首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The macrophage mannose receptor is the prototype for a family of receptors each having an extracellular region consisting of an N-terminal cysteine-rich domain related to the R-type carbohydrate-recognition domain of ricin, a fibronectin type II domain and eight to ten domains related to C-type carbohydrate-recognition domains. The mannose receptor acts as a molecular scavenger, clearing harmful glycoconjugates or micro-organisms through recognition of their defining carbohydrate structures. Cell-adhesion assays, as well as collagen-binding assays, have now been used to show that the mannose receptor can also bind collagen and that the fibronectin type II domain mediates this activity. Neither of the two types of sugar-binding domain in the receptor is involved in collagen binding. Fibroblasts expressing the mannose receptor adhere to type I, type III and type IV collagens, but not to type V collagen, and the adherence is inhibited by isolated mannose receptor fibronectin type II domain. The fibronectin type II domain shows the same specificity for collagen as the whole receptor, binding to type I, type III and type IV collagens. This is the first activity assigned to the fibronectin type II domain of the mannose receptor. The results suggest additional roles for this multifunctional receptor in mediating collagen clearance or cell-matrix adhesion.  相似文献   

2.
Pseudomonas aeruginosa readily binds to stainless steel and other abiotic surfaces, causing major problems in both the medical and food industries. In this study, we show that P. aeruginosa binds to abiotic surfaces in a concentration-dependent, saturable manner during the initial stages of biofilm formation. P. aeruginosa type IV pili mediate binding to stainless steel as a pilus-deficient strain does not bind to steel, purified type IV pili bound in a concentration-dependent, saturable manner, and purified pili competitively inhibited whole cell binding. PAK pili can also bind polystyrene and polyvinylchloride in a concentration-dependant and saturable manner. As an antibody specific for the C-terminal pilin receptor binding domain inhibited adherence to abiotic surfaces, the role of the C-terminal receptor binding domain in mediating binding to steel surfaces was examined. A synthetic peptide of the PAK pilin epithelial cell receptor binding domain [PAK(128-144)ox] bound directly to steel with high affinity. The interaction of pili with steel was specifically inhibited by this peptide with an apparent Ki of approximately 0.2 nM and effectively inhibited the binding of viable homologous and heterologous P. aeruginosa strains to steel with an apparent Ki of approximately 4 nM. A single point mutation (K130I) in the PAO receptor binding domain was observed to abolish binding to stainless steel while binding to human buccal epithelial cells was enhanced. Therefore, the C-terminal receptor binding domain appears to have evolved for binding a variety of surfaces.  相似文献   

