ipomoea hederifolia Linn., stems increase in thickness by forming successive rings of cambia. With the increase in stem diameter, the first ring of cambium also gives rise to thin-walled parenchymatous islands along with thick-walled xylem derivatives to its inner side. The size of these islands increases (both radially and tangentially) gradually with the increase in stem diameter. In pencil-thick stems, that is, before the differentiation of a second ring of cambium, some of the parenchyma cells within these islands differentiate into interxylary phloem. Although all successive cambia forms secondary phloem continuously, simultaneous development of interxylary phloem was observed in the innermost successive ring of xylem. In the mature stems, thick-walled parenchyma cells formed at the beginning of secondary growth underwent dedifferentiation and led to the formation of phloem derivatives. Structurally, sieve tube elements showed both simple sieve plates on transverse to slightly oblique end walls and compound sieve plates on the oblique end walls with poorly developed lateral sieve areas. Isolated or groups of two to three sieve elements were noticed in the rays of secondary phloem. They possessed simple sieve plates with distinct companion cells at their corners. The length of these elements was more or less similar to that of ray parenchyma cells but their diameter was slightly less. Similarly, in the secondary xylem, perforated ray cells were noticed in the innermost xylem ring. They were larger than the adjacent ray cells and possessed oval to circular simple perforation plates. The structures of interxylary phloem, perforated ray cells, and ray sieve elements are described in detail.  相似文献   

13.
J H Ahn  Y Choi  Y M Kwon  S G Kim  Y D Choi    J S Lee 《The Plant cell》1996,8(9):1477-1490
A novel hydroxyproline-rich glycoprotein (SbHRGP3) that consists of two different domains is encoded by an extensin gene from soybean. The first domain (domain 1) located at the N terminus is composed of 11 repeats of Ser-Pro4-Lys-His-Ser-Pro4-Tyr3-His, whereas the second domain (domain 2) at the C terminus contains five repeats of Ser-Pro4-Val-Tyr-Lys-Tyr-Lys-Ser-Pro4-Tyr-Lys-Tyr-Pro-Ser-Pro5-Tyr-Lys-T yr- Pro-Ser-Pro4-Val-Tyr-Lys-Tyr-Lys. These two repeat motifs are organized in an extremely well-ordered pattern in each domain, which suggests that SbHRGP3 belongs to a new group of proteins having the repeat motifs of two distinct groups of dicot extensins. The expression of the SbHRGP3 gene increased with seedling maturation, and its expression was relatively high in the mature regions of the hypocotyl and in the root of soybean seedlings. An SbHRGP3-beta-glucuronidase (SbHRGP3-GUS) chimeric gene was constructed and expressed in transgenic tobacco plants. The expression of the SbHRGP3-GUS gene was not induced by wounding alone in transgenic tobacco plants; sucrose was also required. Expression was specific to phloem tissues and cambium cells of leaves and stems. In transgenic tobacco seedlings, SbHRGP3-GUS gene expression was activated by the maturation of the primary root and then inactivated; however, reactivation was specifically at the epidermis of the zone from which the lateral root was to be initiated. Its reactivation occurred just before the lateral root initiation. These results indicate that the SbHRGP3 gene in different tissues responds to different signals.  相似文献   

14.
白鲜根的发育解剖学研究   总被引:1,自引:0,他引:1  
应用半薄切片、常规石蜡切片并结合离析法,对药用植物白鲜(Dictamnus dasycarpus Turcz.)根的发生发育过程进行了研究。结果表明:白鲜根的发生发育过程包括4个阶段,即原分生组织阶段、初生分生组织阶段、初生结构阶段以及次生结构阶段。原分生组织位于根冠内侧及初生分生组织之间,衍生细胞分化为初生分生组织。初生分生组织由原表皮、基本分生组织以及中柱原组成。原表皮分化为表皮,基本分生组织分化为皮层,中柱原分化为维管柱,共同组成根的初生结构;在初生结构中,部分表皮细胞外壁向外延伸形成根毛,皮层中分布有油细胞,内皮层有凯氏带,初生木质部为二原型或偶见三原型,外始式;根初生结构有髓或无。次生结构来源于原形成层起源的维管形成层的活动以及中柱鞘起源的木栓形成层的活动;白鲜次生韧皮部宽广,其中多年生根中可占根横切面积的85%,另外除基本组成分子外,还分布有油细胞;周皮发达,木栓层厚;初生皮层、次生木质部和次生韧皮部薄壁细胞中常充满丰富的淀粉粒。  相似文献   

