首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While cryo-electron microscopy (cryo-EM) has revolutionized the structure determination of supramolecular protein complexes that are refractory to structure determination by X-ray crystallography, structure determination by cryo-EM can nonetheless be complicated by excessive conformational flexibility or structural heterogeneity resulting from weak or transient protein–protein association. Since such transient complexes are often critical for function, specialized approaches must be employed for the determination of meaningful structure–function relationships. Here, we outline examples in which transient protein–protein interactions have been visualized successfully by cryo-EM in the biosynthesis of fatty acids, polyketides, and terpenes. These studies demonstrate the utility of chemical crosslinking to stabilize transient protein–protein complexes for cryo-EM structural analysis, as well as the use of partial signal subtraction and localized reconstruction to extract useful structural information out of cryo-EM data collected from inherently dynamic systems. While these approaches do not always yield atomic resolution insights on protein–protein interactions, they nonetheless enable direct experimental observation of complexes in assembly-line biosynthesis that would otherwise be too fleeting for structural analysis.  相似文献   

2.
Advances in the adaptation of optical spectroscopy to monitor photo-induced or enzyme-catalyzed reactions in the crystalline state have enabled X-ray crystal structures to be accurately linked with spectroscopically defined intermediates. This, in turn, has led to a deeper understanding of the role protein structural changes play in function. The integration of optical spectroscopy with X-ray crystallography is growing and now extends beyond linking crystal structure to reaction intermediate. Recent examples of this synergy include applications in protein crystallization, X-ray data acquisition, radiation damage, and acquisition of phase information important for structure determination.  相似文献   

3.
NMR spectroscopy and X-ray crystallography are two premium methods for determining the atomic structures of macro-biomolecular complexes. Each method has unique strengths and weaknesses. While the two techniques are highly complementary, they have generally been used separately to address the structure and functions of biomolecular complexes. In this review, we emphasize that the combination of NMR spectroscopy and X-ray crystallography offers unique power for elucidating the structures of complicated protein assemblies. We demonstrate, using several recent examples from our own laboratory, that the exquisite sensitivity of NMR spectroscopy in detecting the conformational properties of individual atoms in proteins and their complexes, without any prior knowledge of conformation, is highly valuable for obtaining the high quality crystals necessary for structure determination by X-ray crystallography. Thus NMR spectroscopy, in addition to answering many unique structural biology questions that can be addressed specifically by that technique, can be exceedingly powerful in modern structural biology when combined with other techniques including X-ray crystallography and cryo-electron microscopy.  相似文献   

4.
One of the major challenges facing structural biologists today is the determination of high-resolution 3D structures of membrane proteins. The requirement for detergent molecules to be present makes X-ray crystallography particularly difficult, coupled with the added problems of isolating sufficient (viable) protein samples at high enough concentrations to yield 3D crystals. One technique that enables structural determination with fewer constraints is electron crystallography of two-dimensional crystals, in which small amounts of membrane proteins can be studied in native form in lipid bilayers.  相似文献   

5.
β-arrestins bind active G protein-coupled receptors (GPCRs) and play a crucial role in receptor desensitization and internalization. The classical paradigm of arrestin function has been expanded with the identification of many non-receptor-binding partners, which indicated the multifunctional role of β-arrestins in cellular functions. To elucidate the molecular mechanism of β-arrestin-mediated signaling, the structural features of β-arrestins were investigated using X-ray crystallography and cryogenic electron microscopy (cryo-EM). However, the intrinsic conformational flexibility of β-arrestins hampers the elucidation of structural interactions between β-arrestins and their binding partners using conventional structure determination tools. Therefore, structural information obtained using complementary structure analysis techniques would be necessary in combination with X-ray crystallography and cryo-EM data. In this review, we describe how β-arrestins interact with their binding partners from a structural point of view, as elucidated by both traditional methods (X-ray crystallography and cryo-EM) and complementary structure analysis techniques.  相似文献   

6.
Structural genomics is on a quest for the structure and function of a significant fraction of gene products. Current efforts are focusing on structure determination of single-domain proteins, which can readily be targeted by X-ray crystallography, NMR spectroscopy and computational homology modeling. However, comprehensive association of gene products with functions also requires systematic determination of more complex protein structures and other biomolecules participating in cellular processes such as nucleic acids, and characterization of biomolecular interactions and dynamics relevant to function. Such NMR investigations are becoming more feasible, not only due to recent advances in NMR methodology, but also because structural genomics is providing valuable structural information and new experimental and computational tools. The measurement of residual dipolar couplings in partially oriented systems and other new NMR methods will play an important role in this synergistic relationship between NMR and structural genomics. Both an expansion in the domain of NMR application, and important contributions to future structural genomics efforts can be anticipated.  相似文献   