3.
A low molecular weight inhibitor of TGF-beta 1 binding was detected in partially purified human platelet extracts by using Hep 3B hepatoma cells in the binding assays. The inhibitory protein was purified to homogeneity and was identified as platelet factor 4 on the basis of its amino acid sequence. TGF-beta 1 binding to Hep 3B cells was almost completely inhibited by 100 nM concentrations of platelet factor 4, but TGF-beta 1 binding to NRK 49F fibroblasts was inhibited only slightly. Affinity cross-linking experiments revealed that these differences in the inhibition of TGF-beta 1 binding by platelet factor 4 were due to differences in the complements of TGF-beta 1 binding proteins present on these two cell types. In Hep 3B cells the majority of bound TGF-beta 1 was cross-linked to a complex which had an apparent molecular weight of 70 kDa. TGF-beta 1 binding to this protein was the most sensitive to inhibition by platelet factor 4. Based on its size and TGF-beta 1 binding properties, we believe this protein is the type I TGF-beta 1 receptor. Hep 3B cells also had a high-affinity TGF-beta 1 binding protein which appeared as an 80 kDa complex, and which we believe to be the type II TGF-beta 1 receptor. TGF-beta 1 binding to this protein was not inhibited by platelet factor 4. TGF-beta 1 was also cross-linked to complexes of higher molecular weights in Hep 3B cells, but it was not clear whether any of them represented the type III TGF-beta 1 receptor. In NRK 49F cells, the majority of bound TGF-beta 1 was cross-linked to a high molecular weight complex which probably represented the type III TGF-beta 1 receptor. NRK 49F cells also had type I TGF-beta 1 receptors and platelet factor 4 inhibited binding to these receptors in the NRK cells. Since the type I receptor contributed only a small percentage of total TGF-beta 1 binding, however, the overall effects of platelet factor 4 on TGF-beta 1 binding to NRK 49F cells were negligible. We were unable to demonstrate specific or saturable binding of platelet factor 4 to Hep 3B cells using either direct binding or affinity cross-linking assays. Thus, it is not clear whether platelet factor 4 inhibits TGF-beta 1 binding by competition for binding to the type I receptor. Modest concentrations of TGF-beta 1 reduced the adherence of Hep 3B cells to tissue culture dishes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Soluble (S-type) pyocins are Pseudomonas aeruginosa bacteriocins that kill nonimmune P. aeruginosa strains via a specific receptor. The genes coding for pyocin Sa (consisting of a killing protein and an immunity protein) were cloned and expressed in Escherichia coli. Sequence analysis revealed that Sa is identical to pyocin S2. Seventy-nine strains of P. aeruginosa were tested for their sensitivity to pyocins S1, S2, and S3, and their ferripyoverdine receptors were typed by multiplex PCR. No strain was found to be sensitive to both S2 and S3, suggesting that the receptors for these two pyocins cannot coexist in one strain. As expected, all S3-sensitive strains had the type II ferripyoverdine receptor fpvA gene, confirming our previous reports. S1 killed strains irrespective of the type of ferripyoverdine receptor they produced. All S2-sensitive strains had the type I fpvA gene, and the inactivation of type I fpvA in an S2-sensitive strain conferred resistance to the S2 pyocin. Accordingly, complementation with type I fpvA in trans restored sensitivity to S2. Some S2-resistant type I fpvA-positive strains were detected, the majority (all but five) of which had the S1-S2 immunity gene. Comparison of type I fpvA sequences from immunity gene-negative S2-sensitive and S2-resistant strains revealed only a valine-to-isoleucine substitution at position 46 of type I FpvA. However, both type I fpvA genes conferred the capacity for type I pyoverdine utilization and sensitivity to S2. When these two type I fpvA genes were introduced into strain 7NSK2 carrying mutations in type II fpvA (encoding the type II pyoverdine receptor) and fpvB (encoding the alternative type I receptor), growth in the presence of type I pyoverdine was observed and the strain became sensitive to S2. We also found that type I pyoverdine could signal type II pyoverdine production via the type I FpvA receptor in 7NSK2.  相似文献   

5.
Inhibition of cell adhesion by type V collagen.   总被引:1,自引:0,他引:1  
Human umbilical vein endothelial cells grew well in dishes coated with collagen types I, II, III, or IV. However, the same cells tended to detach themselves from dishes coated with type V collagen, and cell proliferation in these dishes was inhibited. Such anti-adhesive activity was partially retained by heat-denatured type V collagen or by its alpha 1 chain, but not by its alpha 2 chain. Several other cell types did not adhere to the type V collagen substratum even in the presence of 10% serum. The cell types strongly inhibited from adhering by type V collagen included Swiss mouse 3T3 cells and their MSV-transformants, BALB/c 3T3 cells and their methylcholanthrene-transformants, NIH 3T3 cells and their ras-transformants, BHK cells, CHO-9 cells, CHO-K1 cells, and mouse melanoma B16-F10 cells. Using Swiss mouse 3T3, we studied the effects of type V collagen on cell adhesion to fibronectin in serum-free medium. When the culture dishes were coated with a mixture of fibronectin with various concentrations of type V collagen, the adhesion of the cells was inhibited depending on the concentration of type V collagen. The inhibition of cell adhesion by type V collagen was competitively overcome by increased concentrations of fibronectin. The activity that interferes with the effects of fibronectin was retained mainly by the alpha 1 chain of heat-denatured type V collagen.  相似文献   

