首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between fasudil hydrochloride (FSD) and bovine serum albumin (BSA) was investigated using fluorescence and ultraviolet spectroscopy under imitated physiological conditions. The Stern–Volmer quenching model has been successfully applied and the results revealed that FSD could quench the intrinsic fluorescence of BSA effectively via static quenching. The binding constants and binding sites for the BSA–FSD system were evaluated. The corresponding thermodynamic parameters obtained at different temperatures indicated that hydrophobic force played a major role in the interaction of FSD and BSA. The distance between the donor (BSA) and the acceptor (FSD) was obtained according to fluorescence resonance energy transfer (FRET). Synchronous fluorescence spectroscopy and FT‐IR spectra showed that the conformation of BSA was changed in the presence of FSD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This study explored interactions between m‐phenylenediamine (MPD) and bovine serum albumin (BSA) by spectrophotometry. The Stern‐Volmer equation and UV‐vis spectra examination at different temperatures and pH were used to explore different quenching mechanisms. Under simulated physiological conditions, the binding distance between MPD and BSA was 5.18 nm with a ratio of 1:1. The quenching effect of MPD on BSA intrinsic fluorescence depended strongly on pH, and maximum quenching was observed at alkaline pH. Moreover, the thermodynamic parameters of the MPD‐BSA system showed that the predominant acting force between MPD and BSA was a hydrophobic force. The impact of MPD on the conformation of BSA and the effects of co‐ions on binding interactions were also examined. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The interaction between two chromates [sodium chromate (Na2CrO4) and potassium chromate K2CrO4)] and bovine serum albumin (BSA) in physiological buffer (pH 7.4) was investigated by the fluorescence quenching technique. The results of fluorescence titration revealed that two chromates could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure. The apparent binding constants K and number of binding sites n of chromate with BSA were obtained by the fluorescence quenching method. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) were negative, indicating that the interaction of two chromates with BSA was driven mainly by van der Waals forces and hydrogen bonds. The process of binding was a spontaneous process in which Gibbs free energy change was negative. The distance r between donor (BSA) and acceptor (chromate) was calculated based on Forster’s non-radiative energy transfer theory. The results of UV–Vis absorption, synchronous fluorescence, three-dimensional fluorescence and circular dichroism (CD) spectra showed that two chromates induced conformational changes of BSA.  相似文献   

4.
The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 1010 L mol?1 s?1, indicating forming QNPL–BSA complex through the intermolecular binding interaction. The binding constant for the QNPL–BSA complex is in the order of 105 M?1, indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal’s forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.  相似文献   

5.
The interaction of potassium dichromate (Cr(VI)) with bovine serum albumin (BSA) was investigated by fluorescence, synchronous fluorescence, resonance light scattering (RLS), ultraviolet-visible absorption, and circular dichroism (CD) spectroscopies under simulated physiological conditions. The experimental results showed that Cr(VI) could quench the intrinsic fluorescence of BSA following a static quenching process, which indicates the formation of a Cr(VI)-BSA complex. The binding constant (KA) and binding site (n) were measured at different temperatures. The spectroscopic results also revealed that the binding of Cr(VI) to BSA can lead to the loosening of the protein conformation and can change the microenvironment and skeleton of BSA.  相似文献   

6.
The interactions between 1-benzoyl-4-p-chlorphenyl thiosemicarbazide (BCPT) and bovine serum albumin (BSA) or human serum albumin (HSA) have been studied by fluorescence spectroscopy. By the analysis of fluorescence spectrum and fluorescence intensity, it was showed that BCPT has a strong ability to quench the intrinsic fluorescence of both bovine serum albumin and human serum albumin through a static quenching procedure. The binding constants of BCPT with BSA or HSA were determined at different temperatures based on the fluorescence quenching results. The binding sites were obtained and the binding force were suggested to be mainly hydrophobic. The effect of common ions on the binding constants was also investigated. A new fluorescence spectroscopy assay of the proteins is presented. The linear range is 5.36-67.0 microg mL(-1) with recovery of 101.1% for BSA, and the linear range is 8.28-144.9 microg mL(-1) with recovery of 102.6% for HSA. Determination of the proteins in bovine serum or in human serum by this method gives results which are very close to those obtained by using Coomassie Brilliant Blue G-250 colorimetry. A practical method was proposed for the determination of BCPT in human serum samples.  相似文献   

