首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper contains new experimental data on the growth dynamicsof a lobate coastal ctenophore, Mnenmiopsis mccradyi, whichadd significantly to our understanding of the nutritional ecologyof ctenophores and their role as opportunistic predators. Theseexperimental observations were necessary to refine the dynamiccarbon budget presented as a simulation model in another report.The ratio of carbon biomass to dry weight may vary several-folddepending on the nutritional state and size from >12% inwell-fed larvae to <1% in starved adults. Feeding effort(clearance rate) is higher for previously starved animals, fallingsharply within a few hours after re-exposure to food. Directvisual observations of feeding activity of animals confirmedthis. Assimilation efficiency can be high (72%) in these animalsbut if they continue to feed at high food concentrations, incomingfood displaces material which is only partially digested andassimilation efficiency decreases substantially. Except at verylow food concentrations, growth efficiency ranges between 20and 45%. Mnemiopsis, begins to produce eggs at a size much lessthan its maximum. Egg production is very sensitive to food supply,and somatic growth is favored over egg production at low fooddensities. Even though several thousand eggs may be producedover a few days, they represent <2% day–1 of the carbonbiomass of the ctenophore and several-fold less than respiratorycarbon.  相似文献   

2.
Feeding by larval and post-larval ctenophores on microzooplankton   总被引:2,自引:0,他引:2  
Feeding by the coastal ctenophorc, Mnemiopsis leidyi, on microplanktonwas investigated. Larval ctenophores (tentaculate stage) grewbest and had the highest survival rates when offered a mixtureof ciliates and copepod nauplii. Larvae did not survive whenoffered phytoplankton alone. Clearing of planktonjc ciliatesby post-larval ctenophores was a function of the ciliate speciesand the size of the predator. Removal of small ciliates (<20µm in size) and phytoplankton was negligible. Small post-larvalctenophores (volume <4 cm3) had higher biovolume-specificclearing rates (0.5–1.5 1 cm–3 day–1) thandid larger ctenophores fed the same ciliate species. Duringin situ incubations, adult M. leidyi removed ciliates, rotifersand copepod nauplii from natural microplankton assemblages.The data indicate that non-crustacean microzooplanlctoo arean important component of the diet of larval and post-larvallocate cteoophores, particularly when copepod standing stocksare low.  相似文献   

3.
Herbivory of Mnemiopsis leidyi and its interactions with phytoplanktonand non-gelatinous zooplankton were examined in small-scalemicrocosm experiments. Clearance rates for M. leidyi incubatedwith phytoplankton were generally negative, but ranged up to4.5 1 ctenophore–1 day–1 when the large (80 µmø) diatom Ditylum brightwelli was offered as a food source.These highest ingestion rates would provide Mnemiopsis withonly 21 % of its daily carbon requirements for respiration.Mean shrinkage of M. leidyi was 8.2–51% when incubatedwith phytoplankton. Although M. leidyi neither fed activelyon phytoplankton, nor satisfied its nutritional needs on sucha diet, the chain-forming diatom Skeletonema costatum becameentangled in mucus strands and balls produced by M. leidyi inthe absence of zooplankton. Attachment onto mucus occurred atphytoplankton concentrations commonly observed in NarragansettBay and may be important in the formation of "marine snow" duringsummer M. leidyi pulses; phytoplankton sinking rate and the"package size" available to herbivores would also be affected.The experiments support our previous hypothesis based on fieldobservations in Narragansett Bay that M. leidyi indirectly regulatesphytoplankton abundance there during the summer bloom as a consequenceof predation on zooplankton. The extent to which M. leidyi influencedphytoplankton dynamics in the microcosms was dependent on therelative abundance and physiological state of the three trophiclevels. A food web diagram for M. leidyi is presented.  相似文献   

4.
Our goal was to test our understanding of ingestion, assimilationefficiency and metabolism for Mnemiopsis mccradyi by formulatingand validating a simulation model of growth under differentconditions of food availability. The model was based on a carbonbudget approach using formulations derived from empirical results,including how each process was affected by food availabilityand ctenophore size. An experimentally measured carbon budgetfor pulsed food availability indicated that, relative to totalingestion, growth was high (17–48%), respiration plusorganic release was relatively low (24–48%) and little(<10%) of the ingested carbon was unaccounted for. New laboratoryinvestigations of feeding and assimilation efficiency were necessaryto refine the formulations so that model predictions comparedfavorably with a variety of laboratory measurements of growth,and growth efficiency, as well as the complete experimentallymeasured carbon budget. The refined model predicted a high ratioof growth to metabolism (>2) and a high gross growth efficiency(>30%) for smaller ctenophores at high food concentrations(>20 prey l–1). Both growth rates and growth efficiencieswere predicted to decrease for larger ctenophores. Model predictionswere generally consistent with experimental results, includinginvestigations using pulsed food availability to simulate environmentalpatchiness. Although the model underpredicted ctenophore growthin some experiments at low food densities, the model predictionof a minimum prey concentration of about 8 l–1 (24 µgC l–1) for sustaining a ctenophore population of reproductivesize agreed with field observations.  相似文献   

