首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The configurational behaviour of flexible helices of right handed B- and left handed Z-types have been analysed using statistical mechanical procedures. The configuration-dependent parameter, most importantly, the persistence length has been computed, using the heminucleotide scheme of treating polynucleotide chains under the approximation that perturbations in the backbone torsions produce sufficient flexibility in these helices. The values of persistence lengths obtained for Z-helices are very much higher than that of B-helices indicating that former is less flexible compared to the latter. These are in accordance with the results obtained recently on B- and Z-forms of poly(dG-dC). (dG-dC) using light scattering studies. Also the persistence lengths of BII-DNA helices characterised by a skew 3'-hemiucleotide (ε-270°), and also when they coexist with B-DNA have been computed and the values lie within the range of experimentally reported values on B-helices. It is argued that the decrease in the persistence length values of B-DNA at higher salt concentration is due to additional small fluctuations in sugar residue torsions induced due to neutralisation of electrostatic repulsions between adjacent phosphates of the nucleotide. Noteworthy is that these are correlated to winding angle variations and the consequent bending of the helix. Contribution No. 659.  相似文献   

2.
Left handed duplexes are shown to be in agreement with the X-ray intensity data of A-, B- and D-forms of DNA. The structures are stereochemically satisfactory because they were obtained following a stereochemical guideline derived from theory and single crystal structure data of nucleic acid components. The same stereochemical guideline also led to right handed duplexes for B- and D-forms of DNA which have stereochemically preferred conformation and hence are superior to those given by Arnott and coworkers10,11.  相似文献   

3.
4.
Our goal is to review the main theoretical models used to calculate free energy changes associated with common, torsion-induced conformational changes in DNA and provide the resulting equations hoping to facilitate quantitative analysis of both in vitro and in vivo studies. This review begins with a summary of work regarding the energy change of the negative supercoiling-induced B- to L-DNA transition, followed by a discussion of the energetics associated with the transition to Z-form DNA. Finally, it describes the energy changes associated with the formation of DNA curls and plectonemes, which can regulate DNA-protein interactions and promote cross talk between distant DNA elements, respectively. The salient formulas and parameters for each scenario are summarized in table format to facilitate comparison and provide a concise, user-friendly resource.  相似文献   

5.
Ren J  Jenkins TC  Chaires JB 《Biochemistry》2000,39(29):8439-8447
Isothermal titration calorimetry has been used to determine the binding enthalpy and heat capacity change (DeltaC(p)()) for a series of DNA intercalators, including ethidium, propidium, daunorubicin, and adriamycin. Temperature-dependent binding enthalpies were measured directly for the ligands, from which DeltaC(p)() values of -140 to -160 cal mol(-)(1) K(-)(1) were calculated. Published van't Hoff plots were reanalyzed to obtain DeltaC(p)() values of -337 to -423 cal mol(-)(1) K(-)(1) for the binding of actinomycin D to several DNA oligonucleotide duplexes with defined sequences. Heat capacity changes for DNA intercalation were found to correlate with the alterations in solvent-accessible surface area calculated from available high-resolution structural data. Multiple linear regression was used to derive the relationship DeltaC(p)() = 0. 382(+/-0.026)DeltaA(np) - 0.121(+/-0.077)DeltaA(p) cal mol(-)(1) K(-)(1), where DeltaA(np) and DeltaA(p) are the binding-induced changes in nonpolar and polar solvent-accessible surface areas (in square angstroms), respectively. The DeltaC(p)() terms were used to estimate the hydrophobic contribution to intercalative binding free energies, yielding values that ranged from -11.2 (ethidium) to -30 kcal mol(-)(1) (actinomycin D). An attempt was made to parse the observed binding free energies of ethidium and propidium into five underlying contributions. Such analysis showed that the DNA binding behavior of these simple intercalators is driven almost equally by hydrophobic effects and van der Waals contacts within the intercalation site.  相似文献   