15.
Seedlings of Brassica napus L. 2–11 days after germination were used. However, the most investigation was concentrated on the 6-day old seedlings. The primary root has a diarch protostele, the two groups of primary phloem alternate with the primary xylem. At higher level, the metaxylem is gradually differentiated in a lateral direction. Being coincident with this changes of the metaxylem, the groups of phloem cell are extended. The stele of the lower hypocotyl is root-like and has no pith. In the middle hypocotyl, there is a further lateral differentiation of the metaxylem. At the higher level, four metaxylem arms appear and the groups of phloem are extended circumferentially to form two crescent shaped sectors. In the upper hypocotyl below 0.2 cm of the cotyledonary node, a central pith has been formed which separates the differentiating primary xylem into two distinct units. At a slightly higher level, each primary phloem divides into two small groups, at this time, each xylem unit and the two adjacent groups of phloem constitute a cotyledonary trace. The foliar traces of the first two foliage leaves appear in the inter-cotyledonary plane between the vascular elements of the cotyledonary traces. At this level, the vascular tissue of the hypocotyl forms a siphonostele made up of two cotyledonary traces and the two foliage leaves, where the root-stem transition has nearly been completed, while the endarch condition is not attained in the hypocotyl. At incresing distances from the cotyledonary node upwards, in the cotyledonary petiole, the protoxylem occupies a more and more adaxial position and the metaxylem a more and more abaxial direction and, thus, the endarch condition is attained. The primary system of the root, hypocotyl, and cotyledons forms a complete circular system, the plumular vascular elements are directly connected by secondary elements formed by the cambium in the region of the hypocotyl. As for the results mentioned above, the authers have not detected that the primary xylem has a rotation of 180˚, as described by Van Tieghem.  相似文献   

16.
Ipomoea hederifolia stems increase in thickness using a combination of different types of cambial variant, such as the discontinuous concentric rings of cambia, the development of included phloem, the reverse orientation of discontinuous cambial segments, the internal phloem, the formation of secondary xylem and phloem from the internal cambium, and differentiation of cork in the pith. After primary growth, the first ring of cambium arises between the external primary phloem and primary xylem, producing secondary phloem centrifugally and secondary xylem centripetally. The stem becomes lobed, flat, undulating, or irregular in shape as a result of the formation of both discontinuous and continuous concentric rings of cambia. As the formation of secondary xylem is greater in one region than in another, this results in the formation of a grooved stem. Successive cambia formed after the first ring are of two distinct functional types: (1) functionally normal successive cambia that divide to form secondary xylem centripetally and secondary phloem centrifugally, like other dicotyledons that show successive rings, and (2) abnormal cambia with reverse orientation. The former type of successive rings originates from the parenchyma cells located outside the phloem produced by previous cambium. The latter type of cambium develops from the conjunctive tissue located at the base of the secondary xylem formed by functionally normal cambia. This cambium is functionally inverted, producing secondary xylem centrifugally and secondary phloem centripetally. In later secondary growth, xylem parenchyma situated deep inside the secondary xylem undergoes de‐differentiation, and re‐differentiates into included phloem islands in secondary xylem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 30–40.  相似文献   

17.
Secondary growth in the stem of Dolichos lablab is achieved by the formation of eccentric successive rings of vascular bundles. The stem is composed of parenchymatous ground tissue and xylem and phloem confined to portions of small cambial segments. However, development of new cambial segments can be observed from the obliterating ray parenchyma, the outermost phloem parenchyma and the secondary cortical parenchyma. Initially cambium develops as small segments, which latter become joined to form a complete cylinder of vascular cambium. Each cambial ring is functionally divided into two distinct regions. The one segment of cambium produces thick-walled lignified xylem derivatives in centripetal direction and phloem elements centrifugally. The other segment produces only thin-walled parenchyma on both xylem and phloem side. In mature stems, some of the axial parenchyma embedded deep inside the xylem acquires meristematic activity and leads to the formation of thick-walled xylem derivatives centrifugally and phloem elements centripetally. The secondary xylem comprises vessel elements, tracheids, fibres and axial parenchyma. Rays are uni-multiseriate in the region of cambium that produces xylem and phloem derivatives, while in some of the regions of cambium large multiseriate, compound, aggregate and polycentric rays can be noticed.  相似文献   