5.
Plankton dynamics at a station in lower Narragansett Bay, RIare compared for six summer and fall seasons, 1972–1977.In four of these years, initiation of the summer pulse of thectenophore Mnemiopsis leidyi was accompanied by a rapid declinein zooplankton abundance and a summer phytoplankton bloom. Terminationof the phytoplankton bloom coincided with depleted ctenophoreabundance and increased zooplankton biomass in two of the years.Yearly variations in the summer abundance of the diatom Skeletonemacostatum were positively related to the magnitude of the ctenophorepulse. The magnitude of ctenophore population was related tothe zooplankton biomass present at the start of the pulse. Theserelationships, the timing and magnitude of the plankton eventssuggest that M. leidyi regulated summer zooplankton and phytoplanktondynamics. Ctenophores may control phytoplankton blooms indirectlythrough their predation on herbivorous zooplankton and directlyby the nutrient excretion accompanying such grazing. This evidencethat a planktonic carnivore two trophic steps removed from thephytoplankton regulates the latter's dynamics in NarragansettBay is analogous to reported regulation of benthic algal (kelp)dynamics by the sea otter, lobster and various crabs throughtheir predation on herbivorous sea urchins. The factors responsiblefor the seasonal decrease in ctenophores remain unresolved;ctenophore predators on Mnemiopsis are absent in NarragansettBay. Infection by the vermiform larval anemone, Edwardsia lineata,grazing by the butterfish, Peprilus triacanthus, and changesin food availability, temperature and salinity likewise do notexplain this disappearance.  相似文献   

6.
Bolinopsis vitrea is a warm water lobate ctenophore which doesnot overlap in its distribution with Mnemiopsis mccradyi incontiguous waters. We examined its feeding ecology on a seriesof cruises. B. virrea ingested increasingly more prey at higherfood concentrations (2–100 prey l–1) but feedingeffort (clearance rate) decreased with increasing food availability.On a dry weight basis, smaller tentaculate Bolinopsis ingestedseveral times more than larger lobates, but based on carbonweight, specific ingestion was fairly uniform over the entiresize range investigated (6–60 mm total length). Bolinopsiscollected during the daytime in the Bahamas rarely had morethan three prey items in their guts. These results and laboratorymeasurements of digestion times (av. = 1.9 h) allowed computationof daily rations, which could not account for the metabolicrequirement as measured on the same cruises. Results of feedingexperiments, however, implied that prey densities in excessof 11–1 were sufficient to sustain a growing populationof Bolinopsis. Prey concentrations about an order of magnitudehigher were required for M. mccradyi based on similar experiments.These results were in general agreement with observed densitiesand distributions of ctenophores and their zooplankton preyin the Bahamas and coastal South Florida.  相似文献   

7.
Feeding by marine fish larvae: developmental and functional responses   总被引:10,自引:0,他引:10  
Synopsis The relationship between prey consumption rate and prey concentration (functional response), and its change with growth (developmental response) were examined in the laboratory for three species of marine fish larvae: bay anchovy Anchoa mitchilli (Engraulidae), sea bream Archosargus rhomboidalis (Sparidae) and lined sole Achirus lineatus (Soleidae). The major objective was to determine relative predatory abilities of the larvae by fitting feeding rate data to developmental and functional response models. Feeding success, prey capture success, attack rates, handling times and search rates were estimated. Prey consumption rates and attack rates of bay anchovy usually were highest, but at the lowest prey level (50 per liter) first-feeding sea bream larvae had the highest consumption rate. Sea bream could consume prey at near-maximum rates at prey levels lower than those required by the other species. As larvae grew, time searching per attack decreased rapidly for all species, especially at low prey levels. Handling time also decreased, but most rapidly for bay anchovy. Search rates were highest for bay anchovy and lowest for lined sole. Bay anchovy had the best apparent predation ability, but when previous results on larval growth rates, survival rates and growth efficiencies were considered, sea bream larvae were the most efficient predators and the least likely of the three species to be limited by low prey levels.  相似文献   

