首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chi sites in bacteriophage λ stimulate recombination promoted by the RecBC pathway of Escherichia coli. We have located a Chi site within the E. coli lacZ gene by deletion mapping and have isolated a mutation inactivating this Chi. Sequence analysis showed that the mutation arose by a single base-pair transition GC?AT? within an eight base-pair sequence (5′ G-C-T-G-G-T-G-G 3′) identical to that found at Chi sites in λ and in plasmid pBR322.  相似文献   

2.
Under anaerobic conditions, ethyl hydroperoxide functions as a two-electron acceptor in the tyrosinase-catalyzed oxidation of 4-tert-butylcatechol to 4-tert-butyl-o-benzoquinone, apparently by the following mechanism:
T?[Cu(II)]2 + TBC = T?[Cu(I)]2 + TB?o?BQ + 2H+
T?[Cu(I)]2 + EtOOH + 2H+= T?[Cu(II)]2 + EtOH +H2O
This is a direct demonstration of the pseudoperoxidase activity of tyrosinase. Ethyl hydroperoxide failed to oxidize either oxy- or deoxyhemocyanin.  相似文献   

3.
The DNA sequence recognised by the HinfIII restriction endonuclease   总被引:3,自引:0,他引:3  
HinfIII is a type III restriction enzyme (Kauc &; Piekarowicz, 1978) isolated from Haemophilus influenzae Rf. Like other type III restriction endonucleases, the enzyme also catalyses the modification of susceptible DNA. It requires ATP for DNA cleavage and S-adenosyl methionine for DNA methylation. We have determined the DNA sequence recognised by HinfIII to be:
5′-C-G-A-A-T-3′·····3′-G-C-T-T-A-5′
In restriction, the enzyme cleaves the DNA about 25 base-pairs to the right of this sequence. In the modification reaction only one of the strands is methylated, that containing the 5′-C-G-A-A-T-3′ sequence.  相似文献   

4.
Initiator RNA of nascent DNA from animal cells.   总被引:3,自引:0,他引:3  
Nascent DNA synthesized by intact cells has been examined for the presence of RNA that may function as a primer in the discontinuous synthesis of DNA. A low molecular weight fraction that contains nascent DNA was isolated from a human lymphoblastoid cell line in logarithmic growth. After labeling the 5′ ends with bacteriophage T4 polynucleotide kinase and [γ-32P]ATP, and digestion of the DNA with DNAase, a DNAase-resistant oligonucleotide was isolated. This fragment consisted of approximately 9 ribonucleotide residues, with 5′ terminal purines (AG = 3·51), plus one to three 3′ terminal deoxynucleotides resulting from incomplete removal by DNAase. Approximately 10% of short nascent DNA chains contained the nonanucleotide molecule. An additional 20% of the nascent DNA contained ribooligomers shorter than 9 residues, with 5′ termini substantially increased in pyrimidines, which may result from degradation of the nonanucleotide. These results extend previous studies that demonstrated a similar ribooligonucleotide present at the 5′ end of most or all short nascent DNA chains synthesized in broken cell systems. Together with the results obtained by Reichard and co-workers (Reichard et al., 1974) with polyoma virus, the data support a mechanism by which a short initiator RNA serves as primer for discontinuously synthesized DNA in animal cells.  相似文献   

5.
The gene 5 protein from bacteriophage fd, which binds to single-stranded progeny fd DNA, was obtained as large single crystals and subjected to X-ray diffraction analysis. The crystals are of monoclinic space group C2 with a = 75.8 A?, b = 28.0 A?, c = 42.5 A? and β = 103 °12′. The unit cell has one molecule of 9800 daltons as the asymmetric unit.  相似文献   

6.
The model studied is that of Goodwin, in which all but one of the reactions obey linear kinetics, while the end-product inhibits the first reaction in a term of Michaelis-Menten form, with Hill coefficient ?:
z=?∞txn(T)G(t?T)dt
The results obtained relate to time lag in the off diagonal terms in these equations. The time lag is taken in distributed form, for example replacing xn in the first equation by
dxtdt=k1xt??1?b1xt, i=2, …n.
For any non-negative G, time lag in these terms can not destabilize the equilibrium point in the case ? = 1. For a particular class of functions G one can obtain some insight into the consequences of time lag by relating the model to that with a longer loop of reactions. Then known results can be used for general ? and n.  相似文献   

