首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Patients with an intact SRY gene and duplications of portions of Xp21 develop as phenotypic females. We have recently mapped this sex reversal locus, DSS, to a 160-kb region of Xp21 that includes the adrenal hypoplasia congenita locus. To clone the gene(s) underlying DSS and AHC, we isolated expressed sequences quences from the region. Here we describe the characterization of two related genes. DAM10 and DAM6, expressed in adult testis and lung tumors. The predicted DAM10 and DAM6 proteins are 66% identical and are both highly similar to the MAGE family of tumor-associated antigens and to mouse necdin. Genes belonging to the MAGE superfamily, DAMs, MAGEs, and necdin, are likely to have originated from a common ancestor and to be subject to an unusually rapid evolution. The tumor-restricted expression of DAM proteins and their structural similarity to MAGE genes suggest that DAM peptides may be targets for active immunotherapy in lung cancer patients.  相似文献   

3.
XY sex reversal associated with a nonsense mutation in SRY.   总被引:5,自引:0,他引:5  
Sex determination in humans is mediated through the expression of a testis-determining gene on the Y chromosome. In humans, a candidate gene for the testis-determining factor (TDF) that encodes a protein with a putative DNA-binding motif and has been isolated is termed SRY. Here we describe an XY sex-reversed female with pure gonadal dysgenesis who harbors a de novo nonsense mutation in the SRY open reading frame (SRY-orf). This single-basepair substitution results directly in the formation of a termination codon in the putative SRY DNA-binding motif, presumably leading to a nonfunctional gene product. This brings the number of reported XY sex-reversed females with de novo mutations in the known SRY-orf to three, each occurring in the putative DNA-binding domain. This provides further evidence to support SRY being TDF in humans and also indicates the functional importance of the putative DNA-binding domain of the SRY protein.  相似文献   

4.
Male-to-female 64,XY sex reversal is a frequently reported chromosome abnormality in horses. Despite this, the molecular causes of the condition are as yet poorly understood. This is partially because only limited molecular information is available for the horse Y chromosome (ECAY). Here, we used the recently developed ECAY map and carried out the first comprehensive study of the Y chromosome in XY mares (n=18). The integrity of the ECAY in XY females was studied by FISH and PCR using markers evenly distributed along the euchromatic region. The results showed that the XY sex reversal condition in horses has two molecularly distinct forms: (i) a Y-linked form that is characterized by Y chromosome deletions and (ii) a non-Y-linked form where the Y chromosome of affected females is molecularly the same as in normal males. Further analysis of the Y-linked form (13 cases) showed that the condition is molecularly heterogeneous: the smallest deletions spanned about 21 kb, while the largest involved the entire euchromatic region. Regardless of the size, all deletions included the SRY gene. We show that the deletions were likely caused by inter-chromatid recombination events between repeated sequences in ECAY. Further, we hypothesize that the occurrence of SRY-negative XY females in some species (horse, human) but not in others (pig, dog) is because of differences in the organization of the Y chromosome. Finally, in contrast to the Y-linked SRY-negative form of equine XY sex reversal, the molecular causes of SRY-positive XY mares (5 cases) remain as yet undefined.  相似文献   

5.
Replication patterns of the X chromosomes were studied in X*XY wood lemmings with male and female phenotypes. The wild-type X was late replicating (ie, inactivated) in all cells of the X*XY female, whereas the mutated X* was late replicating in all cells of the X*XY male. These findings are compared with those obtained in sex-reversed (Sxr) mice.  相似文献   

