首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
LKB1 associates with Brg1 and is necessary for Brg1-induced growth arrest.   总被引:10,自引:0,他引:10  
Inactivating mutations in the serine-threonine kinase LKB1 (STK11) are found in most patients with Peutz-Jeghers syndrome; however the function of LKB1 is unknown. We found that LKB1 binds to and regulates brahma-related gene 1 (Brg1), an essential component of chromatin remodeling complexes. The association requires the N terminus of LKB1 and the helicase domain of Brg1 and LKB1 stimulates the ATPase activity of Brg1. Brg1 expression in SW13 cells induces the formation of flat cells indicative of cell cycle arrest and senescence. Expression of a kinase-dead mutant of LKB1, SL26, in SW13 cells blocks the formation of Brg1-induced flat cells, indicating that LKB1 is required for Brg1-dependent growth arrest. The inability of mutants of LKB1 to mediate Brg1-dependent growth arrest may explain the manifestations of Peutz-Jeghers syndrome.  相似文献   

2.
3.
4.
5.
Remodeling of the extracellular matrix (ECM) is pivotal for various biological processes, including organ morphology and development. The Caenorhabditis elegans male tail has male-specific copulatory organs, the rays and the fan. Ray morphogenesis, which involves a rapid remodeling of the ECM, is an important model of morphogenesis, although its mechanism is poorly understood. ADAMTS (a disintegrin-like and metalloproteinase with thrombospondin type I motifs) is a novel metalloproteinase family that is thought to be an important regulator for ECM remodeling during development and pathological states. We report here that a new C. elegans ADAMTS family gene, adt-1, plays an important regulatory role in ray morphogenesis. Inactivation of the adt-1 gene resulted in morphological changes in the rays as well as the appearance of abnormal protuberances around the rays. In addition, mating ability was remarkably impaired in adt-1 deletion mutant males. Furthermore, we found that the green fluorescent protein reporter driven by the adt-1 promoter was specifically expressed throughout the rays in the male tail. We hypothesize that ADT-1 controls the ray extension process via remodeling of the ECM in the cuticle.  相似文献   

6.
The stromal microenvironment regulates mammary gland branching morphogenesis. We have observed that mast cells are present in the mammary gland throughout its postnatal development and, in particular, are found around the terminal end buds and ductal epithelium of the pubertal gland. Mast cells contribute to allergy, inflammatory diseases, and cancer development but have not been implicated in normal development. Genetic and pharmacological disruption of mast cell function in the mammary gland revealed that mast cells are involved in rapid proliferation and normal duct branching during puberty, and this effect is independent of macrophage recruitment, which also regulates mammary gland development. For mast cells to exert their effects on normal morphogenesis required activation of their serine proteases and degranulation. Our observations reveal a novel role for mast cells during normal pubertal development in the mammary gland.  相似文献   

7.
Extracellular matrix (ECM)-degrading enzymes such as matrix metalloproteases (MMPs) play an essential role in the repair of infarcted tissue, which affects ventricular remodeling after myocardial infarction. ADAMTS1 (A disintegrin and metalloprotease with thrombospondin motifs), a newly discovered metalloprotease, was originally cloned from a cancer cell line, but little is known about its contribution to disease. To test the hypothesis that ADAMTS1 appears in infarcted myocardial tissue, we examined ADAMTS1 mRNA expression in a rat myocardial infarction model by Northern blotting, real-time RT-PCR and in situ hybridization. Normal endothelium expressed little ADAMTS1 mRNA, while normal myocardium expressed no detectable ADAMTS1 mRNA. Up-regulation of ADAMTS1 was demonstrated by Northern blot analysis and real-time RT-PCR at 3 h after coronary artery ligation. In situ hybridization revealed strong ADAMTS1 mRNA signals in the endothelium and myocardium in the infarcted heart, mainly in the infarct zone, at 3 h after myocardial infarction. The rapid and transient up-regulation of the ADAMTS1 gene in the ischemic heart was distinct from the regulatory patterns of other MMPs. Our study demonstrated that the ADAMTS1 gene is a new early immediate gene expressed in the ischemic endothelium and myocardium.  相似文献   