6.
Summary Amino acid and carbohydrate transport in normal and malignant transformed hamster cells was studied after binding of the protein Concanavalin A (Con. A) to the surface membrane. Experimental conditions were used so that a similar number of Con. A molecules were bound to both types of cells. The transport of amino acids was inhibited after Con. A binding in the transformed cells but not in normal cells. This was found with the metabolizable amino acidsl-leucine,l-arginine,l-glutamic acid, andl-glutamine, and with the non-metabolizable amino acids cycloleucine and -aminoisobutyric acid. Transport ofd-glucose andd-galactose was more inhibited by Con. A in transformed than in normal cells, and in both types of cellsd-glucose was inhibited more thand-galactose. The inhibition by Con. A on transport was specific, since there was no effect on the transport ofl-fucose in either normal or transformed cells. Con. A also did not effect the entry of 3-0-methyl-d-glucose.These observations can be used to locate amino acid and carbohydrate transport sites in the surface membrane in relation to the binding sites for Con. A. The results indicate that Con. A sites are associated in normal cells with transport sites ford-glucose and to a lesser extentd-galactose, and in transformed cells with transport sites for amino acids and to a greater extent than in normal cells withd-glucose andd-galactose. Malignant transformation of normal cells therefore results in a change in the location of amino acid and carbohydrate transport sites in the surface membrane in relation to the binding sites for Con. A.  相似文献   

7.
We have previously shown that platelets adhere to collagen substrates via a Mg2(+)-dependent mechanism mediated by the surface glycoprotein Ia-IIa (human leukocyte very late activation protein 2, alpha 2 beta 1 integrin) complex. The adhesion is specific for collagen and is supported by collagen types I, II, III, IV, and VI. Several other members of the integrin family of adhesive protein receptors recognize discrete linear amino acid sequences within their adhesive glycoprotein ligands. Experiments with both intact platelets and with liposomes containing the purified receptor complex indicated that the alpha 2 beta 1 receptor recognized denatured type I collagen in a Mg2(+)-dependent manner. To further localize the binding site, the alpha 1 and alpha 2 chains of type I collagen were purified by gel filtration and ion exchange chromatography and tested as adhesive substrates. Both the alpha 1(I) and alpha 2(I) chains effectively supported Mg2(+)-dependent platelet adhesion. The purified alpha 1(I) collagen chain was then subjected to cleavage with cyanogen bromide, and the resultant peptides were separated by chromatography on carboxymethylcellulose. Only the alpha 1(I)-CB3 fragment supported Mg2(+)-dependent platelet adhesion. The monoclonal antibody P1H5 which recognizes an epitope on the alpha 2 subunit of the integrin receptor and which inhibits the adhesion of both intact platelets and liposomes bearing the purified receptor to collagen also inhibited platelet adhesion to the alpha 1(I)-CB3 fragment. These results indicate that the alpha 2 beta 1 receptor recognizes a sequence of amino acids present in the alpha 1(I)-CB3 fragment of type I collagen. An identical or similar sequence likely mediates binding of the receptor to other collagen polypeptides.  相似文献   