6.
The sex-determining region of the Y chromosome (SRY) plays a key role in human sex determination, as mutations in SRY can cause XY sex reversal. Although some SRY missense mutations affect DNA binding and bending activities, it is unclear how others contribute to disease. The high mobility group domain of SRY has two nuclear localization signals (NLS). Sex-reversing mutations in the NLSs affect nuclear import in some patients, associated with defective importin-beta binding to the C-terminal NLS (c-NLS), whereas in others, importin-beta recognition is normal, suggesting the existence of an importin-beta-independent nuclear import pathway. The SRY N-terminal NLS (n-NLS) binds calmodulin (CaM) in vitro, and here we show that this protein interaction is reduced in vivo by calmidazolium, a CaM antagonist. In calmidazolium-treated cells, the dramatic reduction in nuclear entry of SRY and an SRY-c-NLS mutant was not observed for two SRY-n-NLS mutants. Fluorescence spectroscopy studies reveal an unusual conformation of SRY.CaM complexes formed by the two n-NLS mutants. Thus, CaM may be involved directly in SRY nuclear import during gonadal development, and disruption of SRY.CaM recognition could underlie XY sex reversal. Given that the CaM-binding region of SRY is well-conserved among high mobility group box proteins, CaM-dependent nuclear import may underlie additional disease states.  相似文献   

7.
McLeod syndrome, characterized by acanthocytosis and the absence of a red-blood-cell Kell antigen (Kx), is a multisystem disorder involving a late-onset myopathy, splenomegaly, and neurological defects. The locus for this syndrome has been mapped, by deletion analysis, to a region between the loci for Duchenne muscular dystrophy (DMD) and chronic granulomatous disease (CGD). In this study, we describe a new marker, 3BH/R 0.3 (DXS 709), isolated by cloning the deletion breakpoint of a DMD patient. A long-range restriction map of Xp21, encompassing the gene loci for McLeod and CGD, was constructed, and multiple CpG islands were found clustered in a 700-kb region. Using the new marker, we have limited the McLeod syndrome critical region to 150-380-kb. Within this interval, two CpG-rich islands which may represent candidate sites for the McLeod gene were identified.  相似文献   

8.
tda-1 XY sex reversal occurs when the Y chromosome of at least some populations of wild Mus musculus domesticus is placed on the C57BL/6J genomic background. Gross anatomical observations have previously revealed morphological similarities among fetal ovotestes of tda-1 and Tas-inherited XY sex reversals and BALB/cWt mosaic hermaphrodites. We studied the histology of tda-1 XY sex-reversed gonads, ranging in age from day 14 of gestation to adult. The obtained data revealed additional similarities with ovotestes of BALB/cWt mosaic hermaphrodites as well as with ovotestes of hermaphrodites found in XXSxr and XX/XY chimeras. It is proposed that ovotestes occurring in these various hermaphroditic conditions may be formed through a common pathway.  相似文献   

9.
To clarify the importance of endogenous estrogens during sex differentiation in a teleost fish, the Nile tilapia, we examined the target events for endogenous estrogens and their role during gonadal sex differentiation. The expression of CYP19a (P450arom) precedes any morphological gonadal sex differentiation. Further to these findings, the treatment of XX fry with non-steroidal aromatase inhibitor (AI), Fadrozole, from seven to 14 days after hatching caused complete sex reversal to functional males. The XX sex reversal induced by AI was rescued completely with simultaneous estrogen treatment. We also found that XY fry treated with estrogen, before the appearance of morphological sex differences, caused complete sex reversal from males to females. Taken together, these results suggest that endogenous estrogens are required for ovarian differentiation. To identify the down-stream gene products of estrogen during ovarian differentiation, we performed subtractive hybridization using mRNA derived from normal and estrogen treated XY gonads. Two out of ten gene products were expressed in germ cells, whereas the others were expressed in somatic cells.  相似文献   

