首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Lysophosphatidic acid (LPA) mediates diverse cellular responses through the activation of at least six LPA receptors – LPA1–6, but the interacting proteins and signaling pathways that mediate the specificity of these receptors are largely unknown. We noticed that LPA1 contains a PDZ binding motif (SVV) identical to that present in two other proteins that interact with the PDZ protein GIPC. GIPC is involved in endocytic trafficking of several receptors including TrkA, VEGFR2, lutropin and dopamine D2 receptors. Here we show that GIPC binds directly to the PDZ binding motif of LPA1 but not that of other LPA receptors. LPA1 colocalizes and coimmunoprecipitates with GIPC and its binding partner APPL, an activator of Akt signaling found on APPL signaling endosomes. GIPC depletion by siRNA disturbed trafficking of LPA1 to EEA1 early endosomes and promoted LPA1 mediated Akt signaling, cell proliferation, and cell motility. We propose that GIPC binds LPA1 and promotes its trafficking from APPL-containing signaling endosomes to EEA1 early endosomes and thus attenuates LPA-mediated Akt signaling from APPL endosomes.  相似文献   

2.
The neurotrophin receptor TrkA plays critical roles in the nervous system by recruiting signaling molecules that activate pathways required for the growth and survival of neurons. Here, we report APPL1 as a TrkA-associated protein. APPL1 and TrkA co-immunoprecipitated in sympathetic neurons. We have identified two routes through which this association can occur. APPL1 was isolated as a binding partner for the TrkA-interacting protein GIPC1 from rat brain lysate by mass spectrometry. The PDZ domain of GIPC1 directly engaged the C-terminal sequence of APPL1. This interaction provides a means through which APPL1 may be recruited to TrkA. In addition, the APPL1 PTB domain bound to TrkA, indicating that APPL1 may associate with TrkA independently of GIPC1. Isolation of endosomal fractions by high-resolution centrifugation determined that APPL1, GIPC1, and phosphorylated TrkA are enriched in the same fractions. Reduction of APPL1 or GIPC1 protein levels suppressed nerve growth factor (NGF)-dependent MEK, extracellular signal-regulated kinase, and Akt activation and neurite outgrowth in PC12 cells. Together, these results indicate that GIPC1 and APPL1 play a role in TrkA function and suggest that a population of endosomes bearing a complex of APPL1, GIPC1, and activated TrkA may transmit NGF signals.  相似文献   

3.
NGF initiates the majority of its neurotrophic effects by promoting the activation of the tyrosine kinase receptor TrkA. Here we describe a novel interaction between TrkA and GIPC, a PDZ domain protein. GIPC binds to the juxtamembrane region of TrkA through its PDZ domain. The PDZ domain of GIPC also interacts with GAIP, an RGS (regulators of G protein signaling) protein. GIPC and GAIP are components of a G protein-coupled signaling complex thought to be involved in vesicular trafficking. In transfected HEK 293T cells GIPC, GAIP, and TrkA form a coprecipitable protein complex. Both TrkA and GAIP bind to the PDZ domain of GIPC, but their binding sites within the PDZ domain are different. The association of endogenous GIPC with the TrkA receptor was confirmed by coimmunoprecipitation in PC12 (615) cells stably expressing TrkA. By immunofluorescence GIPC colocalizes with phosphorylated TrkA receptors in retrograde transport vesicles located in the neurites and cell bodies of differentiated PC12 (615) cells. These results suggest that GIPC, like other PDZ domain proteins, serves to cluster transmembrane receptors with signaling molecules. When GIPC is overexpressed in PC12 (615) cells, NGF-induced phosphorylation of mitogen-activated protein (MAP) kinase (Erk1/2) decreases; however, there is no effect on phosphorylation of Akt, phospholipase C-gamma1, or Shc. The association of TrkA receptors with GIPC and GAIP plus the inhibition of MAP kinase by GIPC suggests that GIPC may provide a link between TrkA and G protein signaling pathways.  相似文献   