8.
Rad6p plays important roles in post-replication DNA repair, chromatin organization, gene silencing and meiosis. In this study, we show that Rad6p also regulates yeast-hypha morphogenesis in the human pathogen Candida albicans. CaRAD6 gene and cDNAs were isolated and characterized revealing that the gene carries two 5'-proximal introns. CaRad6p shows a high degree of sequence similarity to Rad6 proteins from fungi to man (60-83% identity), and it suppresses the UV sensitivity and lack of induced mutagenesis displayed by a Saccharomyces cerevisiae rad6 mutant. In C. albicans, CaRAD6 expression is induced in response to UV, and CaRad6p depletion confers UV sensitivity, confirming that Rad6p serves a role in protecting this fungus against UV damage. CaRAD6 overexpression inhibits hyphal development, whereas CaRad6p depletion enhances hyphal growth. Also, CaRAD6 mRNA levels decrease during the yeast-hypha transition. These effects are dependent on Efg1p, but not Cph1p, indicating that CaRad6p acts specifically through the Efg1p morphogenetic signalling pathway to repress yeast-hypha morphogenesis.  相似文献   

9.
Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis by producing excessive extracellular matrix (ECM) following chronic inflammation. However, studying HSC function has been challenging due to the limited availability of primary human quiescent HSCs (qHSCs) in vitro, and the fact that primary qHSCs quickly activate when cultured on plastic plates. Advances in stem cell technology have allowed for the generation of qHSCs from human induced pluripotent stem cells (hiPSCs) with the potential to provide an unlimited source of cells. However, differentiated quiescent-like HSCs (iqHSCs) also activate spontaneously on conventional plastic plates. In this study, we generated iqHSCs from hiPSCs and developed a culture method to maintain such iqHSCs in a lowly activated state for up to 5 days by optimizing their physical culture microenvironment. We observed that three-dimensional (3D) culture of iqHSCs in soft type 1 collagen hydrogels significantly inhibited their spontaneous activation in vitro while maintaining their ability to convert to activated state. Activation of iqHSC was successfully modeled by stimulating them with the fibrotic cytokine TGFβ1. Hence, our culture method can be used to generate HSCs with functions comparable to those in a healthy liver, facilitating the development of accurate in vitro liver models for identifying novel therapeutic agents.  相似文献   

10.
11.
12.
13.
Brg1 is required for murine neural stem cell maintenance and gliogenesis   总被引:3,自引:0,他引:3  
Epigenetic alterations in cell-type-specific gene expression control the transition of neural stem cells (NSCs) from predominantly neurogenic to predominantly gliogenic phases of differentiation, but how this switch occurs is unclear. Here, we show that brahma-related gene 1 (Brg1), an ATP-dependent chromatin remodeling factor, is required for the repression of neuronal commitment and the maintenance of NSCs in a state that permits them to respond to gliogenic signals. Loss of Brg1 in NSCs in conditional brg1 mutant mice results in precocious neuronal differentiation, such that cells in the ventricular zone differentiate into post-mitotic neurons before the onset of gliogenesis. As a result, there is a dramatic failure of astrocyte and oligodendrocyte differentiation in these animals. The ablation of brg1 in gliogenic progenitors in vitro also prevents growth-factor-induced astrocyte differentiation. Furthermore, proteins implicated in the maintenance of stem cells, including Sox1, Pax6 and Musashi-1, are dramatically reduced in the ventricular zones of brg1 mutant mice. We conclude that Brg1 is required to repress neuronal differentiation in NSCs as a means of permitting glial cell differentiation in response to gliogenic signals, suggesting that Brg1 regulates the switch from neurogenesis to gliogenesis.  相似文献   