10.
Studies on the genetics of tda-1 XY sex reversal in the mouse   总被引:1,自引:0,他引:1  
When the Y chromosome of at least some populations of the house mouse of Western Europe and the Mediterranean, Mus musculus domesticus, is placed into the C57BL/6J (B6) inbred mouse genome, XY fetuses develop into hermaphrodites or females. It has been hypothesized that the testis-determining gene on the Y chromosome of M. m. domesticus (TdyDOM) interacts improperly with a putative B6/J recessive, testis-determining, autosomal gene (tda-1). The present study extended these earlier findings. The mating of B6 mice possessing the Y chromosome of M. m. domesticus (B6.YDom/Na; N6-N9) to females of the AKR, BALB/c, C3H/An, and C3H/He, but not SJL, strains resulted in aberrant testicular differentiation in day-14/15 F1 fetuses. The aberrant testes were characterized by a delay in testicular differentiation at the cranial and caudal poles of the gonad, i.e., the presence of a thin (or no) tunica albuginea and the presence of disorganized (or no) seminiferous tubules. Crossing B6.YDom male phenotypes with SJL females did not result in aberrant testicular differentiation, suggesting that the SJL strain possesses the dominant testis-determining, autosomal-1 allele, Tda-1. Studies using recombinant DNA probes specific for the murine Y chromosome have suggested that the SJL and AKR strains possess the M. m. domesticus Y chromosome. When Y chromosomes of the SJL and AKR strains were placed on the B6 background, aberrant testicular differentiation similar to tda-1 XY sex reversal occurred in only 1 out of 87 (1%) N4 day-14/15 fetuses possessing YSJL, but in 25 out of 45 (56%) N4 day-14/15 fetuses possessing YAKR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Vuorinen JA  Eskelinen O 《Heredity》2005,94(4):443-447
Wood lemming (Myopus schisticolor) populations are characterized by female biased sex ratios and cyclic variations in population size. Both of these characteristics are assumed to reduce genetic variation and thus affect the evolutionary adaptation of the species. We addressed these questions by studying the genetic structure of a wood lemming population from eastern Finland by isozyme markers during a 21-year period, which corresponds to 40-50 generations. Contingency tests showed that genotypic proportions conformed to Hardy-Weinberg equilibrium in each of the four sampling years. Among the temporal replicates, allele frequencies differed most by 0.14 and were not significant. Genetic variation was also stable and fairly high with a mean observed heterozygosity of H = 0.057. Variability in the Heinavesi population was higher than previously reported in wood lemming. The difference was mainly caused by variation at a phosphoglucomutase locus that was monomorphic in earlier studies. Significant linkage disequilibrium was observed in three of the comparisons but the disequilibrium did not appear consistently in all years. This pattern was also evidenced by the variance components, which indicated that selection favoured for specific allele pairs only in few subsamples.  相似文献   

12.
Summary An inherited genetic disorder causes XY embryos of the horse to develop as mares. On the basis of our study of 38 such mares, we have identified four grades or classes of XY sex reversal according to this scheme: class I, nearly normal female, of which some are fertile; class II, female with gonadal dysgenesis, normal mullerian development; calss III, intersex mare with gonadal dysgenesis, abnormal mullerian development, enlarged clitoris; class IV, virilized intersex characterized by high levels of testosterone. In general, class I and calss II mares were typed H-Y antigen-negative whereas class III and class IV mares were typed H-Y antigen-positive.  相似文献   

13.
14.
Summary This is the first report in the literature of siblings affected with Down syndrome; one sibling had a nondisjunction of chromosome 21 and the other a (21q;21q) translocation.  相似文献   

