首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional roles of the matrix (MA) protein in the assembly and maturation of retroviruses was investigated with a series of MA mutants of Mason-Pfizer monkey virus (M-PMV), an immunosuppressive type D retrovirus. The mutants we describe here were generated by the introduction of random point mutations within the MA coding domain by use of sodium bisulphite mutagenesis. Studies of these mutants show that the MA protein plays a critical role in three different, sequential events in the final stages of type D retrovirus replication: (i) folding of the gag gene-encoded precursor poly-proteins into a stable conformation for capsid assembly in the cytoplasm of infected cells; (ii) capsid transport from the site of assembly to the plasma membrane; and (iii) capsid association with, and extrusion of the membrane during virus budding. The mutants described here interfere with or block M-PMV replication at each of these stages. Large numbers of preassembled capsids accumulate within the cytoplasm of transport-defective mutant-infected cells, suggesting that transport of M-PMV capsids to the plasma membrane is an active and specific intracellular targeting process. The initial association of the capsid with the membrane may depend upon this intracytoplasmic transport process but additional protein-lipid interactions that involve the MA protein are required for membrane extrusion around the preformed capsids; in cells infected with the budding-defective mutant, assembled capsids accumulate under the inner surface of the cell plasma membrane, and are retarded in their release from the infected cell.  相似文献   

2.
Retrovirus assembly involves a complex series of events in which a large number of proteins must be targeted to a point on the plasma membrane where immature viruses bud from the cell. Gag polyproteins of most retroviruses assemble an immature capsid on the cytoplasmic side of the plasma membrane during the budding process (C-type assembly), but a few assemble immature capsids deep in the cytoplasm and are then transported to the plasma membrane (B- or D-type assembly), where they are enveloped. With both assembly phenotypes, Gag polyproteins must be transported to the site of viral budding in either a relatively unassembled form (C type) or a completely assembled form (B and D types). The molecular nature of this transport process and the host cell factors that are involved have remained obscure. During the development of a recombinant baculovirus/insect cell system for the expression of both C-type and D-type Gag polyproteins, we discovered an insect cell line (High Five) with two distinct defects that resulted in the reduced release of virus-like particles. The first of these was a pronounced defect in the transport of D-type but not C-type Gag polyproteins to the plasma membrane. High Five cells expressing wild-type Mason-Pfizer monkey virus (M-PMV) Gag precursors accumulate assembled immature capsids in large cytoplasmic aggregates similar to a transport-defective mutant (MA-A18V). In contrast, a larger fraction of the Gag molecules encoded by the M-PMV C-type morphogenesis mutant (MA-R55W) and those of human immunodeficiency virus were transported to the plasma membrane for assembly and budding of virions. When pulse-labeled Gag precursors from High Five cells were fractionated on velocity gradients, they sedimented more rapidly, indicating that they are sequestered in a higher-molecular-mass complex. Compared to Sf9 insect cells, the High Five cells also demonstrate a defect in the release of C-type virus particles. These findings support the hypothesis that host cell factors are important in the process of Gag transport and in the release of enveloped viral particles.  相似文献   

3.
Immature capsids of the Betaretrovirus, Mason-Pfizer Monkey virus (M-PMV), are assembled in the pericentriolar region of the cell, and are then transported to the plasma membrane for budding. Although several studies, utilizing mutagenesis, biochemistry, and immunofluorescence, have defined the role of some viral and host cells factors involved in these processes, they have the disadvantage of population analysis, rather than analyzing individual capsid movement in real time. In this study, we created an M-PMV vector in which the enhanced green fluorescent protein, eGFP, was fused to the carboxyl-terminus of the M-PMV Gag polyprotein, to create a Gag-GFP fusion that could be visualized in live cells. In order to express this fusion protein in the context of an M-PMV proviral backbone, it was necessary to codon-optimize gag, optimize the Kozak sequence preceding the initiating methionine, and mutate an internal methionine codon to one for alanine (M100A) to prevent internal initiation of translation. Co-expression of this pSARM-Gag-GFP-M100A vector with a WT M-PMV provirus resulted in efficient assembly and release of capsids. Results from fixed-cell immunofluorescence and pulse-chase analyses of wild type and mutant Gag-GFP constructs demonstrated comparable intracellular localization and release of capsids to untagged counterparts. Real-time, live-cell visualization and analysis of the GFP-tagged capsids provided strong evidence for a role for microtubules in the intracellular transport of M-PMV capsids. Thus, this M-PMV Gag-GFP vector is a useful tool for identifying novel virus-cell interactions involved in intracellular M-PMV capsid transport in a dynamic, real-time system.  相似文献   

