首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid-phase extraction method was developed for the preconcentration of thorium (Th). Fungal biomass Agaricus bisporus was immobilized to Amberlite XAD-4 as solid-phase sorbent. The critical parameters such as pH of the sample solution, flow rate of the sample, volume of the sample, and the effect of major ions that affect the preconcentration of thorium in this system were evaluated. The optimum pH for the sorption of Th is 6.0, and quantitative elution occurs with 1.0 mol L?1HCl. The loading capacity was determined as 0.079 mmol g?1. The optimized method was validated through analysis of the certified reference material of tea leaves (NCS ZC73014) and successfully applied to the determination of Th in a real ore sample with satisfactory results.  相似文献   

2.
This study reviews the detection of pesticides in different surface and groundwater samples collected from South Litani region in South Lebanon during 2012. These have been analyzed using an optimized and validated solid phase extraction method followed by gas chromatography coupled with mass spectrometry. Organochlorine and organophosphate pesticides were mostly noted at levels below the recommended value for individual pesticide in water except pirimiphos-methyl that was recorded at 300.87 ng L?1 in groundwater sample, designated for drinking water and collected in February. DDE concentration exceeded 100 ng L?1 in both surface and groundwater in October. The reported results represent the first Lebanese statistical data illustrating the quantification of pesticides in water over a period of time. More importantly, it draws attention to the need of pesticides’ monitoring programs in the Lebanese water resources.  相似文献   

3.
Urine lead level is one of the most employed measures of lead exposure and risk. The urine samples used in this study were obtained from ten healthy male cyclists. Dispersive liquid–liquid microextraction combined with ultraviolet and visible spectrophotometry was utilized for preconcentration, extraction, and determination of lead in urine samples. Optimization of the independent variables was carried out based on chemometric methods in three steps. According to the screening and optimization study, 133 μL of CCl4 (extracting solvent), 1.34 mL ethanol (dispersing solvent), pH 2.0, 0.00 % of salt, and 0.1 % O,O-diethyl dithiophosphoric (chelating agent) were used as the optimum independent variables for microextraction and determination of lead. Under the optimized conditions, R 2 was 0.9991, and linearity range was 0.01–100 μg L?1. Precision was evaluated in terms of repeatability and intermediate precision, with relative standard deviations being <9.1 and <15.3 %, respectively. The accuracy was estimated using urine samples of cyclists as real samples and it was confirmed. The relative error of ≤5 % was considered significant in the method specificity study. The lead concentration mean for the cyclists was 3.79 μg L?1 in urine samples. As a result, the proposed method is a robust technique to quantify lead concentrations higher than 11.6 ng L?1 in urine samples.  相似文献   

4.
Rare earth element (REE) patterns in natural water and geological samples provide information on previous changes in environmental conditions, such as redox changes and material cycles; however, quantitative analysis of REEs in these samples is complicated by the relatively low contents of REEs in such samples as well as mass interference from 135Ba16O and 137Ba16O in inductively coupled plasma mass spectrometry (ICP-MS) analyses. In this study, onsite solid-phase extraction and preconcentration methods for REEs using an iminobisacetic acid–ethylenediaminetriacetic acid chelate resin (Nobias Chelate PA1, Hitachi High-Tech Fielding) were adopted for the analyses. Standard reference materials (SPS-SW1 artificial surface water) and natural ground water and spring water samples were used to evaluate the methods. Using the chelate resin, background levels of REEs were found to be less than 0.3 ng L?1 and recovery rates (REEs, 1 ng L?1) were 97.9–106.7% for the artificial surface water. Ba contents were lower than the detection limit after extraction. Additionally, duplicate analyses were performed to check the reproducibility of the onsite extraction. The REE patterns in the natural water samples were in good agreement with those obtained using a previous method (the interference calibration method without solid-phase extraction). Therefore, onsite solid-phase extraction using the chelate resin was demonstrated to be a rapid and simple preparation technique for REE analyses.  相似文献   

