首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 357 毫秒
1.
In many longitudinal studies, it is of interest to characterize the relationship between a time-to-event (e.g. survival) and several time-dependent and time-independent covariates. Time-dependent covariates are generally observed intermittently and with error. For a single time-dependent covariate, a popular approach is to assume a joint longitudinal data-survival model, where the time-dependent covariate follows a linear mixed effects model and the hazard of failure depends on random effects and time-independent covariates via a proportional hazards relationship. Regression calibration and likelihood or Bayesian methods have been advocated for implementation; however, generalization to more than one time-dependent covariate may become prohibitive. For a single time-dependent covariate, Tsiatis and Davidian (2001) have proposed an approach that is easily implemented and does not require an assumption on the distribution of the random effects. This technique may be generalized to multiple, possibly correlated, time-dependent covariates, as we demonstrate. We illustrate the approach via simulation and by application to data from an HIV clinical trial.  相似文献   

2.
Xu  Zhenxing  Wu  Jinzhao 《Cluster computing》2022,25(2):1207-1220

In this paper, we propose a novel methodology of numerical approximation to analyze flow of a nonlinear embedded hybrid system. For proving that all trajectories of a hybrid system do not enter an unsafe region, many classic numerical approaches such as Euler, Runge–Kutta methods for ordinary differential equations (ODEs) are applied, whereas, there exist several defects, including so-called spurious solutions and ghost fixed points. Moreover, to approximate the proper solution as much as possible, step size selection becomes especially important. In comparison, integrating group preserving scheme (GPS) which calculates true circumstance getting rid of spurious solutions and ghost fixed points, with neural network model which reduces numerical errors, deep GPS (DGPS) eliminates aforementioned adverse factors and gains better numerical approximation using a large time step size. The experimental results show that the proposed method makes safety verification for an embedded hybrid system well.

  相似文献   

3.
We study a linear mixed effects model for longitudinal data, where the response variable and covariates with fixed effects are subject to measurement error. We propose a method of moment estimation that does not require any assumption on the functional forms of the distributions of random effects and other random errors in the model. For a classical measurement error model we apply the instrumental variable approach to ensure identifiability of the parameters. Our methodology, without instrumental variables, can be applied to Berkson measurement errors. Using simulation studies, we investigate the finite sample performances of the estimators and show the impact of measurement error on the covariates and the response on the estimation procedure. The results show that our method performs quite satisfactory, especially for the fixed effects with measurement error (even under misspecification of measurement error model). This method is applied to a real data example of a large birth and child cohort study.  相似文献   

4.
Cognition is not directly measurable. It is assessed using psychometric tests, which can be viewed as quantitative measures of cognition with error. The aim of this article is to propose a model to describe the evolution in continuous time of unobserved cognition in the elderly and assess the impact of covariates directly on it. The latent cognitive process is defined using a linear mixed model including a Brownian motion and time-dependent covariates. The observed psychometric tests are considered as the results of parameterized nonlinear transformations of the latent cognitive process at discrete occasions. Estimation of the parameters contained both in the transformations and in the linear mixed model is achieved by maximizing the observed likelihood and graphical methods are performed to assess the goodness of fit of the model. The method is applied to data from PAQUID, a French prospective cohort study of ageing.  相似文献   

5.
For patients on dialysis, hospitalizations remain a major risk factor for mortality and morbidity. We use data from a large national database, United States Renal Data System, to model time-varying effects of hospitalization risk factors as functions of time since initiation of dialysis. To account for the three-level hierarchical structure in the data where hospitalizations are nested in patients and patients are nested in dialysis facilities, we propose a multilevel mixed effects varying coefficient model (MME-VCM) where multilevel (patient- and facility-level) random effects are used to model the dependence structure of the data. The proposed MME-VCM also includes multilevel covariates, where baseline demographics and comorbidities are among the patient-level factors, and staffing composition and facility size are among the facility-level risk factors. To address the challenge of high-dimensional integrals due to the hierarchical structure of the random effects, we propose a novel two-step approximate EM algorithm based on the fully exponential Laplace approximation. Inference for the varying coefficient functions and variance components is achieved via derivation of the standard errors using score contributions. The finite sample performance of the proposed estimation procedure is studied through simulations.  相似文献   