4.
Assembly of an infectious retrovirus requires the incorporation of the envelope glycoprotein complex during the process of particle budding. We have recently demonstrated that amino acid substitutions of a tyrosine residue in the cytoplasmic domain block glycoprotein incorporation into budding Mason-Pfizer monkey virus (M-PMV) particles and abrogate infectivity (C. Song, S. R. Dubay, and E. Hunter, J. Virol. 77:5192-5200, 2003). To investigate the contribution of other amino acids in the cytoplasmic domain to the process of glycoprotein incorporation, we introduced alanine-scanning mutations into this region of the transmembrane protein. The effects of the mutations on glycoprotein biosynthesis and function, as well as on virus infectivity, have been examined. Mutation of two cytoplasmic residues, valine 20 and histidine 21, inhibits viral protease-mediated cleavage of the cytoplasmic domain that is observed during virion maturation, but the mutant virions show only moderately reduced infectivity. We also demonstrate that the cytoplasmic domain of the M-PMV contains three amino acid residues that are absolutely essential for incorporation of glycoprotein into virions. In addition to the previously identified tyrosine at residue 22, an isoleucine at position 18 and a leucine at position 25 each mediate the process of incorporation and efficient release of virions. While isoleucine 18 may be involved in direct interactions with immature capsids, antibody uptake studies showed that leucine 25 and tyrosine 22 are part of an efficient internalization signal in the cytoplasmic domain of the M-PMV glycoprotein. These results demonstrate that the cytoplasmic domain of M-PMV Env, in part through its YXXL-mediated endocytosis and intracellular trafficking signals, plays a critical role in the incorporation of glycoprotein into virions.  相似文献   

5.
The role of myristylation, a fatty acid modification of nascent polypeptides, in the assembly and intracellular transport of D-type retroviral capsids was investigated through the use of oligonucleotide-directed mutagenesis. Myristic acid is normally esterified through an amide linkage to a glycine residue at the amino terminus of the Mason-Pfizer monkey virus gag gene products. Mutant pA-1, which has a codon for valine substituted for that of the normally myristylated glycine, is completely noninfectious. While the mutant gag polyprotein precursors are synthesized at normal levels, they are not myristylated and are not cleaved to the mature virion proteins. No extracellular virus particles are released from mutant pA-1-infected cells, but intracytoplasmic A-type particles (capsids) accumulate in the cytoplasm. Since none of the intracellular capsids can be found associated with the plasma membrane, these results strongly suggest that myristylation is a critical signal for intracytoplasmic transport of completed viral capsids to their normal site of budding and release.  相似文献   

6.
Mason-Pfizer monkey virus (M-PMV) represents the prototype type D retrovirus, characterized by the assembly of intracytoplasmic A-type particles within the infected-cell cytoplasm. These immature particles migrate to the plasma membrane, where they are released by budding. The gag gene of M-PMV encodes a novel protein, p12, just 5' of the major capsid protein (CA) p27 on the polyprotein precursor. The function of p12 is not known, but an equivalent protein is found in mouse mammary tumor virus and is absent from the type C retroviruses. In order to determine whether the p12 protein plays a role in the intracytoplasmic assembly of capsids, a series of in-frame deletion mutations were constructed in the p12 coding domain. The mutant gag genes were expressed by a recombinant vaccinia virus-T7 polymerase-based system in CV-1 cells or in the context of the viral genome in COS-1 cells. In both of these high-level expression systems, mutant Gag precursors were competent to assemble but were not infectious. In contrast, when stable transfectant HeLa cell lines were established, assembly of the mutant precursors into capsids was drastically reduced. Instead, the polyprotein precursors remained predominantly soluble in the cytoplasm. These results show that while p12 is not required for the intracytoplasmic assembly of M-PMV capsids, under the conditions of low-level protein biosynthesis seen in virus-infected cells, it may assist in the stable association of polyprotein precursors for capsid assembly. Moreover, the presence of the p12 coding domain is absolutely required for the infectivity of M-PMV virions.  相似文献   