5.
Normal methods for benzo[a]pyrene (BaP) determination, including gas chromatography–mass spectrometry and liquid chromatography with fluorescence detection, involve expensive instruments and complex separation and purification processes. Based on membrane enrichment, coupled with solid‐phase constant‐wavelength synchronous fluorescence spectrometry, a simple, fast, sensitive method was proposed for the determination of BaP in water samples. A Nylon membrane was used as the solid‐phase extraction material for enrichment. After enrichment, a constant‐wavelength synchronous fluorescence spectrum was scanned directly on the membrane‐concentrated BaP without elution. Spectral measurement and enrichment conditions were optimized. Under optimum conditions, when using 150 mL sample solutions, the relationship between fluorescence intensity and BaP concentrations in the 0.05–10.00 μg L–1 range could be fitted by binomial function with an R2 value of 0.9973. Limit of detection (LOD) was calculated to be 0.0137 μg L–1. The volume of the sample solution was increased to 1000 mL to test if the method could be applied to determine lower BaP concentrations. A linear relationship still existed in the range 2.0–20.0 ng L–1 BaP with an R2 value of 0.9895, and a LOD of 2.4 ng L–1. The method was also used to measure the BaP concentration in several natural water samples, and recoveries were in the 90–110% range with relative standard deviations (RSDs) in the 0.58–7.93% range. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, HPLC-MS and ICP-MS methods were used for the determination of histidine and nickel in Morus L., Robinia pseudoacacia L., and Populus nigra L. leaves taken from industrial areas including Gaziantep and Bursa cities. In the determination of histidine by HPLC-MS, all of the system parameters such as flow rate of mobile phase, fragmentor potential, injection volume and column temperature were optimized and found to be 0.2 mL min?1, 70 V, 15 µL, and 20°C, respectively. Under the optimum conditions, histidine was extracted from plant sample by distilled water at 90°C for 30 min. Concentrations of histidine as mg kg?1 were found to be between 2–9 for Morus L., 6–13 for Robinia pseudoacacia L., and 2–10 for Populus nigra L. Concentrations of nickel were in the ranges of 5–10 mg kg?1 for Morus L., 3–10 mg kg?1 for Robinia pseudoacacia L., and 0.6–4 mg kg?1 for Populus nigra L. A significant linear correlation (r = 0.78) between histidine and Ni was observed for Populus nigra L., whereas insignificant linear correlation for Robinia pseudoacacia L. (r = 0.22) were seen. Limits of detection (LOD) and quantitation (LOQ) were found to be 0.025 mg Ni L?1 and 0.075 mg Ni L?1, respectively.  相似文献   

7.
In 2012 to 2014, Philippine green coffee beans from Coffea arabica in Benguet and Ifugao; Coffea canephora var. Robusta in Abra, Cavite, and Ifugao; and Coffea liberica and Coffea excelsea from Cavite were collected and assessed for the distribution of fungi with the potential to produce ochratoxin A (OTA). The presence of fungal species was evaluated both before and after surface sterilization. There were remarkable ecological and varietal differences in the population of OTA-producing species from the five provinces. Aspergillus ochraceus, A. westerdijkiae, and Penicillium verruculosum were detected from Arabica in Benguet and Ifugao while Aspergillus carbonarius, Aspergillus niger, and Aspergillus japonicus were isolated in Excelsa, Liberica, and Robusta varieties from Abra, Cavite, and Davao. Contamination by Aspergillus and Penicillium species was found on 59 and 19 %, respectively, of the 57 samples from five provinces. After disinfection with 1 % sodium hypochlorite, the levels of infection by Aspergillus and Penicillium fell to 40 and 17 %, respectively. A total of 1184 fungal isolates were identified to species level comprising Aspergillus sections Circumdati (four species), Clavati (one), Flavi (one), Fumigati (one), Nigri (three), and Terrie (one). Within section Circumdati, 70 % of A. ochraceus produced OTA as high as 16238 ng g?1 while 40 % of A. westerdijkiae produced maximum OTA of 36561 ng g?1 in solid agar. Within section Nigri, 16.76 % of A. niger produced OTA at the highest 18439 ng g?1, 10 % of A. japonicus at maximum level of 174 ng g?1, and 21.21 % of A. carbonarius yielded maximum OTA of 1900 ng g?1. Of the 12 species of Penicillium isolated, P. verruculosum was ochratoxigenic, with a maximum OTA production of 12 ng g?1.  相似文献   