7.
A specific endonuclease from Arthrobacter luteus.   总被引:20,自引:0,他引:20  
A new restriction-like endonuclease, AluI, has been partially purified from Arthrobacter luteus. This enzyme cleaves bacteriophage λ DNA, adenovirus-2 DNA and simian virus 40 DNA at many sites including all sites cleaved by the endonuclease HindIII from Haemophilus influenzae serotype d. Radioactive oligonucleotides in pancreatic DNAase digests of (5′-32P)-labelled fragments of phage λ DNA released by the action of AluI had the 5′ terminal sequence pC-T-N-. The enzyme recognises the tetranucleotide sequence
and cleaves it at the position marked by the arrows.  相似文献   

8.
An unstable epoxide, leukotriene A4 (5(S)-trans-5,6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid), was earlier proposed to be an intermediate in the conversion of arachidonic acid into the slow reacting substance (SRS), leukotriene C4. In the present work synthetic leukotriene A4 was incubated with human leukocytes or murine mastocytoma cells. A lipoxygenase inhibitor, BW755C, was added in order to prevent leukotriene formation from endogenous substrate. Leukotriene C4 and 11-trans-leukotriene C4 were the main products with SRS activity. It was not established whether the 11-trans-compound was formed by isomerization at the leukotriene A4 or C4 stage.  相似文献   

9.
After digestion by TaqI or nicking by DNAase I, five highly modified bacteriophage DNAs were tested as substrates for T4 DNA ligase. The DNAs used were from phages T4, XP12, PBS1, SP82, and SP15, which contain as a major base either glucosylated 5-hydroxymethylcytosine, 5-methylcytosine, uracil, 5-hydroxymethyluracil, or phosphoglucuronated, glucosylated 5-(4′,5′-dihydroxypentyl)uracil, respectively. The relative ability of cohesive-ended TaqI fragments of these DNAs and of normal, λ DNA to be ligated was as follows: λ DNA = XP12 DNA >SP82 DNA ? nonglucosylatedT4 DNA >T4 DNA = PBS1 DNA ? SP15 DNA. TaqI-T4 DNA fragments were also inefficiently ligated by Escherichia coli DNA ligase. However, annealing-independent ligation of DNAase I-nicked T4, PBS1, and λ DNAs was equally efficient. We conclude that the poor ligation of TaqI fragments of T4 and PBS1 DNAs was due to the hydroxymethylation (and glucosylation) of cytosine residues at T4's cohesive ends and the substitution of uracil residues for thymine residues adjacent to PBS1's cohesive ends destabilizing the annealing of the restriction fragments. Only SP15 DNA with its negatively charged, modified base was unable to serve as a substrate for T4 DNA ligase in an annealing-independent reaction; therefore, its modification directly interfered with enzyme binding or catalysis.  相似文献   

10.
The primary sequence of the principal spacer region in X. laevis oocyte 5S DNA has been determined. The spacer is AT-rich and comprises half or more of each repeating unit. The sequence is internally repetitious; most of it can be represented by the following set of oligonucleotides:
CAACAGTTTTCAAAAGGTTTGCAAGTTTTT(T)
The spacer, which varies in length from about 360 to 570 or more nucleotides, can be subdivided into a region (A2) which is variable in length in different repeating units, flanked by regions (A1, A3, B1) which are relatively constant in length. The A2 region consists, on the average, of 5–6 tandem copies of the oligonucleotide CAAAGTTT-GAGTTTT; variation in the redundancy of this oligonucleotide accounts for much of the repeat length variation in the genomic 5S DNA. Most copies of this oligonucleotide are identical, although several differing by 1 or 2 nucleotides have been detected in plasmid-cloned 5S DNA fragments. Regions A1 and A3 comprise a linear array of similar, but not identical, oligonucleotides; most repeating units contain very similar A1 and A3 sequences. Region B1 is a sequence of 49 nucleotides immediately adjacent to the 5′ terminus of the 5S rRNA sequence. It is GC-rich, much less repetitive than the remainder of the spacer and contains several palindromes, but no regions of dyad symmetry. This sequence is identical in all six of the single cloned repeating units of 5S DNA analyzed.  相似文献   