7.
The interaction between Oxaprozin-E and bovine serum albumin (BSA) was studied by spectroscopic methods including fluorescence and UV–vis absorption spectroscopy. The quenching mechanism of fluorescence of BSA by Oxaprozin-E was discussed to be a dynamic quenching procedure. The number of binding sites n and apparent binding constant K was measured by fluorescence quenching method. The thermodynamics parameter ΔH, ΔG, ΔS were calculated. The results indicate the binding reaction was mainly entropy-driven and hydrophobic forces played major role in the binding reaction. The distance r between donor (BSA) and acceptor (Oxaprozin-E) was obtained according to Förster theory of non-radioactive energy transfer.  相似文献   

8.
The effect of different molar ratios of polyethylene glycol (PEG) on the conformational stability of protein, bovine serum albumin (BSA), was studied. The binding of PEG with BSA was observed by fluorescence spectroscopy by measuring the fluorescence intensity after displacement of PEG with chromophore ANS and had further been confirmed by measuring the intrinsic fluorescence of tryptophan residues of BSA. Co-lyophilization of BSA with PEG at optimum BSA:PEG molar ratio led to the formation of the stable protein particles. Circular dichroism (CD) spectroscopy study suggested that a conformational change had occurred in the protein after PEG interaction and demonstrated the highest stability of protein at the optimum BSA:PEG molar ratio of 1:0.75. Additional differential scanning calorimetry (DSC) study suggested strong binding of PEG to protein leading to thermal stability at optimum molar ratio. Molecular mechanism operating behind the polyethylene glycol (PEG) mediated stabilization of the protein suggested that strong physical adsorption of PEG on the hydrophobic core of the protein (BSA) along with surface adsorption led to the stability of protein.  相似文献   

9.
The interaction of pyridoxine (Vitamin B6) with bovine serum albumin (BSA) is investigated under pseudo-physiological conditions by UV–Vis, fluorescence and FTIR spectroscopy. The intrinsic fluorescence of BSA was quenched by VB6, which was rationalized in terms of the static quenching mechanism. According to fluorescence quenching calculations, the bimolecular quenching constant (kq), dynamic quenching (KSV) and static quenching (KLB) at 310 K were obtained. The efficiency of energy transfer and the distance between the donor (BSA) and the acceptor (VB6) were calculated by Foster’s non-radiative energy transfer theory and were equal to 41.1% and 2.11 nm.The collected UV–Vis and fluorescence spectra were combined into a row-and column-wise augmented matrix and resolved by multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS helped to estimate the stoichiometry of interactions, concentration profiles and pure spectra for three species (BSA, VB6 and VB6-BSA complex) existed in the interaction procedure. Based on the MCR-ALS results, using mass balance equations, a model was developed and binding constant of complex was calculated using non-linear least squares curve fitting. FT-IR spectra showed that the conformation of proteins was altered in presence of VB6. Finally, the combined docking and molecular dynamics (MD) simulations were used to estimate the binding affinity of VB6 to BSA. Five-nanosecond MD simulations were performed on bovine serum albumin (BSA) to study the conformational features of its ligand binding site. From MD results, eleven BSA snapshots were extracted, at every 0.5 ns, to explore the binding affinity (GOLD score) of VB6 using a docking procedure. MD simulations indicated that there is a considerable flexibility in the structure of protein that affected ligand recognition. Structural analyses and docking simulations indicated that VB6 binds to site I and GOLD score values depend on the conformations of both BSA and ligand. Molecular modeling results showed that VB6–BSA complex formed not only on the basis of electrostatic forces, but also on the basis of π–π staking and hydrogen bond. There was an excellent agreement between the experimental and computational results. The results presented in this paper, will offer a reference for detailed and systematic studies on the biological effects and action mechanism of small molecules with proteins.  相似文献   