6.
We consider the proportional hazards model in which the covariates include the discretized categories of a continuous time-dependent exposure variable measured with error. Naively ignoring the measurement error in the analysis may cause biased estimation and erroneous inference. Although various approaches have been proposed to deal with measurement error when the hazard depends linearly on the time-dependent variable, it has not yet been investigated how to correct when the hazard depends on the discretized categories of the time-dependent variable. To fill this gap in the literature, we propose a smoothed corrected score approach based on approximation of the discretized categories after smoothing the indicator function. The consistency and asymptotic normality of the proposed estimator are established. The observation times of the time-dependent variable are allowed to be informative. For comparison, we also extend to this setting two approximate approaches, the regression calibration and the risk-set regression calibration. The methods are assessed by simulation studies and by application to data from an HIV clinical trial.  相似文献   

7.
Summary The rapid development of new biotechnologies allows us to deeply understand biomedical dynamic systems in more detail and at a cellular level. Many of the subject‐specific biomedical systems can be described by a set of differential or difference equations that are similar to engineering dynamic systems. In this article, motivated by HIV dynamic studies, we propose a class of mixed‐effects state‐space models based on the longitudinal feature of dynamic systems. State‐space models with mixed‐effects components are very flexible in modeling the serial correlation of within‐subject observations and between‐subject variations. The Bayesian approach and the maximum likelihood method for standard mixed‐effects models and state‐space models are modified and investigated for estimating unknown parameters in the proposed models. In the Bayesian approach, full conditional distributions are derived and the Gibbs sampler is constructed to explore the posterior distributions. For the maximum likelihood method, we develop a Monte Carlo EM algorithm with a Gibbs sampler step to approximate the conditional expectations in the E‐step. Simulation studies are conducted to compare the two proposed methods. We apply the mixed‐effects state‐space model to a data set from an AIDS clinical trial to illustrate the proposed methodologies. The proposed models and methods may also have potential applications in other biomedical system analyses such as tumor dynamics in cancer research and genetic regulatory network modeling.  相似文献   

8.
Liu W  Wu L 《Biometrics》2007,63(2):342-350
Semiparametric nonlinear mixed-effects (NLME) models are flexible for modeling complex longitudinal data. Covariates are usually introduced in the models to partially explain interindividual variations. Some covariates, however, may be measured with substantial errors. Moreover, the responses may be missing and the missingness may be nonignorable. We propose two approximate likelihood methods for semiparametric NLME models with covariate measurement errors and nonignorable missing responses. The methods are illustrated in a real data example. Simulation results show that both methods perform well and are much better than the commonly used naive method.  相似文献   

9.
We propose a semiparametric mean residual life mixture cure model for right-censored survival data with a cured fraction. The model employs the proportional mean residual life model to describe the effects of covariates on the mean residual time of uncured subjects and the logistic regression model to describe the effects of covariates on the cure rate. We develop estimating equations to estimate the proposed cure model for the right-censored data with and without length-biased sampling, the latter is often found in prevalent cohort studies. In particular, we propose two estimating equations to estimate the effects of covariates in the cure rate and a method to combine them to improve the estimation efficiency. The consistency and asymptotic normality of the proposed estimates are established. The finite sample performance of the estimates is confirmed with simulations. The proposed estimation methods are applied to a clinical trial study on melanoma and a prevalent cohort study on early-onset type 2 diabetes mellitus.  相似文献   

10.
Titman AC 《Biometrics》2011,67(3):780-787
Methods for fitting nonhomogeneous Markov models to panel-observed data using direct numerical solution to the Kolmogorov Forward equations are developed. Nonhomogeneous Markov models occur most commonly when baseline transition intensities depend on calendar time, but may also occur with deterministic time-dependent covariates such as age. We propose transition intensities based on B-splines as a smooth alternative to piecewise constant intensities and also as a generalization of time transformation models. An expansion of the system of differential equations allows first derivatives of the likelihood to be obtained, which can be used in a Fisher scoring algorithm for maximum likelihood estimation. The method is evaluated through a small simulation study and demonstrated on data relating to the development of cardiac allograft vasculopathy in posttransplantation patients.  相似文献   