8.
The immunoglobulin fraction prepared from the serum of a rabbit immunized with purified type II insulin-like growth factor (IGF) receptor from rat placenta was tested for its specificity in inhibiting receptor binding of 125I-IGF II and for its ability to modulate IGF II action on rat hepatoma H-35 cells. The specific binding of 125I-IGF II to plasma membrane preparations from several rat cell types and tissues was inhibited by the anti-IGF II receptor Ig. Affinity cross-linking of 125I-IGF II to the Mr = 250,000 type II IGF receptor structure in rat liver membranes was blocked by the anti-receptor Ig, while no effect on affinity labeling of insulin receptor with 125I-insulin or IGF I receptor with 125I-IGF I or 125I-IGF II was observed. The specific inhibition of ligand binding to the IGF II receptor by anti-receptor Ig was species-specific such that mouse receptor was less potently inhibited and human receptor was unaffected. Rat hepatoma H-35 cells contain insulin and IGF II receptor, but not IGF I receptor, and respond half-maximally to insulin at 10(-10) M and to IGF II at higher concentrations with increased cell proliferation (Massague, J., Blinderman, L.A., and Czech, M.P. (1982) J. Biol. Chem. 257, 13958-13963). Addition of anti-IGF II receptor Ig to intact H-35 cells inhibited the specific binding of 125I-IGF II to the cells by 70-90%, but had no detectable effect on 125I-insulin binding. Significantly, under identical conditions anti-IGF II receptor Ig was without effect on IGF II action on DNA synthesis at both submaximal and maximal concentrations of IGF II. This finding and the higher concentrations of IGF II required for growth promotion in comparison to insulin strongly suggest that the Mr = 250,000 receptor structure for IGF II is not involved in mediating this physiological response. Rather, at least in H-35 cells, the insulin receptor appears to mediate the effects of IGF II on cell growth. Consistent with this interpretation, anti-insulin receptor Ig but not anti-IGF II receptor Ig mimicked the ability of growth factors to stimulate DNA synthesis in H-35 cells. We conclude that the IGF II receptor may not play a role in transmembrane signaling, but rather serves some other physiological function.  相似文献   

9.
It is not known whether one or both of the interleukin 1 (IL1) receptors mediates the induction of the DNA-binding protein NF-kappa B. Nuclear extracts of the murine lines EL4.NOB.1 and 70Z/3, which bear the type I (80 kDa) and type II (67 kDa) IL1 receptor, respectively, were analyzed by an electrophoretic mobility shift assay. A 265-base pair sequence of the human serum amyloid A gene or a synthetic oligonucleotide each containing the NF-kappa B site were used as the DNA probes. IL1 induction of NF-kappa B was rapid (optimal at 15-30 min) and transient in both cell types. The IL1 receptor antagonist (IL1ra), which binds strongly to the type I receptor, inhibited the NF-kappa B response in both cell lines. IL1ra did not bind to the type II receptor on 70Z/3 cells as judged by competition for binding with 125I-IL1 alpha. When 125I-IL1ra binding to 70Z/3 cells was measured, a small number (10/cell) of high affinity sites (Kd = 5 x 10(-12) M) were detected. These were likely to have been type I receptor because an antibody to this inhibited the NF-kappa B induction in 70Z/3 cells (as well as EL4). Potential signal transduction mechanisms involving protein kinase C or oxygen radicals were studied. Phorbol 12-myristate 13-acetate induced NF-kappa B with a similar time course to IL1 in 70Z/3 but only after 4 h in EL4.IL1 was unaffected by a protein kinase C inhibitor (staurosporine). H2O2 did not mimic IL1, and IL1 was not inhibited by an antioxidant. The type I receptor mediates the induction of NF-kappa B in response to IL1 via a signaling mechanism that still remains to be identified.  相似文献   

10.
Transforming growth factor beta (TGF-beta) ligands exert their biological effects through type II (TbetaRII) and type I receptors (TbetaRI). Unlike TGF-beta1 and -beta3, TGF-beta2 appears to require the co-receptor betaglycan (type III receptor, TbetaRIII) for high affinity binding and signaling. Recently, the TbetaRIII null mouse was generated and revealed significant non-overlapping phenotypes with the TGF-beta2 null mouse, implying the existence of TbetaRIII independent mechanisms for TGF-beta2 signaling. Because a variant of the type II receptor, the type II-B receptor (TbetaRII-B), has been suggested to mediate TGF-beta2 signaling in the absence of TbetaRIII, we directly tested the ability of TbetaRII-B to bind TGF-beta2. Here we show that the soluble extracellular domain of the type II-B receptor (sTbetaRII-B.Fc) bound TGF-beta1 and TGF-beta3 with high affinity (K(d) values = 31.7 +/- 22.8 and 74.6 +/- 15.8 pm, respectively), but TGF-beta2 binding was undetectable at corresponding doses. Similar results were obtained for the soluble type II receptor (sTbetaRII.Fc). However, sTbetaRII.Fc or sTbetaRII-B.Fc in combination with soluble type I receptor (sTbetaRI.Fc) formed a high affinity complex that bound TGF-beta2, and this complex inhibited TGF-beta2 in a biological inhibition assay. These results show that TGF-beta2 has the potential to signal in the absence of TbetaRIII when sufficient TGF-beta2, TbetaRI, and TbetaRII or TbetaRII-B are present. Our data also support a cooperative model for receptor-ligand interactions, as has been suggested by crystallization studies of TGF-beta receptors and ligands. Our cell-free binding assay system will allow for testing of models of receptor-ligand complexes prior to actual solution of crystal structures.  相似文献   