11.
Acridine orange and proflavine form complexes with the dinucleoside monophosphate, 5-iodocytidylyl(3′–5′)guanosine. The acridine orange-iodoCpG2 crystals are monoclinic, space group P21, with unit cell dimensions a = 14.36 A?, b = 19.64 A?, c = 20.67 A?, β = 102.5 °. The proflavine-iodoCpG crystals are monoclinic, space group C2, with unit cell dimensions a = 32.14 A?, b = 22.23 A?, c = 18.42 A?, β = 123.3 °. Both structures have been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least-squares.Acridine orange forms an intercalative structure with iodoCpG in much the same manner as ethidium, ellipticine and 3,5,6,8-tetramethyl-N-methyl phenanthrolinium (Jain et al., 1977, Jain et al., 1979), except that the acridine nucleus lies asymmetrically in the intercalation site. This asymmetric intercalation is accompanied by a sliding of base-pairs upon the acridine nucleus and is similar to that observed with the 9-aminoacridine-iodoCpG asymmetric intercalative binding mode described in the previous papers (Sakore et al., 1977, Sakore et al., 1979). Basepairs above and below the drug are separated by about 6.8 Å and are twisted about 10 °; this reflects the mixed sugar puckering pattern observed in the sugar-phospate chains: C3′ endo (3′–5′) C2′ endo (i.e. each cytidine residue has a C3′ endo sugar comformation, while each guanosine residue has a C2′ endo sugar conformation), alterations in glycosidic torsional angles and other small but significant conformational changes in the sugar-phosphate backbone.Proflavine, on the other hand, demonstrates symmetric intercalation with iodoCpG. Hydrogen bonds connect amino groups on proflavine with phosphate oxygen atoms on the dinucleotide. In contrast to the acridine orange structure, base-pairs above and below the intercalative proflavine molecule are twisted about 36 °. The altered magnitude of this angular twist reflects the sugar puckering pattern that is observed: C3′ endo (3′–5′) C3′ endo. Since proflavine is known to unwind DNA in much the same manner as ethidium and acridine orange (Waring, 1970), one cannot use the information from this model system to understand how proflavine binds to DNA (it is possible, for example, that hydrogen bonding observed between proflavine and iodoCpG alters the intercalative geometry in this model system).Instead, we propose a model for proflavine-DNA binding in which proflavine lies asymmetrically in the intercalation site (characterized by the C3′ endo (3′–5′) C2′ endo mixed sugar puckering pattern) and forms only one hydrogen bond to a neighboring phosphate oxygen atom. Our model for proflavine-DNA binding, therefore, is very similar to our acridine orange-DNA binding model. We will describe these models in detail in this paper.  相似文献   

12.
A complex between EcoRI restriction endonuclease and cognate DNA fragment, 5′-G-A-A-T-T-C C-T-T-A-A-G-5′, has been crystallized. The space group is P4212 with a = b = 183.2A?, c = 49.7A?, α = β = γ = 90 °. The unit cell contains four enzyme monomers plus two duplex DNA fragments in an asymmetric unit. High quality crystals of the enzyme alone have also been obtained.  相似文献   

13.
Several novel glycosphingolipids have been isolated from the human teratocarcinoma cell line HT-E (833K). These cells contain two neutral glycolipids which metabolically incorporate radio-labelled fucose. In addition, there are three new gangliosides present, which are all members of the globoside series of glycolipids. One of the fucose containing glycolipids forms globoside when treated with α-fucosidase, and one of the gangliosides forms globoside when treated with neuraminidase. On the basis of chromatographic behavior, exoglycosidase treatment and antibody reactivity, the tentative structures of these new glycolipids are:
Fuc (α1??) GalNAc (βl?3) Gal (α1?4) Gal (β1?4) Glc (β1-Cer)
and
NeuAc (α2?3) GalNAc (β1?3) Gal (α1?4) Gal (β7?4) Gle (β1?Cer)
  相似文献   