11.
Chen H  Wang Y 《Biometrics》2011,67(3):861-870
In this article, we propose penalized spline (P-spline)-based methods for functional mixed effects models with varying coefficients. We decompose longitudinal outcomes as a sum of several terms: a population mean function, covariates with time-varying coefficients, functional subject-specific random effects, and residual measurement error processes. Using P-splines, we propose nonparametric estimation of the population mean function, varying coefficient, random subject-specific curves, and the associated covariance function that represents between-subject variation and the variance function of the residual measurement errors which represents within-subject variation. Proposed methods offer flexible estimation of both the population- and subject-level curves. In addition, decomposing variability of the outcomes as a between- and within-subject source is useful in identifying the dominant variance component therefore optimally model a covariance function. We use a likelihood-based method to select multiple smoothing parameters. Furthermore, we study the asymptotics of the baseline P-spline estimator with longitudinal data. We conduct simulation studies to investigate performance of the proposed methods. The benefit of the between- and within-subject covariance decomposition is illustrated through an analysis of Berkeley growth data, where we identified clearly distinct patterns of the between- and within-subject covariance functions of children's heights. We also apply the proposed methods to estimate the effect of antihypertensive treatment from the Framingham Heart Study data.  相似文献   

12.
Commonly accepted intensity-dependent normalization in spotted microarray studies takes account of measurement errors in the differential expression ratio but ignores measurement errors in the total intensity, although the definitions imply the same measurement error components are involved in both statistics. Furthermore, identification of differentially expressed genes is usually considered separately following normalization, which is statistically problematic. By incorporating the measurement errors in both total intensities and differential expression ratios, we propose a measurement-error model for intensity-dependent normalization and identification of differentially expressed genes. This model is also flexible enough to incorporate intra-array and inter-array effects. A Bayesian framework is proposed for the analysis of the proposed measurement-error model to avoid the potential risk of using the common two-step procedure. We also propose a Bayesian identification of differentially expressed genes to control the false discovery rate instead of the ad hoc thresholding of the posterior odds ratio. The simulation study and an application to real microarray data demonstrate promising results.  相似文献   

13.
The rates of functional recovery after stroke tend to decrease with time. Time-varying Markov processes (TVMP) may be more biologically plausible than time-invariant Markov process for modeling such data. However, analysis of such stochastic processes, particularly tackling reversible transitions and the incorporation of random effects into models, can be analytically intractable. We make use of ordinary differential equations to solve continuous-time TVMP with reversible transitions. The proportional hazard form was used to assess the effects of an individual’s covariates on multi-state transitions with the incorporation of random effects that capture the residual variation after being explained by measured covariates under the concept of generalized linear model. We further built up Bayesian directed acyclic graphic model to obtain full joint posterior distribution. Markov chain Monte Carlo (MCMC) with Gibbs sampling was applied to estimate parameters based on posterior marginal distributions with multiple integrands. The proposed method was illustrated with empirical data from a study on the functional recovery after stroke.  相似文献   

14.
Maps depicting cancer incidence rates have become useful tools in public health research, giving valuable information about the spatial variation in rates of disease. Typically, these maps are generated using count data aggregated over areas such as counties or census blocks. However, with the proliferation of geographic information systems and related databases, it is becoming easier to obtain exact spatial locations for the cancer cases and suitable control subjects. The use of such point data allows us to adjust for individual-level covariates, such as age and smoking status, when estimating the spatial variation in disease risk. Unfortunately, such covariate information is often subject to missingness. We propose a method for mapping cancer risk when covariates are not completely observed. We model these data using a logistic generalized additive model. Estimates of the linear and non-linear effects are obtained using a mixed effects model representation. We develop an EM algorithm to account for missing data and the random effects. Since the expectation step involves an intractable integral, we estimate the E-step with a Laplace approximation. This framework provides a general method for handling missing covariate values when fitting generalized additive models. We illustrate our method through an analysis of cancer incidence data from Cape Cod, Massachusetts. These analyses demonstrate that standard complete-case methods can yield biased estimates of the spatial variation of cancer risk.  相似文献   

15.
Tree-based methods are popular nonparametric tools in studying time-to-event outcomes. In this article, we introduce a novel framework for survival trees and ensembles, where the trees partition the dynamic survivor population and can handle time-dependent covariates. Using the idea of randomized tests, we develop generalized time-dependent receiver operating characteristic (ROC) curves for evaluating the performance of survival trees. The tree-building algorithm is guided by decision-theoretic criteria based on ROC, targeting specifically for prediction accuracy. To address the instability issue of a single tree, we propose a novel ensemble procedure based on averaging martingale estimating equations, which is different from existing methods that average the predicted survival or cumulative hazard functions from individual trees. Extensive simulation studies are conducted to examine the performance of the proposed methods. We apply the methods to a study on AIDS for illustration.  相似文献   