8.
Quantitative determinations of chemical composition and oxygenconsumption rates were made for a deep-living population ofthe lobate ctenophore Bolinopsis infundibulum. Animals werecollected in the Gulf of Maine with the submersible ‘Johnson-Sea-Link’during September 1989 at depths ranging from 120 to 240 m. Carbonand nitrogen contents were similar to values reported for epipelagicctenophores. Lipid and protein levels were lower than valuestypical of epipelagic ctenophores, but higher than those ofmesopelagic species. Carbohydrate was nearly an order of magnitudehigher than previously recorded for B.infundibulum. Oxygen consumptionrates ranged from 0.004 to 0.235 µl O2 mg–1 dryweight h at temperatures ranging from 5 to 7°C. Carbon-specificmetabolic rates ranged from 0.21 to 12.73 µl O2 mg–1C h–1. Energy expenditures estimated from respirationdata (  相似文献   

9.
Larval stages of the ctenophore Mnemiopsis leidyi rely on metazoanprey, such as Acartia tonsa nauplii and copepodites, to supporthigh growth rates. However, M. leidyi larvae <0.5 mm (totallength) had low retention efficiencies (REs) (proportion ofencountered prey actually ingested), 5.78 ± 2.6% (mean± SE), of nauplii and were often damaged by their encounters.REs of nauplii rapidly increased, 38.94 ± 3.73%, as larvaegrew to a size of  相似文献   

10.
Biomass distributions of the ctenophore, Mnemiopsis leidyi, were collected during a week-long survey program in a tidal front along the Patagonian shelf in December 1989. Average ctenophore biomass concentrations varied significantly along a north–south gradient and in stratified compared to unstratified waters. The relative vertical distribution of M. leidyi biomass appeared to be constrained by surface levels of vertical shear. Vertical distributions of ctenophore biomass were highly variable at low levels of vertical shear (<4 s−1) at the surface, but at higher levels of surface vertical shear ctenophores occurred deeper in the water column where shear levels were lower. These results indicate that physical conditions are important factors influencing the distribution of M. leidyi along the Patagonian shelf during summer months.  相似文献   

11.
The trophodynamics of a coastal plankton community were studied,focusing on fish larvae and their copepod prey. The major objectiveswere to describe distributional overlap and evaluate the predatoryimpact by larval fish. The study was carried out across DoggerBank in the North Sea, August-September 1991. Sampling transectscrossed tidal fronts off the Bank and plankton at all trophiclevels showed peak abundance within frontal zones. Also Verticallythere was a significant overlap in distributional patterns ofthe plankton. Seven species of fish larvae were abundant, ofthese sprat (Sprattus sprattus) dominated. The abundance ofone group of fish larvae peaked in the shallow water close tothe Bank, whereas other species, including sprat, were foundin deeper water. Prey preference and predation pressure of fishlarvae were assessed using information on prey sizes and growthrates of larvae and the copepod prey. We estimated larval removalof preferred prey sizes to 3–4% day–1, counterbalancedby a 3–7% day–1' replenishment from copepod productionand growth. Additional predation pressure on copepods by aninvertebrate predator was estimated to 1–3%day–1.In conclusion, the dynamics of fish larvae and other zooplankterswere closely linked. At peak abundances of fish larvae (>35mg dry weight m–2), the accumulated predation on specificsize ranges of copepods, exerted by larvae and other predators,could exceed the ability of copepod replenishment and intra-/interspecificcompetition among predators might take place.  相似文献   

12.
A persistent large-scale cross-shelf gradient in zooplanktonbiomass >1050 µm was evident off south-western NovaScotia during annual spring surveys between 1985 and 1987, withrelatively low levels inshore and higher levels offshore. Conversely,the abundance of the tentaculate ctenophore Pleurobrachia pileuswas the greatest inshore, and distributed reciprocally to zooplankton>1050 µm. The principle prey of both adult ctenophoresand post-larval cod is zooplankton >1050 µm (primarilycalanoid copepods), and cod growth rates are strongly influencedby prey biomass. Ctenophore predation appears to have been responsiblefor the low nearshore zooplankton biomass, whereas the influenceof hydrographic factors on the zooplankton gradient was minimal.On a smaller scale, persistent, abrupt changes in zooplanktonbiomass >1050 µm and ctenophore density existed 3–30km from shore, in contrast to linear gradients in water density(1) during a 5 week sampling period in spring 1987. Ctenophoreswere confined to depths <55 m and zooplankton >1050 µmpredominantly occurred at depths >55 m. High concentrationsof chlorophyll and phaeopigment were evident at depths <55m also suggesting intense predation by ctenophores on largeherbivores. The relatively high proportion of smaller zooplankton(153–308 –m) in the nearshore is also consistentwith the predation hypothesis. The reduced growth experiencedby post-larval cod inshore appears generated by ctenophore predationof a common prey resource.  相似文献   