7.
The structure determination of macromolecular complexes is entering a new era. The methods of optical microscopy, electron microscopy, X-ray crystallography, and nuclear magnetic resonance increasingly are being combined in hybrid method approaches to achieve an integrated view of macromolecular complexes that span from cellular context to atomic detail. A particularly important application of these hybrid method approaches is the structural analysis of the Human Immunodeficiency Virus (HIV) proteins with their cellular binding partners. High resolution structure determination of essential HIV - host cell protein complexes and correlative analysis of these complexes in the live cell can serve as critical guides in the design of a broad, new class of therapeutics that function by disrupting such complexes. Here, with the hope of stimulating some discussion, we will briefly review some of the literature in the context of what could be done to further apply structural methods to HIV research. We have chosen to focus our attention on certain aspects of the HIV replication cycle where we think that structural information would contribute substantially to the development of new therapeutic and vaccine targets for HIV.  相似文献   

8.
Structural genomics has the ambitious goal of delivering three-dimensional structural information on a genome-wide scale. Yet only a small fraction of natural proteins are suitable for structure determination because of bottlenecks such as poor expression, aggregation, and misfolding of proteins, and difficulties in solubilization and crystallization. We propose to overcome these bottlenecks by producing soluble, highly expressed proteins that are derived from and closely related to their natural homologs. Here we demonstrate the utility of this approach by using a green fluorescent protein (GFP) folding reporter assay to evolve an enzymatically active, soluble variant of a hyperthermophilic protein that is normally insoluble when expressed in Escherichia coli, and determining its structure by X-ray crystallography. Analysis of the structure provides insight into the substrate specificity of the enzyme and the improved solubility of the variant.  相似文献   

9.
10.
As many of the structural genomics centers have ended their first phase of operation, it is a good point to evaluate the scientific impact of this endeavour. The Structural Genomics Consortium (SGC), operating from three centers across the Atlantic, investigates human proteins involved in disease processes and proteins from Plasmodium falciparum and related organisms. We present here some of the scientific output of the Oxford node of the SGC, where the target areas include protein kinases, phosphatases, oxidoreductases and other metabolic enzymes, as well as signal transduction proteins. The SGC has aimed to achieve extensive coverage of human gene families with a focus on protein–ligand interactions. The methods employed for effective protein expression, crystallization and structure determination by X-ray crystallography are summarized. In addition to the cumulative impact of accelerated delivery of protein structures, we demonstrate how family coverage, generic screening methodology, and the availability of abundant purified protein samples, allow a level of discovery that is difficult to achieve otherwise. The contribution of NMR to structure determination and protein characterization is discussed. To make this information available to a wide scientific audience, a new tool for disseminating annotated structural information was created that also represents an interactive platform allowing for a continuous update of the annotation by the scientific community.  相似文献   

11.
Only about half of non-membrane-bound proteins encoded by either bacterial or archaeal genomes are soluble when expressed in Escherichia coli (Yee et al., Proc Natl Acad Sci USA 2002;99:1825-1830; Christendat et al., Prog Biophys Mol Biol 200;73:339-345). This property limits genome-scale functional and structural proteomics studies, which depend on having a recombinant, soluble version of each protein. An emerging strategy to increase the probability of deriving a soluble derivative of a protein is to study different sequence homologues of the same protein, including representatives from thermophilic organisms, based on the assumption that the stability of these proteins will facilitate structural analysis. To estimate the relative merits of this strategy, we compared the recombinant expression, solubility, and suitability for structural analysis by NMR and/or X-ray crystallography for 68 pairs of homologous proteins from E. coli and Thermotoga maritima. A sample suitable for structural studies was obtained for 62 of the 68 pairs of homologs under standardized growth and purification procedures. Fourteen (eight E. coli and six T. maritima proteins) samples generated NMR spectra of a quality suitable for structure determination and 30 (14 E. coli and 16 T. maritima proteins) samples formed crystals. Only three (one E. coli and two T. maritima proteins) samples both crystallized and had excellent NMR properties. The conclusions from this work are: (1) The inclusion of even a single ortholog of a target protein increases the number of samples for structural studies almost twofold; (2) there was no clear advantage to the use of thermophilic proteins to generate samples for structural studies; and (3) for the small proteins analyzed here, the use of both NMR and crystallography approaches almost doubled the number of samples for structural studies.  相似文献   