4.
Pincher,a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes   总被引:16,自引:0,他引:16  
A central tenet of nerve growth factor (NGF) action that is poorly understood is its ability to mediate cytoplasmic signaling, through its receptor TrkA, that is initiated at the nerve terminal and conveyed to the soma. We identified an NGF-induced protein that we termed Pincher (pinocytic chaperone) that mediates endocytosis and trafficking of NGF and its receptor TrkA. In PC12 cells, overexpression of Pincher dramatically stimulated NGF-induced endocytosis of TrkA, unexpectedly at sites of clathrin-independent macropinocytosis within cell surface ruffles. Subsequently, a system of Pincher-containing tubules mediated the delivery of NGF/TrkA-containing vesicles to cytoplasmic accumulations. These vesicles selectively and persistently mediated TrkA-erk5 mitogen-activated protein kinase signaling. A dominant inhibitory mutant form of Pincher inhibited the NGF-induced endocytosis of TrkA, and selectively blocked TrkA-mediated cytoplasmic signaling of erk5, but not erk1/2, kinases. Our results indicate that Pincher mediates pinocytic endocytosis of functionally specialized NGF/TrkA endosomes with persistent signaling potential.  相似文献   

5.
By virtue of the presence of multiple protein–protein interaction and signaling domains, PDZ proteins play important roles in assembling protein complexes that participate in diverse cell biological processes. GIPC is a versatile PDZ protein that binds a variety of target proteins in different cell types. In previous studies we showed that, in epidermal melanocytes, GIPC interacts with newly synthesized melanosomal protein TRP1 in the Golgi region and proposed that this interaction may facilitate intracellular trafficking of TRP1. However, since GIPC contains a single PDZ domain and no other known protein interaction motifs, it is not known how GIPC–TRP1 interaction affects melanosome biogenesis and/or melanin pigmentation. Here, we show that in human primary melanocytes GIPC interacts with AKT-binding protein APPL (adaptor protein containing pleckstrin homology, leucine zipper and phosphotyrosine binding domains), which readily co-precipitates with newly synthesized TRP1. Knockdown of either GIPC or APPL inhibits melanogenesis by decreasing tyrosinase protein levels and enzyme activity. In melanocytes, APPL exists in a complex with GIPC and phospho-AKT. Inhibition of AKT phosphorylation using a PI3-kinase inhibitor abolishes this interaction and results in retardation TRP1 in the Golgi. These data suggest that interactions between TRP1–GIPC and GIPC–APPL–AKT provide a potential link between melanogenesis and PI3 kinase signaling.  相似文献   

6.
The neurotrophins NGF and NT3 collaborate to support development of sympathetic neurons. Although both promote axonal extension via the TrkA receptor, only NGF activates retrograde transport of TrkA endosomes to support neuronal survival. Here, we report that actin depolymerization is essential for initiation of NGF/TrkA endosome trafficking and that?a Rac1-cofilin signaling module associated with TrkA early endosomes supports their maturation to retrograde transport-competent endosomes. These actin-regulatory endosomal components are absent from NT3/TrkA endosomes, explaining the failure of NT3 to support retrograde TrkA transport and survival. The inability of NT3 to activate Rac1-GTP-cofilin signaling is likely due to the labile nature of NT3/TrkA complexes within the acidic environment of TrkA early endosomes. Thus, TrkA endosomes associate with actin-modulatory proteins to promote F-actin disassembly, enabling their maturation into transport-competent signaling endosomes. Differential control of this process explains how NGF but not NT3 supports retrograde survival of sympathetic neurons.  相似文献   