13.
In a small temperate lake of the southern Andes, Bosmina longirostrisand Ceriodaphnia dubia coexist with the predaceous water miteLimnesia patagonica. Sampling of natural populations and laboratoryexperiments were carried out. The field population of Limnesiadid not show a numerical response to the density or biomassof its prey. Laboratory experiments showed that the water miterejected C.dubia adults and juveniles as prey, but consumedBosmina. The maximum predation rate was 40 prey predator–1day–1 and a linear relationship between predation rateand prey density was obtained (R2 = 66%). The contribution ofmortality due to predation and the predation risk are too lowto provoke a prey suppression. By means of computer modelling,the densities of predator necessary to explain half of the totalprey mortality were calculated. These densities were one ortwo orders of magnitude higher than those in the field. It isconcluded that Limnesia could really be a suppressor, but thepotential depends greatly on its density.  相似文献   

14.
Interannual changes in the biomass of the Black Sea gelatinous zooplankton   总被引:3,自引:0,他引:3  
The 15 year changes in the total gelatinous biomass consistof a general trend to increase, from 250 gm–2 in 1980to 2500 g m–2 in 1995, and fluctuations with a periodof –4 years performed against the background of this trendin the upper 150 m layer. Different species occupying distincttrophic niches form these peaks. When represented as the percentageof the total zooplankton biomass, Aurelia aurita and Mnemiopsisleidyi exhibit the contra-phase fluctuations where a sharp increasein M.leidyi is accompanied by a decrease in the A.aurita biornass.  相似文献   

15.
Feeding and metabolism of the siphonophore Sphaeronectes gracilis   总被引:1,自引:0,他引:1  
The in situ predation rate of the siphonophore Sphaeronectesgracilis was estimated from gut content analysis of hand-collectedsiphonophores and from laboratory data on digestion rates ofprey organisms. At daytime prey densities of 0.25 copepods 1–1,S. gracilis was estimated to consume 8.1 – 15.4 prey day–1siphonophore–1. From data on abundances of siphonophoresand copepods, S. gracilis was estimated to consume 2–4%of the copepods daily. In laboratory experiments, ingestionrates averaged 13.8 prey day–1 siphonophore–1 atprey densities of 5 copepods 1–1 and 36.9 at 20 copeods1–1. This was equivalent to a specific ingestion rate(for both carbon and nitrogen) of –17% day–1 and45% day–1, respectively, while specific ingestion in situwas only 2% day–1. Ammonium excretion averaged 0.095 µg-atsiphonophore–1 day–1 at 5 prey 1–1, and 0.162at 20 prey 1–1. The specific respiration (carbon) andspecific excretion (nitrogen as ammonium) were calculated tobe 3% day–1 at the lower experimental food level, and5% day–1 at the higher food level. 1Contribution from the Catalina Marine Science Center No. 66. 2Present address: Dept. of Biology, University of Victoria,Victoria, B.C., Canada V8W 2Y2.  相似文献   

16.
Synopsis Bay anchovy, Anchoa mitchilli, is an ecologically important species in coastal systems, acting as predators on zooplankton while serving as prey for many birds and economically important finfish species. Despite the importance of bay anchovy, limited information exists concerning reproductive biology and egg mortality from the northern parts of its range. Spawner demographics suggested Hudson River fish were older and larger than reported elsewhere. Egg mortality rates were higher in the Hudson River than reported in more southerly systems. Differences in the reproductive biology of bay anchovy suggest either anthropogenic factors or latitudinal differences between populations exist and therefore should warrant further investigations on this species in the northern portions of its range  相似文献   