7.
Mason-Pfizer monkey virus (M-PMV) capsids that have assembled in the cytoplasm must be transported to and associate with the plasma membrane prior to being enveloped by a lipid bilayer during viral release. Structural studies have identified a positive-charge density on the membrane-proximal surface of the matrix (MA) protein component of the Gag polyprotein. To investigate if basic amino acids in MA play a role in intracellular transport and capsid-membrane interactions, mutants were constructed in which lysine and arginine residues (R10, K16, K20, R22, K25, K27, K33, and K39) potentially exposed on the capsid surface were replaced singly and in pairs by alanine. A majority of the charge substitution mutants were released less efficiently than the wild type. Electron microscopy of mutant Gag-expressing cells revealed four distinct phenotypes: K16A and K20A immature capsids accumulated on and budded into intracellular vesicles; R10A, K27A, and R22A capsid transport was arrested at the cellular cortical actin network, while K25A immature capsids were dispersed throughout the cytoplasm and appeared to be defective at an earlier stage of intracellular transport; and the remaining mutant (K33A and K39A) capsids accumulated at the inner surface of the plasma membrane. All mutants that released virions exhibited near-wild-type infectivity in a single-round assay. Thus, basic amino acids in the M-PMV MA define both cellular location and efficiency of virus release.  相似文献   

8.
S S Rhee  E Hunter 《Cell》1990,63(1):77-86
Two different morphogenic processes of retroviral capsid assembly have been observed: the capsid is either assembled at the plasma membrane during the budding process (type C), or preassembled within the cytoplasm (types B and D). We describe here a gag mutant of Mason-Pfizer monkey virus, a type D retrovirus, in which a tryptophan substituted for an arginine in the matrix protein results in efficient assembly of capsids at the plasma membrane through a morphogenic process similar to that of type C retroviruses. We conclude that a type D retrovirus Gag polyprotein contains an additional, dominant signal that prevents immediate transport of precursors from the site of biosynthesis to the plasma membrane. Instead, they are directed to and retained at a cytoplasmic site where a concentration sufficient for self-assembly into capsids occurs. Thus, capsid assembly processes for different retroviruses appear to differ only in the intracellular site to which capsid precursors are directed.  相似文献   

9.
In contrast to all retroviruses but similar to the hepatitis B virus, foamy viruses (FV) require expression of the envelope protein for budding of intracellular capsids from the cell, suggesting a specific interaction between the Gag and Env proteins. Capsid assembly occurs in the cytoplasm of infected cells in a manner similar to that for the B- and D-type viruses; however, in contrast to these retroviruses, FV Gag lacks an N-terminal myristylation signal and capsids are not targeted to the plasma membrane (PM). We have found that mutation of an absolutely conserved arginine (Arg) residue at position 50 to alanine (R50A) of the simian foamy virus SFV cpz(hu) inhibits proper capsid assembly and abolishes viral budding even in the presence of the envelope (Env) glycoproteins. Particle assembly and extracellular release of virus can be restored to this mutant with the addition of an N-terminal Src myristylation signal (Myr-R50A), presumably by providing an alternate site for assembly to occur at the PM. In addition, the strict requirement of Env expression for capsid budding can be bypassed by addition of a PM-targeting signal to Gag. These results suggest that intracellular capsid assembly may be mediated by a signal akin to the cytoplasmic targeting and retention signal CTRS found in Mason-Pfizer monkey virus and that FV Gag has the inherent ability to assemble capsids at multiple sites like conventional retroviruses. The necessity of Env expression for particle egress is most probably due to the lack of a membrane-targeting signal within FV Gag to direct capsids to the PM for release and indicates that Gag-Env interactions are essential to drive particle budding.  相似文献   