7.
Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.  相似文献   

8.
Upon activation by nerve growth factor (NGF), TrkA is internalized, trafficked and sorted through different endosomal compartments. Proper TrkA trafficking and sorting are crucial events as alteration of these processes hinders NGF-mediated functions. However, it is not fully known which proteins are involved in the trafficking and sorting of TrkA. Here we report that Nedd4-2 regulates the trafficking of TrkA and NGF functions in sensory neurons. Depletion of Nedd4-2 disrupts the correct sorting of activated TrkA at the early and late endosome stages, resulting in an accumulation of TrkA in these compartments and, as a result of the reduced trafficking to the degradative pathway, TrkA is either reverted to the cell surface through the recycling pathway or retrogradely transported to the cell body. In addition, Nedd4-2 depletion enhances TrkA signaling and the survival of NGF-dependent dorsal root ganglion neurons, but not those of brain-derived neurotrophic factor-dependent neurons. Furthermore, neurons from a knock-in mouse expressing a TrkA mutant that does not bind Nedd4-2 protein exhibit increased NGF-mediated signaling and cell survival. Our data indicate that TrkA trafficking and sorting are regulated by Nedd4-2 protein.  相似文献   

9.
APPL endosomes are a recently identified subpopulation of early endosomes characterized by the presence of two homologous Rab5 effector proteins APPL1 and APPL2. They exhibit only limited colocalization with EEA1, another Rab5 effector and a marker of the canonical early endosomes. Although APPL endosomes appear to play important roles in cargo trafficking and signal transduction, their protein composition and biochemical properties remain largely unknown. Here we employed membrane fractionation methods to characterize APPL endosomes biochemically. We demonstrate that they represent heterogeneous membrane structures which can be discriminated from the canonical EEA1-positive early endosomes by their partly different physical properties and a distinct migration pattern in the continuous density gradients. In search for other potential markers of APPL endosomes we identified Annexin A2 as an interacting partner of both APPL1 and APPL2. Annexin A2 is a Ca(2+) and phosphatidylinositol 4,5-bisphosphate binding protein, previously implicated in several endocytic steps. We show that Annexin A2 co-fractionates and colocalizes with APPL endosomes. Moreover, silencing of its expression causes solubilization of APPL2 from endosomes. Although Annexin A2 is not an exclusive marker of APPL endosomes, our data suggest that it has an important function in membrane recruitment of APPL proteins, acting in parallel to Rab5.  相似文献   

10.
Membrane protein sorting is mediated by interactions between proteins and lipids. One mechanism that contributes to sorting involves patches of lipids, termed lipid rafts, which are different from their surroundings in lipid and protein composition. Although the nerve growth factor (NGF) receptors, TrkA and p75(NTR) collaborate with each other at the plasma membrane to bind NGF, these two receptors are endocytosed separately and activate different cellular responses. We hypothesized that receptor localization in membrane rafts may play a role in endocytic sorting. TrkA and p75(NTR) both reside in detergent-resistant membranes (DRMs), yet they responded differently to a variety of conditions. The ganglioside, GM1, caused increased association of NGF, TrkA, and microtubules with DRMs, but a decrease in p75(NTR). When microtubules were induced to polymerize and attach to DRMs by in vitro reactions, TrkA, but not p75(NTR), was bound to microtubules in DRMs and in a detergent-resistant endosomal fraction. NGF enhanced the interaction between TrkA and microtubules in DRMs, yet tyrosine phosphorylated TrkA was entirely absent in DRMs under conditions where activated TrkA was detected in detergent-sensitive membranes and endosomes. These data indicate that TrkA and p75(NTR) partition into membrane rafts by different mechanisms, and that the fraction of TrkA that associates with DRMs is internalized but does not directly form signaling endosomes. Rather, by attracting microtubules to lipid rafts, TrkA may mediate other processes such as axon guidance.  相似文献   