6.
On the basis of complete scanning through conformational space of dihedral angles, twelve structural genera were obtained. Subsequent energy minimization within these genera yielded a limited set of duplexes with stacking: right-handed B-form (Wilkins type), B2-form (Watson and Crick type) and left-handed Ll-form (Sasisekharan type) and the new L2-form. In the polymeric DNA only right-handed double-helices are possible, the left-handed helices are forbidden due to poor 1–5 interchain contacts. In contrast, for short fragments the left- and right-handed helicek have practically the same energies providing some physical ground for side-by-side form, which biologically is possible as recombination form and may be as replication form.  相似文献   

7.
Energetics of echinomycin binding to DNA   总被引:2,自引:3,他引:2       下载免费PDF全文
Differential scanning calorimetry and UV thermal denaturation have been used to determine a complete thermodynamic profile for the bis-intercalative interaction of the peptide antibiotic echinomycin with DNA. The new calorimetric data are consistent with all previously published binding data, and afford the most rigorous and direct determination of the binding enthalpy possible. For the association of echinomycin with DNA, we found ΔG° = –7.6 kcal mol–1, ΔH = +3.8 kcal mol–1 and ΔS = +38.9 cal mol–1 K–1 at 20°C. The binding reaction is clearly entropically driven, a hallmark of a process that is predominantly stabilized by hydrophobic interactions, though a deeper analysis of the free energy contributions suggests that direct molecular recognition between echinomycin and DNA, mediated by hydrogen bonding and van der Waals contacts, also plays an important role in stabilizing the complex.  相似文献   

8.
Shan X  Margulies KB 《PloS one》2011,6(5):e19922

Background

Though long known to affect smooth muscle biology, recent studies indicate that phosphodiesterase 5 (PDE5) is also expressed in myocardium. Recognizing that the regulation of PDE5 in hypertrophy is not well understood, we assessed the response of PDE5 expression and the level of cGMP-dependent kinase I (cGKI) in the left and right ventricles of feline hypertrophy models.

Methodology/Principal Findings

Using a cDNA library of feline aortic smooth muscle cells, we identified and cloned PDE5 cDNA for the first time in this species. The sequence shares 98% identity with its human orthologue at the amino acid level. E. coli expression of the cloned allele allowed selection of antibodies with appropriate specificity, facilitating the analysis of PDE5 expression in feline models created by selective proximal aortic (Ao) or pulmonary artery (PA) banding that resulted in hypertrophy of the left ventricle (LV) and right ventricle (RV), respectively. We demonstrated that PDE5 expression responded differentially with a decreased expression in the LV and an increased expression in the RV in the Ao-banded model. Similarly, in the PA-banded model, LV showed reduced expression while the RV expression was unaltered. In addition, the expression of cGKI was significantly decreased in the RV of Ao-banded group, correlating inversely with the increase in PDE5 expression.

Conclusions/Significance

The differential regulation of PDE5 and cGKI expression suggests that the mechanisms involved in hypertrophy could be different in RV vs. LV. Reciprocal PDE5 and cGKI expression in the RV of Ao-banded model suggests functional significance for PDE5 up-regulation.  相似文献   

9.
Twisting a DNA molecule held under constant tension is accompanied by a transition from a linear to a plectonemic DNA configuration, in which part of the applied twist is absorbed in a superhelical structure. Recent experiments revealed the occurrence of an abrupt extension change at the onset of this transition. To elucidate its origin we study this abrupt DNA shortening using magnetic tweezers. We find that it strongly depends on the length of the DNA molecule and the ionic strength of the solution. This behavior can be well understood in the framework of a model in which the energy per writhe for the initial plectonemic loop is larger than for subsequent turns of the superhelix. By quantitative data analysis, relevant plectoneme energies and other parameters were extracted, providing good agreement with a simple theory. As a direct confirmation of the initial-loop model, we find that for a kinked DNA molecule the abrupt extension change occurs at significantly lower twist than the subsequent superhelix formation. This should allow pinning of the plectoneme position within supercoiled DNA if a kinked substrate is used, and enable the detection of enzymes and proteins which, themselves, bend or kink DNA.  相似文献   

