首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stigma papillae in Gladiolus are of the “dry” type and are highly vacuolated cells with an organelle-rich peripheral cytoplasm. The cell wall of each papilla is overlain by a distinctive cuticle possessing an irregularly scalloped inner margin. Between the cell wall and cuticle is a layer of amorphous sub-cuticular material. Lipids are detected on the papilla surface. A pollen grain will hydrate and germinate only on a papilla and not on any other (non-papillate) portion of the stigma. The pollen tube penetrates the papilla cuticle, which is forced away from the papilla cell wall by sub-cuticular pollen tube growth. As the cuticle lifts away, the sub-cuticular material disperses. At the base of the papilla, the pollen tube grows onto the adaxial non-papillate surface of the stigma lobe. At this site, the cuticle has been lifted away from the underlying cells by release of a mucilaginous substance from the latter, and the pollen tube grows within this substance beneath the detached cuticle. The cytological features of Gladiolus papillae are compared with other stigma papillae described in the literature. Also, a review of the literature, as well as some of the findings of the present study, suggest that certain prevalent interpretations of dry stigma structure and function may be open to question.  相似文献   

2.
D. L. Lee 《Journal of Zoology》1970,161(2):513-518
The ultrastructure of the cuticle of the adult female nematode Mermis nigrescens has been described. There is an epicuticle and three-layered membrane covering the cuticle. The cortex is penetrated by canals which extend from the surface of the cuticle to the matrix of the layer beneath the cortex. Beneath the cortex are two layers of giant fibres which spiral around the nematode, a thick layer containing a network of fibres and a basal layer containing a vacuolated matrix material. it is thought that the epicuticle is secreted from the canals in the cortex. The possible functions of the layers in the cuticle have been discussed and similarities with the cuticle of the Acanthocephala have been noted.  相似文献   

3.
Design and mechanical properties of insect cuticle   总被引:2,自引:0,他引:2  
Since nearly all adult insects fly, the cuticle has to provide a very efficient and lightweight skeleton. Information is available about the mechanical properties of cuticle-Young's modulus of resilin is about 1 MPa, of soft cuticles about 1 kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of sclerotised cuticle ranges between 25 and 80 kgf mm(-2); density is 1-1.3 kg m(-3)-and one of its components, chitin nanofibres, the Young's modulus of which is more than 150 GPa. Experiments based on fracture mechanics have not been performed although the layered structure probably provides some toughening. The structural performance of wings and legs has been measured, but our understanding of the importance of buckling is lacking: it can stiffen the structure (by elastic postbuckling in wings, for example) or be a failure mode. We know nothing of fatigue properties (yet, for instance, the insect wing must undergo millions of cycles, flexing or buckling on each cycle). The remarkable mechanical performance and efficiency of cuticle can be analysed and compared with those of other materials using material property charts and material indices. Presented in this paper are four: Young's modulus-density (stiffness per unit weight), specific Young's modulus-specific strength (elastic hinges, elastic energy storage per unit weight), toughness-Young's modulus (fracture resistance under various loading conditions), and hardness (wear resistance). In conjunction with a structural analysis of cuticle these charts help to understand the relevance of microstructure (fibre orientation effects in tendons, joints and sense organs, for example) and shape (including surface structure) of this fibrous composite for a given function. With modern techniques for analysis of structure and material, and emphasis on nanocomposites and self-assembly, insect cuticle should be the archetype for composites at all levels of scale.  相似文献   

4.
Summary The study of larval and pupal cuticles ofPieris brassicae has revealed some differences in ultrastructural architecture. The lamellated cuticle of larvae is traversed by processes of epidermal cells connected with fibrils possibly acting as supports for the arched cuticle but never developing into a space system. In contrast pupal cuticles are traversed by a space system containing bundles of fibrils which are involved in the transport of lipid containing material.Ultrastructural changes occuring in the pupal cuticle few days after ecdysis are described.These results are discussed in relation to the present knowledge of cuticle structure.  相似文献   

5.
The mechanical properties of soft tissues are important for the control of motion in many invertebrates. Pressurized cylindrical animals such as worms have circumferential reinforcement of the body wall; however, no experimental characterization of comparable anisotropy has been reported for climbing larvae such as caterpillars. Using uniaxial, real-time fluorescence extensometry on millimeter scale cuticle specimens we have quantified differences in the mechanical properties of cuticle to circumferentially and longitudinally applied forces. Based on these results and the composite matrix-fiber structure of cuticle, a pseudo-elastic transversely isotropic constitutive material model was constructed with circumferential reinforcement realized as a Horgan-Saccomandi strain energy function. This model was then used numerically to describe the anisotropic material properties of Manduca cuticle. The constitutive material model will be used in a detailed finite-element analysis to improve our understanding of the mechanics of caterpillar crawling.  相似文献   