14.
15.
Edelstein's model
?E=F(M, E)
,
?M=G(M, E)+D?2M?s2
,
M(s,0)=?(s)
,
E(s,0)=ψ(s)
, where τ ? 0 and ?∞<s<∞, F(M, E>) = (K1+Mm)(K2+Mm)?k1E, G(M, E)= k1E ? k2M, m ? 2, describes the behavior of two basic chemical species during the cellular differentiation in a linear ensemble of the same cell type. We prove the existence and uniqueness of a travelling-wavefront solution. We also demonstrate one kind of stability for this solution.  相似文献   

16.
Assay of RNA-linked nascent DNA pieces with polynucleotide kinase.   总被引:6,自引:0,他引:6  
The 5′-OH end of DNA created upon alkaline hydrolysis of the RNA-linked nascent DNA pieces can be labeled with [γ-32P]ATP using T4 polynucleotide kinase. However, it is difficult to use this method for the assay of these molecules in the presence of RNA-free DNA pieces because of the exchange reaction between the γ-phosphate of ATP and the 5′-phosphate of DNA catalyzed by the kinase. This difficulty can be circumvented by performing the polynucleotide kinase reaction at 0°C, where little exchange reaction occurs. Using these conditions, E. coli polAexl, a mutant defective in the 5′ → 3′ exonuclease activity of DNA polymerase I, is shown to contain several times as many RNA-linked DNA pieces as the wild type.  相似文献   

17.
EcoRI endonuclease crystallizes in space group C2 with unit cell parameters a = 209 A?, b = 129 A?, c = 50 A? and β = 98.4 °. Four 29,000 molecular weight subunits per asymmetric unit would give a reasonable Vm value of 2.87 Å3/dalton. EcoRI endonuclease is the first protein which recognizes a specific sequence of bases in DNA to be crystallized in a form suitable for high resolution structure analysis.  相似文献   

18.
A new restriction endonuclease from Streptomyces albus G.   总被引:10,自引:0,他引:10  
A restriction endonuclease, SalI, has been partially purified from Streptomyces albus G. This enzyme cleaves adenovirus-2 DNA at three sites, bacteriophage λ DNA at two sites, but does not cleave simian virus 40 DNA or φX174 DNA. It recognizes the sequence
and cuts at the sites indicated by the arrows. An endonuclease (XamI) with similar specificity has also been isolated from Xanthomonas amaranthicola.  相似文献   

19.
A tryptic core (residues 22 to 253) of the single-stranded DNA binding protein, or gene 32 protein, of bacteriophage T4 has been crystallized in four different crystal forms. One of these forms appears suitable for high-resolution X-ray crystallographic studies. It is triclinic, space group PI, with a = 67.7 A?, b = 67.8 A?, c = 66.0 A?, α = 101.6 °, β = 107.0 °, γ = 105.2 °. There appear to be three protein protomers in a near-rhombohedral packing in the unit cell.  相似文献   

20.
We have analyzed the hemoglobins of a young German patient with β-thalassemia intermedia and of his immediate family and included in these studies an evaluation of possible nucleotide changes in the β-globin through sequencing of amplified DNA. One chromosome of the propositus and one of his father's carried the GTGGGG mutation at codon 126 leading to the synthesis of Hb Dhoburi or α2β2126(H4)Val→Gly; this variant is slightly unstable and is associated with mild thalassemic features. His second chromosome and one of his mother's had the common IVS-I-5 (G→C) mutation that leads to a rather severe β+-thalassemia and the GTGATG mutation at codon 18, resulting in the replacement of a valine residue by a methionine residue. This newly discovered β-chain variant, named Hb Baden, was present for only 2–3% in both the patient and his mother. This low amount results from a decreased splicing of RNA at the donor splice-site of the first intron that is nearly completely deactivated by the IVS-I-5 (G→C) thalassemic mutation. The chromosome with the codon 18 (GTGATG) and the IVS-I-5 (G→C) mutations has thus far been found only in this German family; analysis of 51 chromosomes from patients with the IVS-I-5 (G→C) mutation living in different countries failed to detect the codon 18 (GTGATG) change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号