11.
Specific binding of collagen type IV to Streptococcus pyogenes   总被引:5,自引:0,他引:5  
Many strains of Streptococcus pyogenes are capable of binding type IV collagen. In the present study, all 50 S. pyogenes strains isolated from patients with acute glomerulonephritis showed high or moderate affinity for radiolabelled type IV collagen. A majority of strains of other sources, such as reference strains of various M-types and strains isolated from patients with pharyngeal infections also bound type IV collagen; however, a number of weak binders or non-binders were found among those. The collagen type IV binding component(s) on S. pyogenes were susceptible to proteinase K digestion, partially sensitive to trypsin but insensitive to pepsin treatment at pH 5.5. According to tests with three M-positive strains and their M-negative derivatives, the binding was not dependent on M-protein. The binding was saturable with time and inhibited by unlabelled type IV collagen. Partially inhibition was found with type II collagen, gelatin and fibrinogen but not with a number of other serum proteins.  相似文献   

12.
The possible existence of distinct receptors for salmon gonadotropins (GTH I and GTH II) and the distribution of the receptor(s) were studied through examination of the binding of coho salmon (Oncorhynchus kistuch) GTH I and GTH II to membranes from thecal layers and granulosa cells of salmon ovaries. Purified coho salmon gonadotropins were iodinated by the lactoperoxidase method. Crude membrane preparations were obtained from thecal layers, granulosa cells, and whole ovaries of coho salmon in the postvitellogenic/preovulatory phase. Binding of 125I-GTH I to membranes from thecal layers, granulosa cells, and whole ovaries, and binding of 125I-GTH II to thecal layer cell membranes could be inhibited by both GTHs, but GTH I was more potent than GTH II. In contrast, GTH II was more potent than GTH I in inhibiting 125I-GTH II binding to membranes from granulosa cells and whole ovaries, but the inhibition curves were not parallel. Scatchard plot analysis suggested that there was a single type of receptor in the thecal layers for both GTHs, whereas in the granulosa cells there was more than one type of receptor for both GTHs. Based on these results, a two-receptor model for the postvitellogenic/preovulatory salmon ovary is proposed with the following features: 1) there are two types of gonadotropin receptors in the salmon ovary, type I and type II; 2) the type I receptor binds both GTHs, but with higher affinity for GTH I, whereas the type II receptor is highly specific for GTH II and may have only limited interaction with GTH I; and 3) the type I receptor is present in both thecal cells and granulosa cells, whereas the type II receptor is present in granulosa cells.  相似文献   

13.
Although basic fibroblast growth factor (FGF-2) had been shown to inhibit type I collagen gene expression in osteoblast, its inhibitory mechanism is unknown. In the present study, we investigated the underlying mechanisms by which growth factors downregulate type I collagen gene expression. Treatment of mouse osteoblastic MC3T3-E1 cells with okadaic acid (40 ng/ml), an inhibitor of phosphoserine/threonine-specific protein phosphatase and activator of ERK1/2, for 24 h and 48 h completely inhibited steady-state mRNA levels of type I collagen. FGF-2 (30 ng/ml), platelet-derived growth factor-BB (PDGF-BB), 30 ng/ml, and serum, which activate ERK mitogen-activated protein kinase (MAPK) pathway also inhibited collagen type I gene expression, suggesting that the activation of ERK pathway mediates inhibition of type I collagen mRNA. This observation was further confirmed by experiments using inhibitors of the ERK pathway (i.e., PD and U0126), which increased type I collagen mRNA in MC3T3-E1 cells, indicating that the inhibition of ERK pathway upregulates type I collagen gene expression. Low serum (0.3%) markedly increased type I collagen mRNA. MEK inhibitor PD inhibited c-fos induction by FGF-2 and PDGF-BB, suggesting that c-fos is the downstream target of ERK pathway. Our data have clearly demonstrated for the first time that the ERK MAPK pathway play an important role in the regulation of type I collagen gene expression in osteoblastic cells. Results also showed that one of the mechanisms by which FGF-2 and PDGF-BB downregulate type I collagen gene expression in the osteoblast is through the activation of ERK signaling pathway.  相似文献   