6.
A perusal of the literature on copepod cuticles has been made, and results of the investigation of six species made by the author are included in this review. The integument of copepods is of the arthropod type. Pore canals and other structures traversing the cuticle, common in most arthropods, are not always present in free-living and some parasitic copepods. In parasitic forms, with advanced morphological changes, the cuticle is generally very thin and the epicuticle in many species forms external microvilli-like structures. In the copepods hitherto investigated the epicuticle is probably the sole layer present in the cuticle. Some copepods show specialized regions of the cuticular surface, the function of which still remains obscure. Integumental organs and integumental structures are numerous and variable. The association of bacteria with the cuticle has been observed in many species. The structure of the integument of parasitic species lacking an alimentary tube and in close contact with the host tissue or hemocoelic cavity supports the idea that the integument could be the obligatory site of nutrient uptake. In spite of the relatively few species of copepods that have been investigated, a remarkable variation of cuticular fine structure has been revealed.  相似文献   

7.
Secreation by the epidermis of two oligochaetes (Eisenia and Enchytraeus) was investigated radioautographically following administration of 3H-proline, 3H-tryptophan or Na2(35)SO4. Regionally epidermal columnar cells of Enchytraeus synthesize the overlying, probably collagenous, cuticle. Eisenia epidermis does not recordably synthesize the cuticle until after wounding (first eight segments removed). By two days postoperative the epidermal columnar cells of Eisenia synthesize the collagenous cuticle and, later in regeneration, the epidermis may simultaneously synthesize the different collagen of the underlying basement lamella. The epidermis of Enchytraeus, but not of Eisenia, synthesizes some sulfated material associated with the cuticle surface.  相似文献   

8.
Abstract:  The thalloid carbonaceous fossil Nematothallus Lang, 1937, has been widely interpreted as an early Palaeozoic land‐plant, despite the absence of a convincing modern analogue. Exceptionally well‐preserved nematophyte cuticle from the Late Silurian Burgsvik Sandstone Formation, Gotland provides additional insight into the organism’s anatomy, phylogenetic affiliations and ecology. Because this material exhibits additional characters not present in the type material we assign it to Nematothallopsis gotlandii gen. et sp. nov. The organism was constituted of a close‐packed layer of palisade‐like filaments covered by a cuticle that bears a characteristic pseudocellular pattern on its inner surface. Apertures in this cuticle are often encircled by a ring of multicellular filaments, which are sometimes associated with spheroidal, spore‐like entities. In the light of the conspicuous similarity of the palisade layers to the pseudoparenchymatous tissue of coralline red algae, and of the filament‐fringed apertures to their reproductive conceptacles, we reconstruct the Nematothallopsis organism as an extinct rhodophyte and re‐evaluate the putative terrestrial habit of cuticular nematophytes in general.  相似文献   

9.
Sphenobaiera huangii (Sze) Hsü is typical Early Mesozoic fossil foliage of Ginkgoales in China. It has been recorded from the Upper Triassic to the Lower Jurassic. The cuticular anatomy is investigated based on material from the type locality, Lower Jurassic Hsiangchi Formation, Zigui County, Hubei Province. The specimens are similar to S. huangii, but contain new information about leaf morphology and cuticular anatomy. Lower and upper cuticle is investigated using light and electron microscopy (LM, SEM, and TEM). Many features are described for the first time, including general structures of lower and upper cuticle, stomata, papillae, and cuticular ultrastructure. At the ultrastructural level, two layers have been distinguished in both lower and upper cuticle, including a homogeneous outer layer with granules and a heterogeneous inner layer with fibrils. Based on a literature comparison between S. huangii and other relevant species of Sphenobaiera, S. huangii may represent the best-known taxon in the genus Sphenobaiera in both leaf morphology and cuticular structures. This study provides the first detailed ultrastructural data on the leaf cuticle of Sphenobaiera, one of the oldest foliage taxa of Ginkgoales, and offers further evidence for potential discussion on the taxonomic relationships of S. huangii with other ginkgoalean taxa.  相似文献   