10.
11.
Mason-Pfizer monkey virus (M-PMV), the prototypical type D retrovirus, assembles immature capsids within the cytoplasm of the cell prior to plasma membrane interaction. Several mutants of M-PMV Gag have been described which display altered transport, assembly, or both. In this report, we describe the use of an in vitro synthesis and assembly system to distinguish between defects in intracellular transport and the process of assembly itself for two previously described gag gene mutants. Matrix domain mutant R55W converts the type D morphogenesis of M-PMV particles into type C and has been hypothesized to alter the transport of Gag, redirecting it to the plasma membrane where assembly subsequently occurs. We show here that R55W can assemble in both the in vitro translation-assembly system and within inclusion bodies in bacteria and thus has retained the capacity to assemble in the cytoplasm. This supports the concept that R55 is located within a domain responsible for the transport of Gag to an intracellular site for assembly. In contrast, deletions within the p12 domain of M-PMV Gag had previously been shown to affect the efficiency of particle formation such that under low-level expression conditions, Gag would fail to assemble. We demonstrate here that the efficiency of assembly in the in vitro system mirrors that seen in cells under expression conditions similar to that of an infection. These results argue that the p12 domain of this D-type retrovirus plays a critical role in the membrane-independent assembly of immature capsids.  相似文献   

12.
In this work we used brefeldin A (BFA), a specific inhibitor of export to the Golgi apparatus, to study pseudorabies virus viral glycoprotein processing and virus egress. BFA had little effect on initial synthesis and cotranslational modification of viral glycoproteins in the endoplasmic reticulum (ER), but it disrupted subsequent glycoprotein maturation and export. Additionally, single-step growth experiments demonstrated that after the addition of BFA, accumulation of infectious virus stopped abruptly. BFA interruption of virus egress was reversible. Electron microscopic analysis of infected cells demonstrated BFA-induced disappearance of the Golgi apparatus accompanied by a dramatic accumulation of enveloped virions between the inner and outer nuclear membranes and also in the ER. Large numbers of envelope-free capsids were also present in the cytoplasm of all samples. In control samples, these capsids were preferentially associated with the forming face of Golgi bodies and acquired a membrane envelope derived from the trans-cisternae. Our results are consistent with a multistep pathway for envelopment of pseudorabies virus that involves initial acquisition of a membrane by budding of capsids through the inner leaf of the nuclear envelope followed by deenvelopment and release of these capsids from the ER into the cytoplasm in proximity to the trans-Golgi. The released capsids then acquire a bilaminar double envelope containing mature viral glycoproteins at the trans-Golgi. The resulting double-membraned virus is transported to the plasma membrane, where membrane fusion releases a mature, enveloped virus particle from the cell.  相似文献   

13.
Antinone SE  Smith GA 《Journal of virology》2006,80(22):11235-11240
Alphaherpesvirus infection of the mammalian nervous system is dependent upon the long-distance intracellular transport of viral particles in axons. How viral particles are effectively trafficked in axons to either sensory ganglia following initial infection or back out to peripheral sites of innervation following reactivation remains unknown. The mechanism of axonal transport has, in part, been obscured by contradictory findings regarding whether capsids are transported in axons in the absence of membrane components or as enveloped virions. By imaging actively translocated viral structural components in living peripheral neurons, we demonstrate that herpesviruses use two distinct pathways to move in axons. Following entry into cells, exposure of the capsid to the cytosol resulted in efficient retrograde transport to the neuronal cell body. In contrast, progeny virus particles moved in the anterograde direction following acquisition of virion envelope proteins and membrane lipids. Retrograde transport was effectively shut down in this membrane-bound state, allowing for efficient delivery of progeny viral particles to the distal axon. Notably, progeny viral particles that lacked a membrane were misdirected back to the cell body. These findings show that cytosolic capsids are trafficked to the neuronal cell body and that viral egress in axons occurs after capsids are enshrouded in a membrane envelope.  相似文献   

14.
Among all retroviruses, foamy viruses (FVs) are unique in that they regularly mature at intracytoplasmic membranes. The envelope glycoprotein of FV encodes an endoplasmic reticulum (ER) retrieval signal, the dilysine motif (KKXX), that functions to localize the human FV (HFV) glycoprotein to the ER. This study analyzed the function of the dilysine motif in the context of infectious molecular clones of HFV that encoded mutations in the dilysine motif. Electron microscopy (EM) demonstrated virion budding both intracytoplasmically and at the plasma membrane for the wild-type and mutant viruses. Additionally, mutant viruses retained their infectivity, but viruses lacking the dilysine signal budded at the plasma membrane to a greater extent than did wild-type viruses. Interestingly, this relative increase in budding across the plasma membrane did not increase the overall release of viral particles into cell culture media as measured by protein levels in viral pellets or infectious virus titers. We conclude that the dilysine motif of HFV imposes a partial restriction on the site of viral maturation but is not necessary for viral infectivity.  相似文献   