14.
The role of Notch signaling during skin development was analyzed using Msx2-Cre to create mosaic loss-of-function alleles with precise temporal and spatial resolution. We find that gamma-secretase is not involved in skin patterning or cell fate acquisition within the hair follicle. In its absence, however, inner root sheath cells fail to maintain their fates and by the end of the first growth phase, the epidermal differentiation program is activated in outer root sheath cells. This results in complete conversion of hair follicles to epidermal cysts that bears a striking resemblance to Nevus Comedonicus. Sebaceous glands also fail to form in gamma-secretase-deficient mice. Importantly, mice with compound loss of Notch genes in their skin phenocopy loss of gamma-secretase in all three lineages, demonstrating that Notch proteolysis accounts for the major signaling function of this enzyme in this organ and that both autonomous and nonautonomous Notch-dependent signals are involved.  相似文献   

15.
Dishevelled-associated activator of morphogenesis 1 (Daam1), a member of the formin protein family, plays an important role in regulating the actin cytoskeleton via mediation of linear actin assembly. Previous functional studies of Daam1 in lower species suggest its essential role in Drosophila trachea formation and Xenopus gastrulation. However, its in vivo physiological function in mammalian systems is largely unknown. We have generated Daam1-deficient mice via gene-trap technology and found that Daam1 is highly expressed in developing murine organs, including the heart. Daam1-deficient mice exhibit embryonic and neonatal lethality and suffer multiple cardiac defects, including ventricular noncompaction, double outlet right ventricles and ventricular septal defects. In vivo genetic rescue experiments further confirm that the lethality of Daam1-deficient mice results from the inherent cardiac abnormalities. In-depth analyses have revealed that Daam1 is important for regulating filamentous actin assembly and organization, and consequently for cytoskeletal function in cardiomyocytes, which contributes to proper heart morphogenesis. Daam1 is also found to be important for proper cytoskeletal architecture and functionalities in embryonic fibroblasts. Biochemical analyses indicate that Daam1 does not regulate cytoskeletal organization through RhoA, Rac1 or Cdc42. Our study highlights a crucial role for Daam1 in regulating the actin cytoskeleton and tissue morphogenesis.  相似文献   

16.
17.
《Developmental cell》2022,57(16):1976-1994.e8
  1. Download : Download high-res image (214KB)
  2. Download : Download full-size image
  相似文献   

18.
The normal human breast comprises an inner layer of luminal epithelial cells and an outer layer of myoepithelial cells separated from the connective tissue stroma by an intact basement membrane. In breast cancer, tumor cells are in direct contact with the surrounding highly activated collagenous stroma, with little or no discernible myoepithelial fence from the original double-layered structure. To understand the evolution of these two scenarios, we took advantage of a three-dimensional hydrated collagen gel approach. The contribution of myoepithelial cells to normal morphogenesis was studied by ablation and rescue experiments, and genes regulated on tumor cell-fibroblast interaction were identified in a tumor environment assay. In normal breast morphogenesis, the ability to correctly polarize sialomucin to the luminal membrane of emerging acini was used as a criterion for apical polarity and functional differentiation. In the assay of breast neoplasia, the consequence of reciprocal tumor cell-fibroblast interaction was addressed morphologically as well as by a differential display approach. Normal breast epithelial cells were purified immunomagnetically and an established cell line, MCF-7, was used as a surrogate tumor cell. With regard to the importance of myoepithelial cells in normal breast epithelial morphogenesis, the collagen gel assay elucidated the following subtleties: In contrast to culturing in basement membrane gels, luminal epithelial cells when cultured alone made structures that were all inversely polarized. This aberrant polarity could be rescued by co-culture with myoepithelial cells. The molecular activity of myoepithelial cells responsible for correct morphogenesis was narrowed down to the laminin-1 component of the basement membrane. As for the consequence of interaction of tumor cells with connective tissue fibroblasts, the assay allowed us to identify a hitherto undescribed gene referred to as EPSTI1. The relevance of the assay-based identification of regulated genes was confirmed in a series of breast carcinomas in which EPSTI1 was highly upregulated compared with normal breast. Few if any of these observations would have been possible on two-dimensional tissue culture plastic.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号