15.
Homozygous inactivation of Sox9 causes complete XY sex reversal in mice   总被引:10,自引:0,他引:10  
In the presence of the Y-chromosomal gene Sry, the bipotential mouse gonads develop as testes rather than as ovaries. The autosomal gene Sox9, a likely and possibly direct Sry target, can induce testis development in the absence of Sry. Sox9 is thus sufficient but not necessarily essential for testis induction. Mutational inactivation of one allele of SOX9/Sox9 causes sex reversal in humans but not in mice. Because Sox9(-/-) embryos die around Embryonic Day 11.5 (E11.5) at the onset of testicular morphogenesis, differentiation of the mutant XY gonad can be analyzed only ex vivo in organ culture. We have therefore conditionally inactivated both Sox9 alleles in the gonadal anlagen using the CRE/loxP recombination system, whereby CRE recombinase is under control of the cytokeratin 19 promoter. Analysis of resulting Sox9(-/-) XY gonads up to E15.5 reveals immediate, complete sex reversal, as shown by expression of the early ovary-specific markers Wnt4 and Foxl2 and by lack of testis cord and Leydig cell formation. Sry expression in mutant XY gonads indicates that downregulation of Wnt4 and Foxl2 is dependent on Sox9 rather than on Sry. Our results provide in vivo proof that, in contrast to the situation in humans, complete XY sex reversal in mice requires inactivation of both Sox9 alleles and that Sox9 is essential for testogenesis in mice.  相似文献   

16.
17.
18.
Summary Twenty-nine deletion breakpoints were mapped in 220 kb of the DXS164 locus relative to potential exons of the Duchenne and Becker muscular dystrophy gene. Four deletion junction fragments were isolated to acquire outlying Xp21 loci on both the terminal and centromere side of the DXS164 locus. The junction loci were used for chromosome walking, searches for DNA polymorphisms, and mapping against deletion and translocation breakpoints. Forty-four unrelated deletions were analyzed using the junction loci as hybridization probes to map the endpoints between cloned Xp21 loci. DNA polymorphisms from the DXS164 and junction loci were used to follow the segregation of a mutation in a family that represents a recombinant. Both the physical and genetic data point to a very large size for this X-linked muscular dystrophy locus.  相似文献   

19.
Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal   总被引:15,自引:0,他引:15  
Summary XY females (n=17) were analysed for mutations in SRY (sex-determining region Y gene), a gene that has recently been equated with the testis determining factor (TDF). SRY sequences were amplified by the polymerase chain reaction (PCR) and analysed by both the single strand conformational polymorphism assay (SSCP) and DNA sequencing. The DNA from two individuals gave altered SSCP patterns; only these two individuals showed any DNA sequence variation. In both cases, a single base change was found, one altering a tryptophan codon to a stop codon, the other causing a glycine to arginine amino acid substitution. These substitutions lie in the high mobility group (HMG)-related box of the SRY protein, a potential DNA-binding domain. The corresponding regions of DNA from the father of one individual and the paternal uncle of the other, were sequenced and found to be normal. Thus, in both cases, sex reversal is associated with de novo mutations in SRY. Combining this data with two previously published reports, a total of 40 XY females have now been analysed for mutations in SRY. The number of de novo mutations in SRY is now doubled to four, adding further strength to the argument that SRY is TDF.  相似文献   

20.
Electron microscopy of ultrathin serial sections has been used to study the origin and fate of a mass of fibrillar material (FM) during spermatogenesis in the wood lemming Myopus schisticolor. In the course of early pachytene, one of the two nucleoli completely disappears. The remaining nucleolus loses its granular portion and acquires a "round body" encased by the fibrillar moiety, and the restructuring is accompanied by the appearance of FM in the close vicinity of this nucleolus. During diakinesis, the FM increases in volume and density and selectively infiltrates the chromatin of the XY pair. The intermingling of sex chromosomes and FM is at its maximum in metaphase I, giving the XY chromatin a patchy appearance. The FM separates along with the chromatin during the ensuing anaphase I and is shed from the chromosomes during early telophase I. By the time the nuclear envelope is reconstituted, the FM is completely separated from the chromatin. It disintegrates in the spermatids. The FM could not be stained using the Ag-NOR technique. In the wood lemming, X and Y chromosomes show an end-to-end association without a detectable synaptonemal complex. The FM may contribute to the attachment of the two sex chromosomes to each other. Thus, the FM is considered to be a substitute for a chiasma, which normally guarantees proper segregation in anaphase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号