10.
The mechanism of interaction of a non-glycosidic citrus flavonoid, hesperitin (HES) with bovine serum albumin (BSA) was studied by UV-vis absorption, fluorescence, FT-IR, circular dichroism, fluorescence anisotropy and synchronous fluorescence spectroscopy in phosphate buffer of pH 7.4. Fluorescence data revealed that the fluorescence quenching of BSA by HES was the result of the formed complex of HES-BSA. The binding constants and thermodynamic parameters at four different temperatures, the location of binding, and the nature of binding force were determined. The hydrogen bonds interactions were found to be the predominant intermolecular forces to stabilize the complex. The conformation of BSA was discussed by synchronous fluorescence and CD methods. The alterations of protein secondary structure upon complexation with HES were evident from the gradual decrease in α-helicity. The distance between the donor (BSA) and acceptor (flavonoid) was calculated from the fluorescence resonance energy transfer and found to be 1.978 nm. Common ions viz., Zn(2+), K(+), Cu(2+), Ni(2+), Mn(2+) and Co(2+) were found to influence the binding of flavonoid to protein.  相似文献   

11.
The interaction between pyridoxine hydrochloride (VB6) and bovine serum albumin (BSA) were studied by spectroscopic methods including fluorescence spectroscopy and UV-visible absorption spectra. The quenching mechanism of fluorescence of BSA by VB6 was discussed. The number of binding sites n and observed binding constant K(b) was measured by fluorescence quenching method. The thermodynamic parameters DeltaH(theta), DeltaG(theta), DeltaS(theta) at different temperatures were calculated and the results indicate the binding reaction is mainly entropy-driven and hydrophobic interaction played major role in the reaction. The distance r between donor (BSA) and acceptor (VB6) was obtained according to FOrster theory of non-radiation energy transfer. Synchronous fluorescence and three-dimensional fluorescence spectra were used to investigate the structural change of BSA molecules with addition of VB6, the result indicates that the secondary structure of BSA molecules is changed in the presence of VB6.  相似文献   

12.
Anthocyanin is one of the flavonoid phytopigments with specific health benefits. The interaction between delphinidin‐3‐O‐glucoside (D3G) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three‐dimensional fluorescence spectroscopy, ultraviolet‐visible absorption spectroscopy, circular dichroism spectroscopy and molecular modeling. D3G effectively quenched the intrinsic fluorescence of BSA via static quenching. The number of binding sites and binding constant Ka were determined, and the hydrogen bonds and van der Waals forces played major roles in stabilizing the D3G–BSA complex. The distance r between donor and acceptor was obtained as 2.81 nm according to Förster's theory. In addition, the effects of pH and metal ions on the binding constants were discussed. The results studied by synchronous fluorescence, three‐dimensional fluorescence and circular dichroism experiments indicated that the secondary structures of the protein has been changed by the addition of D3G and the α‐helix content of BSA decreased (from 56.1% to 52.4%). Furthermore, the study of site marker competitive experiments and molecular modeling indicated that D3G could bind to site I of BSA, which was in the large hydrophobic cavity of subdomain IIA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Physical binding‐mediated organic dye direct‐labelling of proteins could be a promising technology for bio‐nanomedical applications. Upon binding, it was found that fluorescence resonance energy transfer (FRET) occurred between donor bovine serum albumin (BSA; an amphiphilic protein) and acceptor fluoresceinamine (FA; a hydrophobic fluorophore), which could explain fluorescence quenching found for BSA. FRET efficiency and the distance between FA and BSA tryptophan residues were determined to 17% and 2.29 nm, respectively. Using a spectroscopic superimposition method, the saturated number of FAs that bound to BSA was determined as eight to give a complex formula of FA8–BSA. Finally, molecular docking between BSA and FA was conducted, and conformational change that occurred in BSA upon binding to FA molecules was also studied by three‐dimensional fluorescence microscopy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The characteristics of the interaction between reserpine and bovine serum albumin (BSA) were studied by fluorescence, UV-vis absorption and Fourier transform infrared (FT-IR) spectroscopy. Spectroscopic analysis revealed that fluorescence quenching of BSA by reserpine was through a static quenching procedure. The binding constant K(A) of reserpine with BSA at 293, 301 and 309 K was 1.63, 1.78 and 2.35 x 10(5) moL(-1) L respectively, which indicated degree of binding force between reserpine and BSA. There was one binding site between reserpine and BSA. The entropy and enthalpy changes were positive, indicating that interaction of reserpine and BSA was driven mainly by hydrophobic forces. The average binding distance between the donor (BSA) and the acceptor (reserpine) was about 3.84 nm based on the Forster non-radiation energy transfer theory. Results of synchronous fluorescence and FT-IR spectra indicated that the conformation and microenvironment of BSA were changed by the binding of reserpine. The results may provide important insights into the physiological activity of reserpine.  相似文献   