17.
Ephyra larvae and small medusae (1.7–95 mm diameter, 0.01–350mg ash-free dry wt, AFDW) of the scyphozoan jellyfish Aureliaaurita were used in predation experiments with phytoplankton(the flagellate Isochrysis galbana, 4 µm diameter, {smalltilde}6 x 10–6 µg AFDW cell–1), ciliates (theoligotrich Strombidium sulcatum, 28 µm diameter, {smalltilde}2 x 10–3 µg AFDW), rotifers (Synchaeta sp.,0.5 µg AFDW individual–1) and mixed zooplankton(mainly copepods and cladocerans, 2.1–3.1 µg AFDWindividual–1). Phytoplankton in natural concentrations(50–200 µg C I–1) were not utilized by largemedusae (44–95 mm diameter). Ciliates in concentrationsfrom 0.5 to 50 individuals ml"1 were consumed by ephyra larvaeand small medusae (3–14 mm diameter) at a maximum predationrate of 171 prey day–1, corresponding to a daily rationof 0.42%. The rotifer Synchaeta sp., offered in concentrationsof 100–600 prey I–1, resulted in daily rations ofephyra larvae (2–5 mm diameter) between 1 and 13%. Mixedzooplankton allowed the highest daily rations, usually in therange 5–40%. Large medusae (>45 mm diameter) consumedbetween 2000 and 3500 prey organisms day"1 in prey concentrationsexceeding 100 I–1. Predation rate and daily ration werepositively correlated with prey abundance. Seen over a broadsize spectrum, the daily ration decreased with increased medusasize. The daily rations observed in high abundance of mixedzooplankton suggest a potential ‘scope for growth’that exceeds the growth rate observed in field populations,and this, in turn, suggests that the natural populations areusually food limited. The predicted predation rate at averageprey concentrations that are characteristic of neritic environmentscannot explain the maximum growth rates observed in field populations.It is therefore suggested that exploitation of patches of preyin high abundance is an important component in the trophodynamicsof this species. 1Present address: University of Bergen, Department of MarineBiology, N-5065 Blomsterdalen, Norway  相似文献   

18.
We measured egg production rates of the estuarine calanoid copepodAcartia tonsa in Mobile Bay, an estuary in the northern Gulfof Mexico. Two stations were sampled approximately monthly,one at the mouth of the bay and the other just beyond the mouthin the salinity front between bay and coastal waters. Over thewhole year, temperature was the most important environmentalvariable controlling egg production. Rates increased with temperatureup to 30°C and 140 eggs female–1 day–1. We foundno evidence of food limitation. There was no correlation betweenegg production and phytoplankton abundance, nor increased eggproduction in response to supplements of phytoplankton addedto natural food, suggesting that non-phytoplankton food wasimportant in the diet. At the highest egg production rates,the amount of the storage lipid triacylglycerol (TAG) in adultfemales was greatly diminished, to <50 ng female–1.This suggests that lipids in the diet can be very tightly coupledto egg production. Both egg production and TAG content of femalesshowed significant variability on spatial scales of 3–15km, especially in relation to the salinity front separat ingwater outwelling from the bay from open coastal water. For organismsthat are using copepods and their eggs as food, this variabilitywould result in a heterogeneous food environment, both in termsof the abundance of food and its nutritional content.  相似文献   

19.
Although many studies have focused on Mnemiopsis leidyi predation, little is known about the role of this ctenophore as prey when abundant in native and invaded pelagic systems. We examined the response of the ctenophore M. leidyi to the predatory ctenophore Beroe ovata in an experiment in which the two species could potentially sense each other while being physically separated. On average, M. leidyi responded to the predator’s presence by increasing variability in swimming speeds and by lowering their vertical distribution. Such behavior may help explain field records of vertical migration, as well as stratified and near-bottom distributions of M. leidyi.  相似文献   

20.
The organic matter content in the eggs and early larvae of the ctenophores Mnemiopsis leidyi and Beroe ovata from the Black Sea was determined using the adapted microtechnique of dichromate oxidation. The content of organic matter in the eggs of M. leidyi (0.25 μg/indiv.) was 5 times less than in B. ovata (1.28 ± 0.29 μg/indiv.). The somatic content of organic matter was 0.25 ± 0.09 μg/indiv. (25.1 ± 8.3 μg/mg, wet wt) for 2-day-old larvae of M. leidyi (0.2–0.3 mm in body length) and 1.37 ± 0.19 μg/indiv. (67.1 ± 5.7 μg/mg wet wt) for larvae of B. ovata (0.4 mm in body length). The specific organic content of larvae of both species steadily decreased with an increase in ctenophore body size and weight, approaching 3–4 μg/mg of wet weight for 2 mm specimens of M. leidyi and 3–5 μg/mg of wet weight for 6 mm B. ovata. The specific organic content of early larvae was 20–30 times higher than that of adult ctenophores. The results of this investigation could be useful in the evaluation of the energy budget for somatic growth and generative production in these species. Calculations indicate that with specific wet weight growth rates of 0.43/day for M. leidyi larvae and 0.29/day for B. ovata larvae, their true organic increases are respectively 30 and 38% less, i.e., no more than 0.31/day for the former and 0.18/day for the latter species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号