8.
This work presents the optimization of analytical procedures for the determination of two antibiotics, oxolinic acid (OA) and flumequine (FL), in bed sediment, river water, and soil samples. Three extraction methods (microwave-assisted extraction (MAE), ultrasonication, and reflux) were tested, and the highest recoveries were obtained with MAE (94 ± 3% and 95 ± 3% for OA and FL, respectively). A solid-phase extraction (SPE) clean-up step was optimized by comparing two polymeric sorbents: Oasis HLB and Oasis MAX. The final extracts were analyzed by liquid chromatography with fluorimetric detection. Limits of detection (LOD) obtained for OA and FL in soil and sediment ranged from 0.3 to 0.5 µg kg?1. Meanwhile, a novel SPE procedure was also implemented for OA and FL determination in river water samples. It also relied on the use of Oasis MAX, and recovery rates were in the range 90–94%; LODs were 2 ng L?1 for both OA and FL. These methods were applied for the analysis of samples taken in the Seine River basin (France). The obtained results demonstrated the widespread occurrence of OA and FL, at ng L?1 and µg kg?1 levels in water and sediment/soil, respectively, and their persistence in the environment.  相似文献   

9.
Asp f 1 (ribotoxin) is the main allergen of Aspergillus fumigatus and a critical factor in provoking allergic responses and bronchopulmonary aspergillosis. This study investigated the prevalence of allergen Asp f 1 in dust samples collected at two Croatian sawmills from different working sites (sawmilling, parquetry and sorting). A total of thirty-five floor dust samples were collected, extracted, and the mass fraction of Asp f 1 was determined using a commercially available enzyme-linked immunosorbent assay. More than 91 % of the collected dust samples had detectable levels of Asp f 1 (limit detection 3.6 ng g?1). The median Asp f 1 mass fractions in Sawmill 1 and Sawmill 2 were 49.4 ng g?1 (range <3.6–120 ng g?1) and 35.5 ng g?1 (range 15.1–77.2 ng g?1), respectively. At both sawmills, higher median Asp f 1 values were found in the dust from sawmilling than from parquetry sites. These preliminary findings suggest the abundance of allergen Asp f 1 in reservoir dust in the woodworking environments of both sawmills. Assessment of Asp f 1 in future studies will provide further insight into the role of this allergen in eliciting respiratory morbidity.  相似文献   

10.
It was demonstrated previously that polar and non-polar surface extracts of the brown alga Fucus vesiculosus collected during winter from the Kiel Bight (Germany) inhibited bacterial attachment at natural concentrations. The present study describes the bioassay-guided identification of the active metabolites from the polar fraction. Chromatographic separation on a size-exclusion liquid chromatography column and bioassays identified an active fraction that was further investigated using nuclear magnetic resonance spectroscopy and mass spectrometry. This fraction contained the metabolites dimethylsulphopropionate (DMSP), proline and alanine. DMSP and proline caused the anti-attachment activity. The metabolites were further quantified on the algal surface together with its associated boundary layer. DMSP and proline were detected in the range 0.12–1.08 ng cm?2 and 0.09–0.59 ng cm?2, respectively. These metabolites were tested in the concentration range from 0.1 to 1000 ng cm?2 against the attachment of five bacterial strains isolated from algae and sediment co-occurring with F. vesiculosus. The surface concentrations for 50% inhibition of attachment of these strains were always <0.38 ng cm?2 for DMSP and in four cases <0.1 ng cm?2 for proline, while one strain required 1.66 ng cm?2 of proline for 50% inhibition. Two further bacterial strains that had been directly isolated from F. vesiculosus were also tested, but proved to be the least sensitive. This study shows that DMSP and proline have an ecologically relevant role as surface inhibitors against bacterial attachment on F. vesiculosus.  相似文献   