18.
Mature stems of Sesuvium sesuvioides (Fenzl) Verdc. were found to be composed of successive rings of xylem alternating with phloem. Repeated periclinal divisions in the parenchyma outside the primary phloem gave rise to conjunctive tissue and the lateral meristem that differentiate into the vascular cambium on its inner side. After the formation of the vascular cambium, the lateral meristem external to it became indistinct as long as the cambium was functional. As the cambium ceased to divide, the lateral meristem again became apparent prior to the initiation of the next cambial ring. The cambium was exclusively composed of fusiform cambial cells with no rays. In the young saplings, the number of cambial cylinders in the axis varied from the apex to the base, indicating formation of several rings within the year. In each successive ring of the lateral meristem, small segments differentiated into the vascular cambium and gave rise to vessels, axial parenchyma, fibres and fibriform vessels towards the inside, and secondary phloem on the outer side. In the old stems, non‐functional phloem of the innermost rings was replaced by a new set of sieve tube elements formed by periclinal divisions in the cambial segments associated with the non‐functional phloem. In some places the cambial segments completely differentiate into derivatives leaving no cambial cells between the xylem and phloem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 548–555.  相似文献   

19.
The phloem of most fossil plants, including that of Sphenophyllum, is very poorly known. Sphenophyllum was a relatively small type of fossil arthrophyte with jointed stems bearing whorls of leaves ranging in form from wedge or fan-shaped to bifid, to linear. The aerial stem systems of the plant exhibited determinate growth involving progressive reduction in the dimensions of the stem primary bodies, fewer leaves per whorl, and smaller and simpler leaves distally. The primary phloem occurs in three areas alternating in position with the arms of the triarch centrally placed primary xylem. Cells of the primary phloem, presumably sieve elements, are axially elongate with horizontal to slightly tapered end walls. In larger stems with abundant secondary xylem and secondary cortex or periderm, a zone of secondary phloem occurs whose structure varies in the three areas opposite the arms of the primary xylem, as opposed to the three areas lying opposite the concave sides of the primary xylem. The axial system of the secondary phloem consists of vertical series of sieve elements with horizontal end walls. In the areas opposite the protoxylem the parenchyma is present as a prominent ray system showing dilation peripherally. Sieve elements in the areas opposite the protoxylem arms have relatively small diameters. In the areas between the protoxylem poles the secondary phloem sieve elements have large diameters and are less obviously in radial files, while the parenchyma resembles that of the secondary xylem in these areas in that it consists of strands of cells extending both radially and tangentially. An actively meristematic vascular cambium has not been found, indicating that this layer changed histologically after the cessation of growth in the determinate aerial stem systems and was replaced by a post-meristematic parenchyma sheath made up of axially elongate parenchyma lacking cells indicative of being either fusiform or ray initials. A phellogen arose early in development in a tissue believed to represent pericycle and produced tissue comparable to phellem externally. Normally, derivatives of the phellogen underwent one division prior to the maturation of the cells. Concentric bands of cells with dark contents apparently represent secretory tissue in the periderm and cell arrangements indicate that a single persistent phellogen was present. Sphenophyllum is compared with other arthrophytes as to phloem structure and is at present the best documented example of a plant with a functionally bifacial vascular cambium in any exclusively non-seed group of vascular plants.  相似文献   

20.
Cinnamyl alcohol dehydrogenase 2 (CAD 2) localization and the cell-specific activity of the eucalyptus CAD 2 promoter were investigated by CAD 2 immunogold localization and promoter β-glucuronidase (GUS) histochemistry in apical and mature parts of stable transformed poplar (Populus tremula × P. alba) stems. Both CAD 2 protein and GUS activity were found to be confined in the same types of cells in the shoot apices, particularly in the determined meristematic cells in leaf axils and shell zones, procambium and developing tracheids. Within mature stems, CAD 2 and GUS were also identified in cambium and in fully or partially lignified cells derived from it (young xylem, developing phloem fibres, chambered parenchyma cells around phloem). Additionally, GUS activity was found in the scale leaves of apical shoot buds and in the roots (namely in the procambium, cambium, phellogen, young xylem, pericycle) of transformed plants. By employing immunogold cytochemistry, CAD 2 was shown to be localized in the cytoplasm within cambial, ray and young xylem cells in stems, the gold particles being randomly attached to endoplasmic reticulum and Golgi-derived vesicles. These results support a crucial role for CAD 2 in lignification and indicate a new role for this enzyme in branching events within the shoot apex and during lateral root formation. Received: 24 April 1997 / Accepted: 17 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号