15.
The interaction of dextromethorphan hydrobromide (DXM) with bovine serum albumin (BSA) is studied by using fluorescence spectra, UV–vis absorption, synchronous fluorescence spectra (SFS), 3D fluorescence spectra, Fourier transform infrared (FTIR) spectroscopy and circular dichroism under simulated physiological conditions. DXM effectively quenched the intrinsic fluorescence of BSA. Values of the binding constant, KA, are 7.159 × 103, 9.398 × 103 and 16.101 × 103 L/mol; the number of binding sites, n, and the corresponding thermodynamic parameters ΔG°, ΔH° and ΔS° between DXM and BSA were calculated at different temperatures. The interaction between DXM and BSA occurs through dynamic quenching and the effect of DXM on the conformation of BSA was analyzed using SFS. The average binding distance, r, between the donor (BSA) and acceptor (DXM) was determined based on Förster's theory. The results of fluorescence spectra, UV–vis absorption spectra and SFS show that the secondary structure of the protein has been changed in the presence of DXM. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In neutral medium, rifamycin antibiotics such as rifapentin (RFPT), rifampicin (RFP), rifandin (RFD) and rifamycin SV (RFSV) can bind with human serum albumin (HSA) and bovine serum albumin (BSA) to form complexes, resulting in the quenching of the intrinsic fluorescence (lambda(ex)/lambda(em) = 285/355 nm) of the BSA and HSA. The quenching intensity (DeltaF) is directly proportional to the concentration of the rifamycin antibiotics. Therefore, a new analytical method was established to determine trace rifamycin antibiotics. The method had fairly high sensitivity and the detecting limits (3sigma) for RFPT, RFP, RFD and RFSV were 0.85, 0.98, 1.83, 1.89 ng/mL, respectively, for the HSA system and 0.76, 0.89, 1.55, 1.77 ng/mL, respectively, for the BSA system. All relative standard deviations (RSDs) were <3.8%. In this work, the characteristics of the fluorescence spectra were studied and the optimum reaction conditions and influencing factors were investigated. The influence of coexisting substances was tested and the results showed that the method had good selectivity and could be applied to determine trace rifamycin antibiotics in medicine capsules and urine samples. Taking the RFSV-serum albumin system as an example, the reaction mechanisms, such as binding constants, binding sites, binding distance and the type of fluorescence quenching, were investigated.  相似文献   

17.
Eriocitrin is a flavanone glycoside, which exists in lemon or lime citrus fruits. It possesses antioxidant, anticancer, and anti‐allergy activities. In order to investigate the pharmacokinetics and pharmacological mechanisms of eriocitrin in vivo, the interaction between eriocitrin and bovine serum albumin (BSA) was studied under the simulated physiological conditions by multispectroscopic and molecular docking methods. The results well indicated that eriocitrin and BSA formed a new eriocitrin‐BSA complex because of intermolecular interactions, which was demonstrated by the results of ultraviolet‐visible (UV‐vis) absorption spectra. The intrinsic fluorescence of BSA was quenched by eriocitrin, and static quenching was the quenching mechanism. The number of binding sites (n) and binding constant (Kb) at 310 K were 1.22 and 2.84 × 106 L mol?1, respectively. The values of thermodynamic parameters revealed that the binding process was spontaneous, and the main forces were the hydrophobic interaction. The binding distance between eriocitrin and BSA was 3.43 nm. In addition, eriocitrin changed the conformation of BSA, which was proved by synchronous fluorescence and circular dichroism (CD) spectra. The results of site marker competitive experiments suggested that eriocitrin was more likely to be inserted into the subdomain IIA (site I), which was further certified by molecular docking studies.  相似文献   