11.
Rap1 transduces nerve growth factor (NGF)/tyrosine receptor kinase A (TrkA) signaling in early endosomes, leading to sustained activation of the p44/p42 mitogen-activated protein kinases (MAPK1/2). However, the mechanisms by which NGF, TrkA and Rap1 are trafficked to early endosomes are poorly defined. We investigated trafficking and signaling of NGF, TrkA and Rap1 in PC12 cells and in cultured rat dorsal root ganglion (DRG) neurons. Herein, we show a role for both microtubule- and dynein-based transport in NGF signaling through MAPK1/2. NGF treatment resulted in trafficking of NGF, TrkA and Rap1 to early endosomes in the perinuclear region of PC12 cells where sustained activation of MAPK1/2 was observed. Disruption of microtubules with nocodazole in PC12 cells had no effect on the activation of TrkA and Ras. However, it disrupted intracellular trafficking of TrkA and Rap1. Moreover, NGF-induced activation of Rap1 and sustained activation of MAPK1/2 were markedly suppressed. Inhibition of dynein activity through overexpression of dynamitin (p50) blocked trafficking of Rap1 and the sustained phase of MAPK1/2 activation in PC12 cells. Remarkably, even in the continued presence of NGF, mature DRG neurons that overexpressed p50 became atrophic and most (>80%) developing DRG neurons died. Dynein- and microtubule-based transport is thus necessary for TrkA signaling to Rap1 and MAPK1/2.  相似文献   

12.
The organization of the endocytic system into biochemically distinct subcompartments allows for spatial and temporal control of the strength and duration of signaling. Recent work has established that Akt cell survival signaling via the epidermal growth factor receptor (EGFR) occurs from APPL early endosomes that mature into early EEA1 endosomes. Less is known about receptor signaling from EEA1 endosomes. We show here that EGF-induced, proliferative signaling occurs from EEA1 endosomes and is regulated by the heterotrimeric G protein Gαs through interaction with the signal transducing protein GIV (also known as Girdin). When Gαs or GIV is depleted, activated EGFR and its adaptors accumulate in EEA1 endosomes, and EGFR signaling is prolonged, EGFR down-regulation is delayed, and cell proliferation is greatly enhanced. Our findings define EEA1 endosomes as major sites for proliferative signaling and establish that Gαs and GIV regulate EEA1 but not APPL endosome maturation and determine the duration and strength of proliferative signaling from this compartment.  相似文献   

13.
Fu X  Yang Y  Xu C  Niu Y  Chen T  Zhou Q  Liu JJ 《Molecular biology of the cell》2011,22(19):3684-3698
Brain-derived neurotrophic factor (BDNF) binds to its cell surface receptor TrkB to regulate differentiation, development, synaptic plasticity, and functional maintenance of neuronal cells. Binding of BDNF triggers TrkB dimerization and autophosphorylation, which provides docking sites for adaptor proteins to recruit and activate downstream signaling molecules. The molecular mechanisms underlying BDNF-TrkB endocytic trafficking crucial for spatiotemporal control of signaling pathways remain to be elucidated. Here we show that retrolinkin, a transmembrane protein, interacts with endophilin A1 and mediates BDNF-activated TrkB (pTrk) trafficking and signaling in CNS neurons. We find that activated TrkB colocalizes and interacts with the early endosome marker APPL1. Both retrolinkin and endophilin A1 are required for BDNF-induced dendrite development and acute extracellular signal-regulated kinase activation from early endosomes. Suppression of retrolinkin expression not only blocks BDNF-triggered TrkB internalization, but also prevents recruitment of endophilin A1 to pTrk vesicles trafficking through APPL1-positive endosomes. These findings reveal a novel mechanism for BDNF-TrkB to regulate signaling both in time and space through a specific membrane trafficking pathway.  相似文献   

14.
The uncleaved, pro-form of nerve growth factor (proNGF) functions as a pro-apoptotic ligand for the p75 neurotrophin receptor (p75NTR). However, some reports have indicated that proneurotrophins bind and activate Trk receptors. In this study, we have examined proneurotrophin receptor binding and activation properties in an attempt to reconcile these findings. We show that proNGF readily binds p75NTR expressed in HEK293T cells but does not interact with TrkA expressed under similar circumstances. Importantly, proNGF activates TrkA tyrosine phosphorylation, induces Erk and Akt activation, and causes PC12 cell differentiation. We show that inhibiting endocytosis or furin activity reduced TrkA activation induced by proNGF but not that induced by mature NGF and that proNGF123, a mutant form of NGF lacking dibasic cleavage sites in the prodomain, does not induce TrkA phosphorylation in PC12 cells. Therefore, endocytosis and cleavage appear to be prerequisites for proNGF-induced TrkA activity. We also found that proBDNF induces activation of TrkB in cerebellar granule neurons and that proBDNF cleavage by furin and metalloproteases facilitates this effect. Taken together, these data indicate that under physiological conditions, proneurotrophins do not directly bind or activate Trk receptors. However, endocytosis and cleavage of proneurotrophins produce processed forms of neurotrophins that are capable of inducing Trk activation.  相似文献   