11.
The aim of the study was to assess the levels of inhalable dust, endotoxins and (1–3)-β-d-glucans as agents harmful to the respiratory tract of workers of municipal waste sorting plants and interaction between these agents based on the measurements taken in two plants with different processing capacities. The study was conducted in summer season in two waste sorting plants (WSPs) differing in processing capacity. Samples of bioaerosol for inhalable dust (gravimetric method), endotoxins (LAL test in kinetic, chromogenic version) and (1–3)-β-d-glucans (Glucatell test in kinetic version) were collected from 42 sorting workers using individual aspirators with glass fiber filters during the work shift. Average geometric concentrations (geometric standard deviation; min–max) of inhalable dust, endotoxins and (1–3)-β-d-glucans were: WSP1: 1.7 mg m?3 (2.2; 0.6–6.9 mg m?3); 15.9 ng m?3 (2.1; 5.4–78.9 ng m?3), 55.1 ng m?3 (1.8; 20.7–188.6 ng m?3) and WSP2: 0.8 mg m?3 (2.2; 0.2–3.8 mg m?3), 9.8 ng m?3 (2.4; 1.6–29.7 ng m?3), 45.0 ng m?3 (3.2, 5.7–212.9 ng m?3), respectively. A significantly higher concentration of inhalable dust was recorded in WSP1 with bigger processing capacity compared to WSP2 (less processing capacity). Significant (p < 0.05) and very high correlations (Spearman rank R > 0.7) were found between the concentrations of all analyzed harmful agents. Processing capacity of waste sorting plants differentially affects the concentrations of inhalable dust, whereas concentrations of endotoxins and glucans are less clearly affected. This suggests that relative concentrations of endotoxin and glucan are depending on the waste sorting capacity.  相似文献   

12.
A new method for the determination of Cu(II) and Pb(II) by flame atomic absorption spectrometry (FAAS) after preconcentrating on a column containing Anoxybacillus sp. SO B1–immobilized Amberlite XAD-16 was developed. The functional groups of Anoxybacillus sp. SO B1 immobilized on Amberlite XAD-16 were characterized in KBr tablets by Fourier transform infrared (FT-IR) spectrometry. Various parameters such as pH, amount of the adsorbent, eluent type and volume, and flow rate of the sample solution were studied. The optimum pH values of quantitative sorption for Cu(II) and Pb(II) were found to be pH 7.0 and 5.0 and Cu(II) and Pb(II) ions could be quantitatively eluted with 5.0 ml of 1.0 mol L?1 HCI and 10.0 ml of 0.25 mol L?1 HNO3, respectively. Recoveries of Cu(II) and Pb(II) were found to be 100.9 ± 1.57% and 100.3 ± 0.49% (N = 5), the limits of detection of Cu(II) and Pb(II) in the determination by FAAS (3 s, N = 10) were found to be 0.8 and 1.6 μg L?1, respectively. The proposed enrichment method was applied for metal ion determination from water samples such as two parts of Tigris River water in Diyarbak?r and Elaz??, Lake of Hazar in Elaz??, and tap water in Diyarbak?r. Furthermore, the accuracy of the proposed method was verified by studying the analytical recovery and by analyzing certified reference material (NCS-DC 73350 leaves of poplar).  相似文献   