12.
High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from (1)H/(1)H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 A and 1.3 A for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins.  相似文献   

13.
The sequence infrastructure that has arisen through large-scale genomic projects dedicated to protein analysis, has provided a wealth of information and brought together scientists and institutions from all over the world. As a consequence, the development of novel technologies and methodologies in proteomics research is helping to unravel the biochemical and physiological mechanisms of complex multivariate diseases at both a functional and molecular level. In the late sixties, when X-ray crystallography had just been established, the idea of determining protein structure on an almost universal basis was akin to an impossible dream or a miracle. Yet only forty years after, automated protein structure determination platforms have been established. The widespread use of robotics in protein crystallography has had a huge impact at every stage of the pipeline from protein cloning, over-expression, purification, crystallization, data collection, structure solution, refinement, validation and data management- all of which have become more or less automated with minimal human intervention necessary. Here, recent advances in protein crystal structure analysis in the context of structural genomics will be discussed. In addition, this review aims to give an overview of recent developments in high throughput instrumentation, and technologies and strategies to accelerate protein structure/function analysis.  相似文献   

14.
AimsAccurate knowledge of molecular structure is a prerequisite for rational drug design. This review examines the role of X-ray crystallography in providing the required structural information and advances in the field of X-ray crystallography that enhance or expand its role.Main methodsX-ray crystallography of new drugs candidates and intermediates can provide valuable information of new syntheses and parameters for quantitative structure activity relationships (QSAR).Key findingsCrystallographic studies play a vital role in many disciplines including materials science, chemistry, pharmacology, and molecular biology. X-ray crystallography is the most comprehensive technique available to determine molecular structure. A requirement for the high accuracy of crystallographic structures is that a ‘good crystal’ must be found, and this is often the rate-limiting step. In the past three decades developments in detectors, increases in computer power, and powerful graphics capabilities have contributed to a dramatic increase in the number of materials characterized by X-ray crystallography. More recently the advent of high-throughput crystallization techniques has enhanced our ability to produce that one good crystal required for crystallographic analysis.SignificanceContinuing advances in all phases of a crystallographic study have expanded the ranges of samples which can be analyzes by X-ray crystallography to include larger molecules, smaller or weakly diffracting crystals, and twinned crystals.  相似文献   

15.
G-protein coupled receptor structure   总被引:1,自引:0,他引:1  
Because of their central role in regulation of cellular function, structure/function relationships for G-protein coupled receptors (GPCR) are of vital importance, yet only recently have sufficient data been obtained to begin mapping those relationships. GPCRs regulate a wide range of cellular processes, including the senses of taste, smell, and vision, and control a myriad of intracellular signaling systems in response to external stimuli. Many diseases are linked to GPCRs. A critical need exists for structural information to inform studies on mechanism of receptor action and regulation. X-ray crystal structures of only one GPCR, in an inactive state, have been obtained to date. However considerable structural information for a variety of GPCRs has been obtained using non-crystallographic approaches. This review begins with a review of the very earliest GPCR structural information, mostly derived from rhodopsin. Because of the difficulty in crystallizing GPCRs for X-ray crystallography, the extensive published work utilizing alternative approaches to GPCR structure is reviewed, including determination of three-dimensional structure from sparse constraints. The available X-ray crystallographic analyses on bovine rhodopsin are reviewed as the only available high-resolution structures for any GPCR. Structural information available on ligand binding to several receptors is included. The limited information on excited states of receptors is also reviewed. It is concluded that while considerable basic structural information has been obtained, more data are needed to describe the molecular mechanism of activation of a GPCR.  相似文献   