15.
Herpesviruses acquire their envelope by budding into the lumen of cytoplasmic membrane vesicles. This process is initiated by component(s) on viral particles, which recognize the budding site where the viral glycoproteins are present and recruit cellular cargo transport and sorting machinery to the site to complete the budding process. Proteins in the tegument layer, connecting capsid and envelope, are candidates for the recognition of budding sites on vesicle membrane and induction of budding and final envelopment. We examined several outer and matrix tegument proteins of Kaposi’s sarcoma-associated herpesvirus (KSHV) and found that ORF45 associates with lipid rafts (LRs) of cellular membrane. LRs are membrane micro-domains, which have been implicated as relay stations in intracellular signaling and transport including viral entry and virion assembly. The ability of ORF45 to target LR is dependent on the mono-ubiquitylation of ORF45 at Lys297 as the mutation at Lys297 (K297R) abolished LR-association of ORF45. The K297R mutation also impairs ORF45 and viral particle co-localization with trans-Golgi network and endosomes, but facilitates ORF45 and viral particles co-localizing with lysosomes. More importantly, the recombinant KSHV carrying ORF45 K297R mutant (BAC-K297R) was found severely defective in producing mature and infectious virion particles in comparison to wild type KSHV (BAC16). Taken together, our results reveal a new function of KSHV tegument protein ORF45 in targeting LR of host cell membrane, promoting viral particles co-localization with trans-Golgi and endosome vesicles and facilitating the maturation and release of virion particles, suggesting that ORF45 plays a role in bringing KSHV particles to the budding site on cytoplasmic vesicle membrane and triggering the viral budding process for final envelopment and virion maturation.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) particle formation and the subsequent initiation of protease-mediated maturation occur predominantly on the plasma membrane. However, the mechanism by which HIV-1 assembly is targeted specifically to the plasma membrane versus intracellular membranes is largely unknown. Previously, we observed that mutations between residues 84 and 88 of the matrix (MA) domain of HIV-1 Gag cause a retargeting of virus particle formation to an intracellular site. In this study, we demonstrate that the mutant virus assembly occurs in the Golgi or in post-Golgi vesicles. These particles undergo core condensation in a protease-dependent manner, indicating that virus maturation can occur not only on the plasma membrane but also in the Golgi or post-Golgi vesicles. The intracellular assembly of mutant particles is dependent on Gag myristylation but is not influenced by p6(Gag) or envelope glycoprotein expression. Previous characterization of viral revertants suggested a functional relationship between the highly basic domain of MA (amino acids 17 to 31) and residues 84 to 88. We now demonstrate that mutations in the highly basic domain also retarget virus particle formation to the Golgi or post-Golgi vesicles. Although the basic domain has been implicated in Gag membrane binding, no correlation was observed between the impact of mutations on membrane binding and Gag targeting, indicating that these two functions of MA are genetically separable. Plasma membrane targeting of Gag proteins with mutations in either the basic domain or between residues 84 and 88 was rescued by coexpression with wild-type Gag; however, the two groups of MA mutants could not rescue each other. We propose that the highly basic domain of MA contains a major determinant of HIV-1 Gag plasma membrane targeting and that mutations between residues 84 and 88 disrupt plasma membrane targeting through an effect on the basic domain.  相似文献   

17.
We had previously identified active autonomous copies of the MusD long terminal repeat-retrotransposon family, which have retained transpositional activity. These elements are closely related to betaretroviruses but lack an envelope (env) gene. Here we show that these elements encode strictly intracellular virus-like particles that can unambiguously be identified by electron microscopy. We demonstrate intracellular maturation of the particles, with a significant proportion of densely packed cores for wild-type MusD but not for a protease mutant. We show that the molecular origin of this unexpected intracellular localization is solely dependent on the N-terminal part of the Gag protein, which lacks a functional sequence for myristoylation and plasma membrane targeting: replacement of the N-terminal domain of the MusD matrix protein by that of its closest relative-the Mason-Pfizer monkey virus-led to targeting of the MusD Gag to the plasma membrane, with viral particles budding and being released into the cell supernatant. These particles can further be pseudotyped with a heterologous envelope protein and become infectious, thus "reconstituting" a functional retrovirus prone to proviral insertions. Consistent with its retroviral origin, a sequence with a constitutive transport element-like activity can further be identified at the MusD 3' untranslated region. A molecular scenario is proposed that accounts for the transition, during evolution, from an ancestral infectious betaretrovirus to the strictly intracellular MusD retrotransposon, involving not only the loss of the env gene but also an inability to escape the cell--via altered targeting of the Gag protein--resulting de facto in the generation of a very successful "intracellularized" insertional mutagen.  相似文献   