15.
Neurotrophin receptors of the Trk family promote neuronal survival. The signal transduction of Trk receptors is regulated by endosomal trafficking. Monoubiquitination of receptor tyrosine kinases is an established signal for sorting of internalized receptors to late endosomes. The NGF receptor TrkA is sorted to late endosomes and undergoes ubiquitination, indicating a so far undefined regulatory role of proteasomal activity in the trafficking of TrkA. Surprisingly, we found that proteasomal inhibition alters the trafficking of TrkA from the late endosomal sorting pathway to the recycling pathway. Many neurodegenerative diseases are associated with impaired proteasomal activity. Thus, our study suggests that missorting of neurotrophic receptors might contribute to neuronal death in those neurodegenerative diseases that are known to be associated with impaired proteasomal function.  相似文献   

16.
To facilitate polarized vesicular trafficking and signal transduction, neuronal endosomes have evolved sophisticated mechanisms for pH homeostasis. NHE5 is a member of the Na+/H+ exchanger family and is abundantly expressed in neurons and associates with recycling endosomes. Here we show that NHE5 potently acidifies recycling endosomes in PC12 cells. NHE5 depletion by plasmid-based short hairpin RNA significantly reduces cell surface abundance of TrkA, an effect similar to that observed after treatment with the V-ATPase inhibitor bafilomycin. A series of cell-surface biotinylation experiments suggests that anterograde trafficking of TrkA from recycling endosomes to plasma membrane is the likeliest target affected by NHE5 depletion. NHE5 knockdown reduces phosphorylation of Akt and Erk1/2 and impairs neurite outgrowth in response to nerve growth factor (NGF) treatment. Of interest, although both phosphoinositide 3-kinase–Akt and Erk signaling are activated by NGF-TrkA, NGF-induced Akt-phosphorylation appears to be more sensitively affected by perturbed endosomal pH. Furthermore, NHE5 depletion in rat cortical neurons in primary culture also inhibits neurite formation. These results collectively suggest that endosomal pH modulates trafficking of Trk-family receptor tyrosine kinases, neurotrophin signaling, and possibly neuronal differentiation.  相似文献   

17.
Nerve growth factor (NGF) acts through its receptor, TrkA, to elicit the neuronal differentiation of PC12 cells through the action of extracellular signal-regulated kinase 1 (ERK1) and ERK2. Upon NGF binding, TrkA translocates and concentrates in cholesterol-rich membrane microdomains or lipid rafts, facilitating formation of receptor-associated signaling complexes, activation of downstream signaling pathways, and internalization into endosomes. We have investigated the mechanisms responsible for the localization of TrkA within lipid rafts and its ability to activate ERK1 and ERK2. We report that NGF treatment results in the translocation of activated forms of TrkA to lipid rafts, and this localization is important for efficient activation of the ERKs. TrkA is recruited and retained within lipid rafts through its association with flotillin, an intrinsic constituent of these membrane microdomains, via the adapter protein, c-Cbl associated protein (CAP). Mutant forms of CAP that lack protein interaction domains block TrkA localization to lipid rafts and attenuate ERK activation. Importantly, suppression of endogenous CAP expression inhibited NGF-stimulated neurite outgrowth from primary dorsal root ganglion neurons. These data provide a mechanism for the lipid raft localization of TrkA and establish the importance of the CAP adaptor protein for NGF activation of the ERKs and neuronal differentiation.  相似文献   