10.
Cuttings of Tamarix aphylla were grown in various concentrations of NaCl. Salt glands on newly developed branches were sectioned and examined, both with the light- and with the electron-microscope. An electron-dense material appears in cuttings grown in all concentrations of NaCl at the anticlinal walls of the innermost pair of secretory cells and, to some extent, on the surface of the gland above the cuticle. In the glands of cuttings grown in high concentration of NaCl this material also appears in large quantities, not only on top of the gland but also beneath the cuticle at the region of the median anticlinal wall of the outermost pair of secretory cells. The material beneath the cuticle is connected to the electron-dense material on the outer surface of the cuticle via the secretory pores. It is suggested that this material is of pectic nature and forms a continuous system with the walls and wall protuberances of the secretory cells which are also very rich in pectic substances. As pectic substances absorb solutions easily they may enhance the transport of salt.
Many proplastids, vacuoles with simple structure and others with infolded membranes as well as numerous mitochondria were observed in the secretory cells. In the walls between the collecting cells and the innermost secretory cells there are numerous plasmodesmata with characteristically arranged membranes.  相似文献   

11.
Adhesion of conidia of the endoparasitic fungus Drechmeria coniospora to the cuticles of the wild type and four different head defective mutants of Caenorhabditis elegans, and subsequent infection, was studied. The conidia adhered around the sensory structures in the head region, vulva, and occasionally to other parts of the cuticle in both mutant and wild type hosts. Infection took place after adhesion to the head region by penetration through the cuticle, and, following adhesion around the vulva, through the natural orifice. Infection was not observed after adhesion to other parts of the cuticle. Adhesion was reduced after treatment of the nematodes with Pronase E. Adhesion returned towards normal again within 2 hours, indicating that the proteinaceous material emanating from the sensory structures was rapidly replaced.  相似文献   

12.
Studies on Pogonophora. 4. Fine structure of the cuticle and epidermis   总被引:3,自引:0,他引:3  
Gupta BL  Little C 《Tissue & cell》1970,2(4):637-696
The fine structure of the integument in several species of Pogonophora has been examined by electron microscopy. The cuticle over the main body is composed of several layers of orthogonally arranged fibres embedded in an amorphous matrix. It is regularly traversed by microvilli from underlying epidermal cells. Toothed bristles of the annuli and setae of the anchor are composed of closely packed fibrous cylinders wrapped in a cortical material. In fine structure the cuticle, setae, toothed bristles (or setae) and setal sacs forming the setae closely resemble the corresponding structures in annelids. The cuticle is maximally thick over the forepart (protosome + mesosome) ; it is very thin and non-fibrous over the surface of the metameric papillae and over extensive areas of post-metameric trunk. The possibilities of a collagenous nature of the cuticle fibres and their mode of secretion by the epidermal cells are discussed. The organization of various cell-types forming the epidermis over the entire animal is examined. Possible functions of these cell-types are discussed. Notable amongst these are 'possible zymogen cells' and some absorptive cells. The intriguing question of nutrition in these gut-less tubiculous animals is re-examined in the light of present observations.  相似文献   

13.
14.
An ultrastructural transmission electron microscope (TEM) study of fossil leaf cuticles from the Jurassic pteridosperm Komlopteris nordenskioeldii (Nathorst) Barbacka from the Mecsek Mountains (South Hungary) was conducted. Remnants of cuticles of leaves originating from so-called "sun and shade" environments were sectioned with a diamond knife, transversally as well as longitudinally. Although the present study showed a simple type of cuticle in this pteridosperm, differences were observed in the occurrence of its components, such as electron lucent amorphous material and various densities of granules, which give rise to different zones. The included fibrilous elements appeared to be made of aggregated and aligned granules, equivalent in size and electron density to nearby non-fibrilous granular regions. The combinations of these ultrastructural features allow distinctions between four types of cuticle: sun upper, sun lower, shade upper and shade lower. Considering the distinction made earlier in two types of cuticle and supposed to be related to sun and shade on the basis of macroscopical and microscopical features, four types only on the basis of differences in thickness, the present study reinforces the distinctions with ultrastructural microcharacteristics. As this study shows the variations in ultrastructure of cuticle among the four types, the differences observed may reveal the great sensitivity of some plants to environment. At the same time, it points out the importance, in ultrastructural studies of cuticles, of studying a number of samples for one taxon.  相似文献   