10.
11.
12.
Abstract

It has been shown by model building studies that various right handed and left handed models are compatible with X-ray data of B-DNA and C-DNA. These models are also found to be in good agreement with infrared dichroism data. Detailed potential energy calculations have now been carried out for these models, viz., right and left handed B-DNA and right and left handed C-DNA It is found that base sugar stacking and interactions involving the phosphate groups are the dominant force s for stabilizing a particular structure. For some sequences, viz., A-A, T-A and C-A, left handed stacking is quite favourable in both B and C structures. But intranucleotide interactions make the left B-DNA unfavourable while the left C-DNA structure is more stable, for all the sequences, than the right C-DNA structure, proposed from fibre data. For the hexanucleoside pentaphosphate fragments the same trend is observed, with the right handed B-DNA being the most stable of the four models studied. However, the left C-DNA structure is only marginally higher in energy, particularly if the shielding effect of the counter ions, on the phosphate group is taken into consideration.  相似文献   

13.
C J Benham 《Cell biophysics》1987,10(3):193-204
The linking difference, alpha, imposed upon a superhelically constrained DNA molecule must be partitioned between twisting and bending deformations. Transitions to alternative secondary structures can occur at susceptible sites, altering the local molecular twist by an amount delta Twtrans. That part of the linking difference not accommodated in this way, the residual linking difference alpha res, must be manifested as smooth torsional and flexural deformations of secondary structure. The competition among the alternative ways of accommodating the imposed linking difference alpha determines a stressed equilibrium state. The superhelical free energy, G(alpha), is the excess free energy of the equilibrium state at linking difference alpha above that of the relaxed state under identical conditions. In this paper a method is described by which the free energies associated both to linking, G(alpha), and to residual linking differences can be determined from data on superhelical conformational transitions. The application of this approach to previously published experimental data on the B-Z transition suggests that the free energy associated with alpha res is about 30% larger at substantial superhelicities than it is near the relaxed state. At the onset of transition the functional form of G(alpha) is shown to change in a manner dependent upon the length of the Z-susceptible site.  相似文献   

14.
Abstract

The paper deals with the energetics of the transition to left-handed Z form in DNA with an arbitrary base sequence. There is a brief outline of the statistical-mechanical model of the B-Z transition allowing for three possible states of each base pair. The parameters of the model can be determined by comparing the theory with experimental data for the B-Z transition in inserts with given sequences in circular DNA The model contains six energy parameters, most of which have been determined before. In order to find the remaining parameters of the model and test its adequacy, a number of oligonucleotide sequences were synthesized and inserted into the pUC 19 plasmid. Two-dimensional gel electrophoresis was used to determine the superhelical density at which the inserts adopt the Z form. A statistical-mechanical treatment of these data yielded a complete set of six energy parameters for the B-Z transition. The theoretical assumption that the free energy of Z-form pairs does not depend on the type of adjacent pairs proved to be in agreement with the experimental data.  相似文献   

15.
We have investigated structural transitions in Poly(dG-dC) and Poly(dG-Me5dC) in order to understand the exact role of cations in stabilizing left-handed helical structures in specific sequences andthe biological role, if any, of these structures. From a novel temperature dependent Z ⇌ B transition it has been shown that a minor fluctuation in Na+ concentration at ambient temperature can bring about B to Z transition. Forthe first time, wehave observed a novel Z⇌B⇌Zuble transition in poly(dG-Me5dC) as the Na+ concentration is gradually increased. This suggests that a minor fluctuation in Na+ concentration in conjunction with methylation may transform small stretches of CG sequences from one conformational state to another. These stretches could probably serve as sites for regulation. Supercoiled formV DNA reconstituted from pBR322 and pβG plasmids have been studied as model systems, in order to understand the nature and role of left-handed helical conformation in natural sequences. A large portion of DNA in form V, obtained by reannealing the two complementary singlestranded circles is forced to adopt left-handed double helical structure due to topological constraints (L k = 0). Binding studies with Z-DNA specific antibody and spectroscopic studies confirm the presence of left-handed Z-structure in the pβG and pβR322 form V DNA. Cobalt hexamine chloride, which induces Z-form in Poly(dG-dC) stabilizes the Z-conformation in form V DNA even in the non-alternating purine-pyrimidine sequences. A reverse effect is observed with ethidium bromide. Interestingly, both topoisomerase I and II (from wheat germ) act effectively on form V DNA to give rise to a species having an electrophoretic mobility on agarose gel similar to that of open circular (form II) DNA. Whether this molecule is formed as a result of the left-handed helical segments of form V DNA undergoing a transition to the right-handed B-form during the topoisomerase action remains to be solved.  相似文献   