18.
Tyrosinase and tyrosinase-related proteins (TRPs) are a family of melanosomal membrane proteins involved in mammalian pigmentation. Whereas the melanogenic functions of TRPs are localized in their amino-terminal domains that reside within the lumen of melanosomes, the sorting and targeting of these proteins to melanosomes is mediated by signals in their cytoplasmic domains. To identify proteins that interact with the cytoplasmic tail of gp75 (TRP-1), the most abundant melanosomal membrane protein, we performed yeast two-hybrid screening of a melanocyte cDNA library. Here, we show that the cytoplasmic domain of gp75 interacts with a PDZ domain-containing protein. The gp75-interacting protein is identical to GIPC, an RGS (regulator of G protein signaling)/GAIP-interacting protein, and to SEMCAP-1, a transmembrane semaphorin-binding protein. Carboxyl-terminal amino acid residues, Ser-Val-Val, of gp75 are necessary and sufficient for interaction of gp75 with the single PDZ domain in GIPC. Although endogenous and transfected GIPCs bind efficiently to transiently expressed gp75, only a small amount of GIPC is found associated with gp75 at steady state. Using a strategy to selectively synchronize the biosynthesis of endogenous gp75, we demonstrate that only newly synthesized gp75 associates with GIPC, primarily in the juxtanuclear Golgi region. Our data suggest that GIPC/SEMCAP-1 plays a role in biosynthetic sorting of proteins, specifically gp75, to melanosomes.  相似文献   

19.
神经生长因子(NGF)结合细胞表面受体p75NTR(p75神经营养素受体)和TrkA(酪氨酸蛋白激酶A)后介导了细胞分化、细胞生存、凋亡、增殖和侵袭等多个重要的生理病理过程. TrKA能与细胞内多个蛋白质相互作用,但是由于NGF信号通路的复杂性,现在仍有必要发现与之相互作用的蛋白质以更准确地了解NGF信号通路. 本研究中我们通过酵母双杂交的方法筛选到了一个新的与TrKA相互作用的蛋白质——真核生物翻译起始因子4A1(eIF4A1),然后通过谷胱甘肽巯基转移酶融合蛋白沉降实验(GST-pull-down)和免疫共沉淀实验(Co-IP)证明了TrkA和eIF4A1的相互作用. 此外NGF能够增强TrkA和eIF4A1的相互作用. 在鉴定相互作用位点实验中,我们发现eIF4A1的氨基端结构域和TrkA的TK结构域参与了相互作用. TrkA和eIF4A1共定位在细胞膜上. NGF能够引起TrkA与泛素蛋白63位的赖氨酸连接,而eIF4A1与TrkA相互作用后能够抑制TrkA与泛素蛋白63位的赖氨酸连接. 综上,得出结论 eIF4A1通过与TrkA相互作用抑制其泛素化调控NGF信号通路.  相似文献   

20.
Inhibitors of proteasomes have been shown to affect endocytosis of multiple membrane receptors, in particular at the step of cargo sorting for lysosomal degradation. Here we demonstrate that the inhibition of proteasomes causes specific redistribution of an endosomal adaptor APPL1, which undergoes initial solubilization from APPL endosomes followed by clustering in the perinuclear region. MG132 treatment decreases APPL1 labeling of endosomes while the staining of the canonical early endosomes with EEA1 remains unaffected. Upon prolonged treatment with proteasome inhibitors, endogenous APPL1 localizes to the site of aggresome formation, with perinuclear APPL1 clusters encapsulated within a vimentin cage and co-localizing with aggregates positive for ubiquitin. The clustering of APPL1 is concomitant with increased ubiquitination and decreased solubility of this protein. We determined that the ubiquitin ligase Nedd4 enhances polyubiquitination of APPL1, and the ubiquitin molecules attached to APPL1 are linked through lysine-63. Taken together, these results add APPL1 to only a handful of endogenous cellular proteins known to be recruited to aggresomes induced by proteasomal stress. Moreover, our studies suggest that the proteasome inhibitors that are already in clinical use affect the localization, ubiquitination and solubility of APPL1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号