16.
beta-Amyloid peptides are the main protein components of neuritic plaques and may be important in the pathogenesis of Alzheimer's Disease. The determination of the structure of beta-amyloid fibrils poses a challenge because of the limited solubility of beta-amyloid peptides and the noncrystalline nature of fibrils formed from these peptides. In this paper, we describe several physicochemical approaches which have been used to examine fibrils and the fibrillogenesis of peptide models of beta-amyloid. Recent advances in solid state NMR, such as the DRAWS pulse sequence, have made this approach a particularly attractive one for peptides such as beta-amyloid, which are not yet amenable to high-resolution solution phase NMR and crystallography. The application of solid state NMR techniques has yielded information on a model peptide comprising residues 10-35 of human beta-amyloid and indicates that in fibrils, this peptide assumes a parallel beta-strand conformation, with all residues in exact register. In addition, we discuss the use of block copolymers of Abeta peptides and polyethylene glycol as probes for the pathways of fibrillogenesis. These methods can be combined with other new methods, such as high-resolution synchrotron X-ray diffraction and small angle neutron and X-ray scattering, to yield structural data of relevance not only to disease, but to the broader question of protein folding and self-assembly.  相似文献   

17.
Rajavel M  Warrier T  Gopal B 《Proteins》2006,64(4):923-930
The advent of structural genomics has led to a dramatic increase in the number of structures deposited in the Protein Data Bank. The number of new folds, however, still remains a very small fraction of the total number of deposited structures. Recent data on the progress of the structural genomics initiative reveals that more than 85% of target proteins that progress to the stage of data collection and structure determination have a known fold. Enzymes, which tend to exploit reaction space while adopting a common stable scaffold, contribute significantly to this observation. Herein, we evaluate a method to examine the "old fold in a new dataset" scenario likely to be encountered in the structural genomics pipeline. We demonstrate that a fold detection strategy based on secondary structure signatures followed by molecular replacement using a minimalist model can be effectively used to solve the phase problem in X-ray crystallography without further recourse to heavy atom derivatives or multiple anomalous dispersion techniques. Three common folds-the triosephosphate isomerase (TIM), adenine nucleotide alpha hydrolase-like (HUP), and RNA recognition motif (RRM)-were examined using this approach. The results presented herein also provide an estimate of the extent of phase information that can be derived from a single domain in a large multidomain structure.  相似文献   

18.
Protein expression systems for structural genomics and proteomics   总被引:8,自引:0,他引:8  
One of the key steps of structural genomics and proteomics is high-throughput expression of many target proteins. Gene cloning, especially by ligation-independent cloning techniques, and recombinant protein expression using microbial hosts such as Escherichia coli and the yeast Pichia pastoris are well optimized and further robotized. Cell-free protein synthesis systems have been developed for large-scale production of protein samples for NMR (stable-isotope labeling) and X-ray crystallography (selenomethionine substitution). Protein folding is still a major bottleneck in protein expression. Cell-based and cell-free methods for screening of suitable samples for structure determination have been developed for achieving a high success rate.  相似文献   

19.
Counterdiffusion crystallization in capillary is a very simple, cost-effective, and practical procedure for obtaining protein crystals suitable for X-ray data analysis. Its principles have been derived using well-known concepts coupling the ideas of precipitation and diffusion mass transport in a restricted geometry. The counterdiffusion process has been used to simultaneously screen for optimal conditions for protein crystal growth, incorporate strong anomalous scattering atoms, and mix in cryogenic solutions in a single capillary tube. The crystals obtained in the capillary have been used in situ for X-ray analysis. The implementation of this technique linked to the advancement of current crystallography software leads to a powerful structure determination method consolidating crystal growth, X-ray data collection, and ab initio phase determination into one without crystal manipulation. We review the historical progress of counterdiffusion crystallization, its application to X-ray crystallography, and ongoing tool development for high-throughput protein structure determination.  相似文献   

20.
The study of protein structure and function has evolved to become a leading discipline in the biophysical sciences. Although it is not yet possible to determine 3D protein structures from MS data alone, multiple MS-based techniques can be combined to obtain structural and functional data that are complementary to classical protein structure information obtained from NMR or X-ray crystallography. Monitoring gas-phase interactions of noncovalent complexes yields information on binding constants, complex stability, and the nature of interactions. Ion mobility MS and chemical crosslinking strategies can be applied to probe the architecture of macromolecular assemblies and protein-ligand complexes. MS analysis of hydrogen-deuterium exchange can be used to determine the localization of secondary structure elements, binding sites and conformational dynamics of proteins in solution. This minireview focuses first on new strategies that combine these techniques to gain insights into protein structure and function. Using one such strategy, we then demonstrate how a novel hydrogen-deuterium exchange microfluidics tool can be used online with an ESI mass spectrometer to monitor regional accessibility in a peptide, as exemplified with amyloid-β peptide 1-40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号