16.
The linking difference, α, imposed upon a superhelically constrained DNA molecule must be partitioned between twisting and bending deformations. Transitions to alternative secondary structures can occur at susceptible sites, altering the local molecular twist by an amount ΔTw trans. That part of the linking difference not accommodated in this way, the residual linking difference αres, must be manifested as smooth torsional and flexural deformations of secondary structure. The competition among the alternative ways of accommodating the imposed linking difference α determines a stressed equilibrium state. The superhelical free energy,G(α), is the excess free energy of the equilibrium state at linking difference α above that of the relaxed state under identical conditions. In this paper a method is described by which the free energies associated both to linking,G(α), and to residual linking differences can be determined from data on superhelical conformational transitions. The application of this approach to previously published experimental data on the B-Z transition suggests that the free energy associated with αres is about 30% larger at substantial superhelicities than it is near the relaxed state. At the onset of transition the functional form ofG(α) is shown to change in a manner dependent upon the length of the Z-susceptible site.  相似文献   

17.
The conformational behaviour of delta Ala has been investigated by quantum mechanical method PCILO in the model dipeptide Ac-delta Ala-NHMe and in the model tripeptides Ac-X-delta Ala-NHMe with X = Gly, Ala, Val, Leu, Abu and Phe and is found to be quite different. The computational results suggest that in the model tripeptides the most stable conformation corresponds to phi 1 = -30 degrees, psi 1 = 120 degrees and phi 2 = psi 2 = 30 degrees in which the > C = 0 of the acetyl group is involved in hydrogen bond formation with N-H of the amide group. Similar results were obtained for the conformational behaviour of D-Ala in Ac-D-Ala-NHMe and Ac-Ala-D-Ala-NHMe. The conformational behaviour of the amino acids delta Ala, D-Ala, Val and Aib in model tripeptides have been utilized in the designing of left handed helical peptides. It is shown that the peptide HCO-(Ala-D-Ala)3-NHMe can adopt both left and right handed helix whereas in the peptide Ac-(Ala-delta Ala)3-NHMe the lowest energy conformer is beta-bend ribbon structure. Left handed helical structure with phi = 30 degrees, psi = 60 degrees for D-Ala residues and phi = psi = 30 degrees for delta Ala is found to be more stable by 4 kcal mole-1 than the corresponding right handed helical structure for the peptide Ac-(D-Ala-delta Ala)3-NHMe. In both the peptides Ac-(Val-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe the most stable conformer is the left handed helix. Comparisons of results for Ac-(Ala-delta Ala)3-NHMe and Ac(Val-delta Ala)3-NHMe and Ac-(D-Ala-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe also reveal that the Val residues facilitate the population of 3(10) left handed helix over the other conformers. It is also shown that the conformational behaviour of Aib residue depends on the chirality of neighbouring amino acids, i.e. Ac-(Aib-Ala)3-NHMe adopts right handed helical structure whereas Ac-(Aib-D-Ala)3-NHMe is found to be in left handed helical structure.  相似文献   