18.
The only spike of influenza C virus, the hemagglutinin‐esterase‐fusion glycoprotein (HEF) combines receptor binding, receptor hydrolysis and membrane fusion activities. Like other hemagglutinating glycoproteins of influenza viruses HEF is S‐acylated, but only with stearic acid at a single cysteine located at the cytosol‐facing end of the transmembrane region. Previous studies established the essential role of S‐acylation of hemagglutinin for replication of influenza A and B virus by affecting budding and/or membrane fusion, but the function of acylation of HEF was hitherto not investigated. Using reverse genetics we rescued a virus containing non‐stearoylated HEF, which was stable during serial passage and showed no competitive fitness defect, but the growth rate of the mutant virus was reduced by one log. Deacylation of HEF does neither affect the kinetics of its plasma membrane transport nor the protein composition of virus particles. Cryo‐electron microscopy showed that the shape of viral particles and the hexagonal array of spikes typical for influenza C virus were not influenced by this mutation indicating that virus budding was not disturbed. However, the extent and kinetics of haemolysis were reduced in mutant virus at 37°C, but not at 33°C, the optimal temperature for virus growth, suggesting that non‐acylated HEF has a defect in membrane fusion under suboptimal conditions.  相似文献   

19.
Foamy viruses (FVs) assemble using pathways distinct from those of orthoretroviruses. FV capsid assembly takes place near the host microtubule-organizing center (MTOC). Assembled capsids then migrate by an unknown mechanism to the trans-Golgi network to colocalize with the FV glycoprotein, Env. Interaction with Env is required for FV capsid egress from cells; the amino terminus of FV Gag contains a cytoplasmic targeting/retention signal that is responsible for targeting assembly to the MTOC. A mutant Gag was constructed by addition of a myristylation (M) signal in an attempt to target assembly to the plasma membrane and potentially overcome the dependence upon Env for budding (S. W. Eastman and M. L. Linial, J. Virol. 75:6857-6864, 2001). Using this and additional mutants, we now show that assembly is not redirected to the plasma membrane. Addition of an M signal leads to gross morphological defects. The aberrant particles still assemble near the MTOC but do not produce infectious virus. Although extracellular Gag can be detected in a pelletable form in the absence of Env, the mutant particles contain very little genomic RNA and are less dense. Our analyses indicate that the amino terminus of Gag contains an Env interaction domain that is critical for bona fide egress of assembled capsids.  相似文献   

20.
Unlike other subclasses of the Retroviridae the Spumavirinae, its prototype member being the so-called human foamy virus (HFV), require the expression of the envelope (Env) glycoprotein for viral particle egress. Both the murine leukemia virus (MuLV) Env and the vesicular stomatitis virus G protein, which efficiently pseudotype other retrovirus capsids, were not able to support export of HFV particles. Analysis of deletion and point mutants of the HFV Env protein revealed that the HFV Env cytoplasmic domain (CyD) is dispensable for HFV particle envelopment, release, and infectivity, whereas deletion of the membrane-spanning-domain (MSD) led to an accumulation of naked capsids in the cytoplasm. Neither alternative membrane association of HFV Env deletion mutants lacking the MSD and CyD via phosphoglycolipid anchor nor domain swapping mutants, with the MSD or CyD of MuLV Env and VSV-G exchanged against the corresponding HFV domains, could restore particle envelopment and the release defect of pseudotypes. However, replacement of the HFV MSD with that of MuLV led to budding of HFV capsids at the intracellular membranes. These virions were of apparently wild-type morphology but were not naturally released into the supernatant and they were noninfectious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号