15.
LYSHEDE  OLE B. 《Annals of botany》1980,46(5):519-526
The potato plant has two types of glandular trichomes whichwere investigated by electron microscopy. One type has a eight celled globular head on a neck cell anda stalk cell Each glandular cell has many rather large vacuoles,a large nucleus, many ribosomes and mitochondria, a few Golgibodies, and darkly coloured, often irregular plastids (chloroplasts).The plastids are mostly located near the axial cell wall borderinga large central intercellular space filled with secretion materialThe plastids are assumed to participate in the formation ofthe secretion material, which reacts positively to esterasetests. The outer wall is covered by a thin cuticle. The other type has a club-shaped multicellular head on a singlestalk cell. The cytoplasmic features in the cells are similarto those of the globular-headed trichome, except that they possesslarge central vacuoles and randomly distributed plastids. Centricendoplasmic reticulum has been observed in young cells. Intercellularspaces develop between the cells and into the outer wall, whichis thus split into two. Whereas the older glandular cells reactpositively to tests for esterase, the secretion material itselfis pectinaceous and reacts negatively. The outer wall is cutinizedand covered by a cuticle. Solanum tuberosum L., potato, glandular trichomes, ultrastructure  相似文献   

16.
植物角质层基因研究进展   总被引:2,自引:0,他引:2  
角质层是形成于陆生植物表皮细胞壁外表面的脂质保水层。角质层的基本功能是保水,同时也在响应逆境胁迫、自我清洁及器官发育等方面发挥作用。角质层通常由角质和蜡质组成。角质是角质层的主要结构成分,其主要组分是聚酯。蜡质成分主要为极长链饱和脂肪酸及其衍生物。这些组分在内质网上合成后被转运到细胞表面,进一步形成完整的角质层结构。近年来通过对角质层相关突变体及相应基因的研究,人们对角质层在合成、转运、形成及调控等各个阶段都有了较为深入的认识。蜡质和角质的合成途径已在角质层相关基因功能的解释下逐渐浮出水面。有关角质层前体转运方面的研究,主要的突破在于ABCG全转运蛋白的发现和功能解析。在角质层形成的机理方面,角质层基因中的酯酶和脂酶类基因的研究有助于进一步认识这个复杂的过程。在基因调控方面,新的转录因子基因和角质层与环境之间的相互关系研究,也为已知的调控网络增加了新内容。该文综述了目前关于角质层相关基因的最新研究进展。  相似文献   

17.
本文对自然贮存六个月的秦冠、红富士及新红星苹果果实在生化成分及显微、超微结构上进行了对比研究,发现红富士果实中果胶质、总糖及粗蛋白含量均高于其它品种;三种果实表面均有不同形态的蜡质分布;果皮角化层以红富士较厚,新红星次之;不同品种果肉细胞的形态有明显差异。本文对此结果进行了初步的探讨,以期为苹果贮存研究积累资料。  相似文献   

18.
The ice worm is adapted for life at O°C. A survey of the ultrastructure of the cuticle, epidermal epithelium and basement membrane does not reveal any features which self-evidently correlate with such metabolic specialization; instead, these tissues are much like those of the earthworm and some freshwater oligochaetes. The cuticular fibers are unstriated. Epithelial cells aresuggested as the source of cuticular material. Epithelial microvilli penetrate the cuticle. There is an array of membrane bound bodies on the cuticle surface. The basement membrane fibers are transversely striated and are oriented in crossed lamellae. The junctional complex is represented by azonula adhaerens and septate desmosome.  相似文献   

19.
Current information on the type and amount of biopolymers present in the epidermis of conifer species is still insufficient. This work presents the detailed morphology and chemical composition of Araucaria bidwillii cuticle after selective treatments to remove the different types of biopolymers. After removal of the waxes, cutin and polar hydrolyzable components, a lignin-like fraction, which makes up 25% of the initial cuticle weight, was identified by GC-MS and infrared spectroscopy. The isolated lignin is of G type, mainly formed by guaiacyl units. This composition indicates that the conifer cuticle investigated here has similar composition to other conifer-isolated cuticles. Water sorption and desorption by the isolated cuticle and the different cuticle fractions, including lignin, were studied. The analysis of the isotherms, following distinct physicochemical models, gave useful information on the structural and physiological role of the different biopolymers present in the cuticle. Lignin fraction showed both a high water sorption and capability of retaining it in comparision to other cuticle components. Hysteresis effect on water sorption–desorption cycle and water cluster formations has also been studied, and their physiological role discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号