18.
The mechanism of the interaction between bovine serum albumin (BSA) and desvenlafaxine was studied using fluorescence, ultraviolet absorption, 3‐dimensional fluorescence spectroscopy, circular dichroism, synchronous fluorescence spectroscopy, cyclic voltametry, differential scanning calorimetry, and attenuated total reflection–Fourier transform infrared spectroscopic techniques under physiological condition at pH 7.4. Stern‐Volmer calculations authenticate the fluorescence of BSA that was quenched by desvenlafaxine in a collision quenching mode. The fluorescence quenching method was used to evaluate number of binding sites “n” and binding constant K A that were measured, and various thermodynamic parameters were evaluated at different temperatures by using the van't Hoff equation and differential scanning calorimetry technique, which indicated a spontaneous and hydrophobic interaction between BSA and desvenlafaxine. According to the Förster theory we calculate the distance between the donor, BSA and acceptor, desvenlafaxine molecules. Furthermore, circular dichroism and attenuated total reflection–Fourier transform infrared spectroscopy indicate nominal changes in the secondary structure of the protein.  相似文献   

19.
The binding of several different categories of small molecules to bovine (BSA) and human (HSA) serum albumins has been studied for many years through different spectroscopic techniques to elucidate details of the protein structure and binding mechanism. In this work we present the results of the study of the interactions of BSA and HSA with the anionic sodium dodecyl sulfate (SDS), cationic cethyltrimethylammonium chloride (CTAC) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (HPS) monitored by fluorescence spectroscopy of the intrinsic tryptophans at pH 5.0. Similarly to pH 7.0 and 9.0, at low concentrations, the interaction of BSA with these surfactants shows a quenching of fluorescence with Stern-Volmer quenching constants of (1.1+/-0.1)x10(4) M(-1), (3.2+/-0.1)x10(3) M(-1) and (2.1+/-0.1)x10(3) M(-1) for SDS, HPS and CTAC, respectively, which are associated to the 'effective' association constants to the protein. On the interaction of these surfactants with HSA, an opposite effect was observed as compared to BSA, i.e., an enhancement of fluorescence takes place. For both proteins, at low surfactant concentrations, a positive cooperativity was observed and the Hill plot model was used to estimate the number of surfactant binding sites, as well as the association constants of the surfactants to the proteins. It is worthy of notice that the binding constants for the surfactants at pH 5.0 are lower as compared to pH 7.0 and 9.0. This is probably due to fact that the protein at this acid pH is quite compact reducing the accessibility of the surfactants to the hydrophobic cavities in the binding sites. The interaction of myristic acid with both proteins shows a similar fluorescence behaviour, suggesting that the mechanism of the interaction is the same. Recently published crystallographic studies of HSA-myristate complex were used to perform a modelling study with the aim to explain the fluorescence results. The crystallographic structure reveals that a total of five myristic acid molecules are asymmetrically bound in the macromolecule. Three of these sites correspond to higher affinity ones and correlate with high association constants described in the literature. Our models for BSA and HSA with bound SDS suggest that the surfactant could be bound at the same sites as those reported in the crystal structure for the fatty acid. The differences in tryptophan vicinity upon surfactant binding are explored in the models in order to explain the observed spectroscopic changes. For BSA the quenching is due to a direct contact of a surfactant molecule with the indole of W131 residue. It is clear that the binding site in BSA which is very close, in contact with tryptophan W131, corresponds to a lower affinity site, explaining the lower binding constants obtained from fluorescence studies. In the case of HSA the enhancement of fluorescence is due to the removal of static quenching of W214 residue in the intact protein caused by nearby residues in the vicinity of this tryptophan.  相似文献   

20.
The present study employed the spectroscopic techniques, i.e. fluorescence, and circular dichroism (CD) and the molecular docking approach to investigate the mechanism of interaction of a potent anticancer glucosinolate, sinigrin (SIN), with bovine serum albumin (BSA). SIN binding to BSA resulted in the quenching of intrinsic fluorescence, and the analysis of results revealed the presence of static quenching mechanism. Based on the results, it was evident that the interaction of SIN with BSA was mainly stabilized by hydrogen bonding. Results from CD analysis revealed that the binding of SIN does not induce significant conformational changes in BSA. Molecular docking studies showed that four hydrogen bonds stabilize the binding of SIN in the site I of BSA with a binding energy of ?6.2 kcal mol?1. These findings will not only provide insights about the mechanism of interaction of sinigrin but also showed the effect of methylglyoxal-mediated glycation on ligand binding with BSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号