18.
During bacteriophage T7 morphogenesis in a T7-infected cell, mature length T7 DNA molecules join end-to-end to form concatemers that are subsequently both packaged in the T7 capsid and cut to mature size. In the present study, the kinetics of the appearance in vivo of the mature right and left T7 DNA ends have been analyzed. To perform this analysis, the intercalating dye proflavine is used to interrupt DNA packaging. When used at 0.5 to 8.0 micrograms/ml, proflavine progressively inhibits events in the T7 DNA packaging pathway, without either altering protein synthesis or degrading intracellular T7 DNA. Restriction endonuclease kinetic analysis reveals that proflavine (8 micrograms/ml) completely blocks formation of the mature T7 DNA left end, but only partially blocks formation of the mature T7 DNA right end. Both these and other observations are explained by the hypothesis that, in the T7 DNA packaging pathway, events occur in the following sequence: (1) formation of a mature right end; (2) packaging of at least some of the genome; (3) formation of the mature left end.  相似文献   

19.
Interactions between rat polymerase beta (pol beta) and the template-primer, as well as gapped DNAs, were studied using the quantitative fluorescence titration technique. Stoichiometries of rat pol beta complexes with DNA substrates are much higher than stoichiometries predicted by the structures of co-crystals. The data can be understood in the context of the two single-stranded (ss)DNA-binding modes of the enzyme, the (pol beta)(16) and (pol beta)(5) binding modes, which differ by the number of nucleotides occluded by the protein. The 8-kDa domain of the enzyme engages the double-stranded (ds)DNA downstream from the primer, while the 31-kDa domain has similar affinity for the ss-ds DNA junction and the dsDNA. The affinity of rat pol beta for the gapped DNA is not affected by the size of the gap. The results indicate a plausible model for recognition of the gapped DNA by rat pol beta. The enzyme binds the ss-ds DNA junction of the gap using the 31-kDa domain. This binding induces an allosteric transition, resulting in the association of the 8-kDa domain with the dsDNA, leading to an amplification of the affinity for the gap. The 5' terminal phosphate, downstream from the primer, has little effect on the affinity, but affects the ssDNA conformation of the gap.  相似文献   

20.
Energetics of DNA twisting. II. Topoisomer analysis   总被引:28,自引:0,他引:28  
A gel electrophoresis method has been developed for resolving small (approximately equal to 250 bp DNA topoisomers. In this size range only one major topoisomer band is observed, except for ligase closure conditions in which the probabilities are nearly equal for circularization by untwisting and overtwisting the corresponding linear DNA. The two probabilities are nearly equal when delta Tw is close to 0.5, if the mean helical twist of the linear DNA is n + delta Tw, where n is an integer and delta Tw is the fractional twist. We determine delta Tw of the linear DNA in standard conditions (20 degrees C, no ethidium) by titration experiments in which delta Tw is varied at the time of ligase closure, either by changing temperature or ethidium concentration. The endpoint (delta Tw = 0.5) is found when the two topoisomers formed by untwisting and overtwisting are present at equal concentrations. This analysis assumes that the net writhe is zero and the DNA helix is isotropically bendable. The results confirm the analysis of cyclization probabilities given in the preceding paper: delta Tw = 0 at the two maxima in the curve of j-factor versus DNA length and delta Tw = 0.5 at the minimum. Consequently, we can determine the DNA lengths at which Tw takes on integral values and use them to measure precisely the average helix repeat. From the difference between the delta Tw values of DNAs with 237 and 247 bp, we obtain an approximate value for the helix repeat of h = 10.4 +/- 0.1 bp/turn, in good agreement with earlier values found by the band-shift and nuclease-cutting methods. The twist is integral at 250.8 +/- 0.4 bp and from h = 10.4 +/- 0.1 we find n = 24; then 250.8/24 gives h = 10.45 +/- 0.02 bp/turn. The mean linking number (Lk) changes in a stepwise manner as delta Tw is varied for 250 bp DNAs. This result is expected when the free energy of twisting half a turn becomes large compared to thermal fluctuations. In these experiments, it is possible to obtain the mean Tw value from the mean Lk value only when delta Tw = 0.5, and consequently the mean Lk value is not simply related to DNA length for 250 bp DNAs except when delta Tw = 0.5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号