13.
In this modality, the extraction phase is formed in situ while simultaneously extracting analytes. First, a water-miscible ionic liquid (IL) ([Hmim][BF4]), capable of complete dissolving in the aqueous solution, was added to the sample. Then, an ion-exchange reagent (NaPF6) was added to obtain the hydrophobic IL ([Hmim][PF6]) that acted as the analyte extractant to form the cloudy homogeneous solution for the preconcentration and speciation of trace amounts of As (III) and As (V) with electrothermal atomic absorption spectrometry (ETAAS) detection. In situ solvent formation microextraction is a simple and rapid method for extraction and preconcentration of metal ions from sample solutions containing high concentration of salt. Some effective factors that influence the microextraction efficiency were investigated and optimized. Under the optimum experimental conditions, the limit of detection (3 σ) and the enrichment factor were 6 ng L-1 and 198, respectively. The obtained relative standard deviation was 4.78%. The proposed method was successfully applied for the determination of As (III) and As (V) in water samples, food salts, and total As in biological samples.  相似文献   

14.
In this study, a simple and rapid methodology based on the hot-plate digestion method using dilute nitric acid solution was used to extract trace metals (such as As, Cd, Cr, Cu, Pb, Fe, and Zn) from freshwater sediments. The concentrations of the elements were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES). The factors (temperature, nitric acid concentration, and volume) affecting the digestion method were optimized using one-factor-at-a-time (OFAT) or univariate methodology, and the optimization process was carried out using freshwater sediment certified reference material (CRM015). The optimal conditions for temperature, nitric acid concentration, and time in the method were 180°C, 10 mL of 5 mol L?1 HNO3, and 45 min, respectively. Under optimum conditions, the limit of detection (LOD) ranged between 0.02 and 0.08 µg L?1 and the limit of quantification (LOQ) ranged from 0.07 and 0.27 µg L?1. In addition, the method detection limits (MDLs) and method quantification limits (MQLs) were 0.10–0.17 and 0.30?0.57 µg g?1, respectively. The overall accuracy of the method determined by recovery of the trace elements in the CRMs ranged from 98 to 111% with the precision ranging from 1.4 to 5.8%. The method was successfully applied for the determination of target metals from real freshwater sediment samples.  相似文献   

15.
Results of a 2-year (2009–2010) survey on the occurrence of ochratoxin A (OTA) in swine feed and in feed for laying hens in Portugal are reported. A total of 664 samples (478 swine feed, 186 feed for laying hens) were analyzed by a HPLC method using fluorescence detection with 2 μg kg?1 as detection limit. In swine feed, 31 samples (6.49%) were positive for OTA. In feed for laying hens, 12 samples (6.45%) were OTA-positive. The average levels of contamination were low, with median values of positive samples at 3–4 μg kg?1 in both years and both commodities, although a few samples contained exceptionally high levels (maximum 130 μg kg?1). Only the maximum level sample (swine feed) contained OTA at a concentration exceeding the European Commission guidance value. The remaining OTA concentrations found in feed samples were much lower than the guidance values.  相似文献   

16.
A novel highly sensitive electrochemical impedimetric Protein A immunosensor for the determination of immunoglobulin G (IgG) was developed by immobilization of Protein A within a newly synthesized, and characterized polymer, poly(maleicanhydride-alt-decene-1). TiO2 nanoparticles (10–30 nm) were synthesized, characterized with X-ray diffraction, transmission electron microscopy and Brunauer–Emmett–Teller surface analysis. The electron transfer between IgG and the poly(maleicanhydride-alt-decene-1)-TiO2-Protein A is quasireversible with a formal potential of 225 mV vs Ag|AgCl. The response of the poly(maleicanhydride-alt-decene-1)-TiO2-Protein A immunosensor was proportional to IgG concentration with a correlation coefficient of 0.9963. The detection limit and linear range was 0.57 ng mL?1 and 0.0062–500 μg mL?1, respectively. Impedance measurments showed that synthesized TiO2 nanoparticles have better conducting properties compared with commercial degussa P25 TiO2 nanoparticles. The nonspecific binding of anti-MBP was 10 %. The label-free impedimetric immunosensor provided a simple and sensitive detection method for the specific determination of IgG in human serum.  相似文献   