14.
Binding of human monomeric type I collagen to platelets   总被引:1,自引:0,他引:1  
Interaction of platelets with subendothelial collagen is important in primary hemostasis and thrombosis. Although activation of platelets by collagen polymers has been widely investigated, only insufficient data are available concerning the binding of genetically distinct collagen types in their triple helical (monomeric) form to platelets. We report on the binding of 125I-labeled human type I collagen to platelets. The binding assay was performed at 20 degrees C in the presence of arginine in order to prevent polymerization of the collagen monomers. The binding of monomeric 125I-labeled human type I collagen is dose- and time-dependent, saturable and specific, since it is competitively inhibited by unlabeled type I collagen, but not by unlabeled human type V collagen. Scatchard analysis reveals a class of specific high affinity binding sites with a Kd of 2.5 X 10(-8) M. These results suggest that platelets interact with type I collagen through specific binding sites, and that there are various different binding sites on the platelet membrane for the genetically distinct collagen types.  相似文献   

15.
16.
We studied mechanisms that mediate recognition of human erythrocytes (HRBC) and sheep erythrocytes (SRBC) by rat liver macrophages. We used an in vitro cell binding assay that allows spontaneous formation of cell contacts. Binding of HRBC to rat macrophages shows the following characteristics: inhibition studies with several monosaccharides and oligosaccharides yield complete inhibition of cell contacts with saccharides, which block the GalNAc/Gal-particle receptor on rat liver macrophages. We found the inhibition pattern: N-acetyl-D-galactosamine, lactose greater than D-galactose, D-fucose greater than L-fucose much greater than N-acetyl-D-glucosamine. Cell binding is dependent on the presence of calcium ions, but not influenced by heat-aggregated IgG or gangliosides. The inhibition pattern was the same after treatment of HRBC with neuraminidase. Therefore, binding of HRBC, as well as binding of neuraminidase-treated HRBC, is mediated by the GalNAc/Gal-particle receptor. Binding of SRBC is partly inhibited by galactose-related saccharides. Binding is also partly inhibited by heat-aggregated IgG, gangliosides, and L-fucose. Complete inhibition of cell contacts with SRBC is achieved by combination of all inhibitors. We therefore conclude that binding of SRBC is mediated by several different mechanisms, including the GalNAc/Gal-particle receptor. Binding of neuraminidase-treated SRBC, however, was found to be completely inhibited by saccharides, which block the GalNAc/Gal-particle receptor. We conclude that the GalNAc/Gal-particle receptor mediates or participates in recognition of non-self structures.  相似文献   

17.
125I-labeled type I collagen (Cn-I) binding of 92 fresh isolates and 18 type culture collection strains of lactobacilli was tested. More than 75% of the strains bound Cn-I. The binding was inhibited by excess of unlabeled Cn-I, gelatin, and was sensitive to proteinase K. Other proteins such as fibronectin and albumin and various carbohydrates such asD-galactose,D-fucose, andD-mannose did not inhibit the binding. Therefore, we propose binding of Cn-I to lactobacilli involving specific surface protein(s).  相似文献   

18.
Growth factor receptors activate tyrosine kinases and undergo endocytosis. Recent data suggest that tyrosine kinase inhibition can affect growth factor receptor internalization. The type 1 angiotensin II receptor (AT1R) which is a G-protein-coupled receptor, also activates tyrosine kinases and undergoes endocytosis. Thus, we examined whether tyrosine kinase inhibition affected AT1R internalization. To verify protein tyrosine phosphorylation, both LLCPKCl4 cells expressing rabbit AT1R (LLCPKAT1R) and cultured rat mesangial cells (MSC) were treated with angiotensin II (Ang II) [1-100 nM] then solubilized and immunoprecipitated with antiphosphotyrosine antisera. Immunoblots of these samples demonstrated that Ang II stimulated protein tyrosine phosphorylation in both cell types. Losartan [1 microM], an AT1R antagonist, inhibited Ang II-stimulated protein tyrosine phosphorylation. LLCPKAT1R cells displayed specific 125I-Ang II binding at apical (AP) and basolateral (BL) membranes, and both AP and BL AT1R activated tyrosine phosphorylation. LLCPKAT1R cells, incubated with genistein (Gen) [200 microM] or tyrphostin B-48 (TB-48) [50 microM], were assayed for acid-resistant specific 125I-Ang II binding, a measure of Ang II internalization. Both Gen (n = 7) and TB-48 (n = 3) inhibited AP 125I-Ang II internalization (80+/-7% inhibition; p<0.025 vs. control). Neither compound affected BL internalization. TB-1, a non-tyrosine kinase-inhibiting tyrphostin, did not affect AP 125I-Ang II endocytosis (n = 3), suggesting that the TB-48 effect was specific for tyrosine kinase inhibition. Incubating MSC with Gen (n = 5) or herbimycin A [150 ng/ml] (n = 4) also inhibited MSC 125I-Ang II internalization (82+/-11% inhibition; p<0.005 vs. control). Thus, tyrosine kinase inhibition prevented Ang II internalization in MSC and selectively decreased AP Ang II internalization in LLCPKAT1R cells suggesting that AP AT1R in LLCPKAT1R cells and MSC AT1R have similar endocytic phenotypes, and tyrosine kinase activity may play a role in AT1R internalization.  相似文献   

19.
We have examined the interactions between the small dermatan sulfate proteoglycan decorin and collagen types I-VI using solid phase binding assays. The results of these studies showed that 125I-decorin bound most efficiently to collagen type VI in a time- and concentration-dependent manner. Furthermore, this interaction was specific and of moderately high affinity (Kd approximately 3 x 10(-7) M). Binding of decorin to collagen type VI appears to involve the decorin core protein rather than the glycosaminoglycan side chains, since the isolated core protein as well as a recombinant fusion protein containing a major segment (65%) of the human decorin core protein inhibited binding of 125I-decorin to collagen type VI. Other related proteoglycans and their respective core proteins also inhibited the binding of 125I-decorin to collagen type VI, whereas unrelated proteins and isolated glycosaminoglycan chains were without effect. In addition to decorin, collagen type II was also shown to bind to immobilized collagen type VI. Both interactions were effectively inhibited by preincubation of the immobilized collagen VI with decorin or collagen type II. These results suggested that the collagen type VI molecule has binding sites for collagen type II and decorin which are located in close proximity on the collagen type VI molecule. Possible functional roles of these interactions are discussed.  相似文献   

20.
本实验采用 H~3标记糖饲喂示踪分析法。将苘麻愈伤组织分别用吲哚乙酸和激动素处理,并在培养基中供给 H~3葡萄糖或 H~3半乳糖。——实验表明,激素对细胞壁组成分影响,不仅与激素的种类有关,也与供给的外源单糖有关。而外源单糖(半乳糖、葡萄糖)单独加入或同时加入,使激素对苘麻愈伤组织诱导的影响又有所不同。在吲哚乙酸作用下,促进了 H~3葡萄糖的掺入;而半乳糖的加入又抑制了 H~3葡萄糖掺入到细胞壁各组分。在激动素作用下,促进H~3半乳糖的掺入,而葡萄糖的加入又抑制了 H~3半乳糖掺入到壁的各组分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号