17.
A visualized assay for quercetin (QU) was first developed based on the formation of silver–gold alloy nanoparticles in this contribution. With the ability to reduce metal ions to metal substances, QU could reduce Ag+ absorbed on the surface of gold nanoparticles to metallic silver. The thickness of the formed Ag shell and the color change of the solution were proportional to the concentration of QU. Therefore, visualized detection of QU could be realized by studying the surface resonance plasmon absorption spectra of the analytical systems after addition of different concentration of QU. Under optimum conditions, trace amount of QU could be detected in the linear range 9.0?×?10?7–1.0?×?10?4 mol L?1 with a detection limit of 6.5?×?10?7 mol L?1. The present assay was applied in the determination of QU in human serum and satisfactory results were obtained. This assay is simple, rapid, and cost-effective, and it is a powerful complement for the spectroscopy assays for QU. Also, it is the first visualized spectroscopic assay of QU until now.  相似文献   

18.
A novel butanol fermentation process was developed in which sweet sorghum bagasse (SSB) was pretreated using liquid hot water (LHW) pretreatment technique followed by enzymatic hydrolysis and butanol (acetone butanol ethanol (ABE)) fermentation. A pretreatment temperature of 200 °C resulted in the generation of a hydrolyzate that inhibited butanol fermentation. When SSB pretreatment temperature was decreased to 190 °C (0-min holding time), the hydrolyzate was successfully fermented without inhibition and an ABE productivity of 0.51 g L?1 h?1 was achieved which is comparable to the 0.49 g L?1 h?1 observed in the control fermentation where glucose was used as a feedstock. These results are based on the use of 86 g L?1 SSB solid loadings in the pretreatment reactors. We were also able to increase SSB solid loadings from 120 to 200 g L?1 in the pretreatment step (190 °C) followed by hydrolysis and butanol fermentation. As pretreatment solid loadings increased, ABE yield remained in the range of 0.38–0.46. In these studies, a maximum ABE concentration of 16.88 g L?1 was achieved. Using the LHW pretreatment technique, 88.40–96.00 % of polymeric sugars (cellulose + hemicellulose) were released in the SSB hydrolyzate. The LHW pretreatment technique does not require chemical additions and is environmentally friendly, and the hydrolyzate can be used successfully for butanol fermentation.  相似文献   

19.
This study describes the development by response surface methodology (RSM) of a procedure for copper determination by inductively coupled plasma optical emission spectrometry (ICP-OES) in water and biological samples after extraction by magnetic nanoparticles. Four variables such as, pH of solution, amount of extractant, amount of nanoparticles, and time were regarded as factors in the optimization study. Results of the two-level full factorial design (24) based on an analysis of variance demonstrated that only the pH, amount of extractant (E), and amount of nanoparticles (N) were statistically significant. Optimal conditions for the extraction of copper samples were obtained by using Box–Behnken design. Optimum conditions were 5.1, 7.2 mg, and 9.6 mg, for pH of solution, amount of nanoparticles, and amount of extractant, respectively. Under the optimized experimental conditions, the detection limit of the proposed method followed by ICP-OES was found to be 0.9?µg L?1. The method was applied to the determination of copper in water and biological samples.  相似文献   

20.
Silver nanoparticles have been synthesized and were utilized for the enhanced luminometric estimation of moxifloxacin antibiotic. During the experimental procedure, it was clearly found that the addition of silver nanoparticles intensifies the weak chemiluminescence signal intensity of calcein–KMnO4 system by several folds. It was also obvious that the intensity enhancement was linearly proportional to the moxifloxacin concentration and this phenomenon was further utilized for the quantitative determination of target analyte. Effects of the different chemical variables during the experiment were studied to achieve best chemiluminescence signal. Under the optimized experimental parameters, the linear calibration graph was established over the moxifloxacin concentration range of 6.0 × 10?8 M to 2.5 × 10?6 M with coefficient of correlation (r 2) value 0.9998. The lower detection limit was found to be 5.6 × 10?9 M. The percentage relative standard deviation calculated from five replicate chemiluminescence measurements was found to be 2.63 %. The developed chemiluminescence technique was successfully applied to the determination of moxifloxacin in tablet formulation and spiked human urine sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号