16.
In this paper, we propose a frequentist model averaging method for quantile regression with high-dimensional covariates. Although research on these subjects has proliferated as separate approaches, no study has considered them in conjunction. Our method entails reducing the covariate dimensions through ranking the covariates based on marginal quantile utilities. The second step of our method implements model averaging on the models containing the covariates that survive the screening of the first step. We use a delete-one cross-validation method to select the model weights, and prove that the resultant estimator possesses an optimal asymptotic property uniformly over any compact (0,1) subset of the quantile indices. Our proof, which relies on empirical process theory, is arguably more challenging than proofs of similar results in other contexts owing to the high-dimensional nature of the problem and our relaxation of the conventional assumption of the weights summing to one. Our investigation of finite-sample performance demonstrates that the proposed method exhibits very favorable properties compared to the least absolute shrinkage and selection operator (LASSO) and smoothly clipped absolute deviation (SCAD) penalized regression methods. The method is applied to a microarray gene expression data set.  相似文献   

17.
A time-dependent measure, termed the rate ratio, was proposed to assess the local dependence between two types of recurrent event processes in one-sample settings. However, the one-sample work does not consider modeling the dependence by covariates such as subject characteristics and treatments received. The focus of this paper is to understand how and in what magnitude the covariates influence the dependence strength for bivariate recurrent events. We propose the covariate-adjusted rate ratio, a measure of covariate-adjusted dependence. We propose a semiparametric regression model for jointly modeling the frequency and dependence of bivariate recurrent events: the first level is a proportional rates model for the marginal rates and the second level is a proportional rate ratio model for the dependence structure. We develop a pseudo-partial likelihood to estimate the parameters in the proportional rate ratio model. We establish the asymptotic properties of the estimators and evaluate the finite sample performance via simulation studies. We illustrate the proposed models and methods using a soft tissue sarcoma study that examines the effects of initial treatments on the marginal frequencies of local/distant sarcoma recurrence and the dependence structure between the two types of cancer recurrence.  相似文献   

18.
Li L  Brown MB  Lee KH  Gupta S 《Biometrics》2002,58(3):601-611
This article is motivated by an application where subjects were dosed three times with the same drug and the drug concentration profiles appeared to be the lowest after the third dose. One possible explanation is that the pharmacokinetic (PK) parameters vary over time. Therefore, we consider population PK models with time-varying PK parameters. These time-varying PK parameters are modeled by natural cubic spline functions in the ordinary differential equations. Mean parameters, variance components, and smoothing parameters are jointly estimated by maximizing the double penalized log likelihood. Mean functions and their derivatives are obtained by the numerical solution of ordinary differential equations. The interpretation of PK parameters in the model and its flexibility are discussed. The proposed methods are illustrated by application to the data that motivated this article. The model's performance is evaluated through simulation.  相似文献   

19.
We develop a new method for variable selection in a nonlinear additive function-on-scalar regression (FOSR) model. Existing methods for variable selection in FOSR have focused on the linear effects of scalar predictors, which can be a restrictive assumption in the presence of multiple continuously measured covariates. We propose a computationally efficient approach for variable selection in existing linear FOSR using functional principal component scores of the functional response and extend this framework to a nonlinear additive function-on-scalar model. The proposed method provides a unified and flexible framework for variable selection in FOSR, allowing nonlinear effects of the covariates. Numerical analysis using simulation study illustrates the advantages of the proposed method over existing variable selection methods in FOSR even when the underlying covariate effects are all linear. The proposed procedure is demonstrated on accelerometer data from the 2003–2004 cohorts of the National Health and Nutrition Examination Survey (NHANES) in understanding the association between diurnal patterns of physical activity and demographic, lifestyle, and health characteristics of the participants.  相似文献   

20.
We investigate methods for regression analysis when covariates are measured with errors. In a subset of the whole cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies the classical measurement error model, but it may not have repeated measurements. In addition to the surrogate variables that are available among the subjects in the calibration sample, we assume that there is an instrumental variable (IV) that is available for all study subjects. An IV is correlated with the unobserved true exposure variable and hence can be useful in the estimation of the regression coefficients. We propose a robust best linear estimator that uses all the available data, which is the most efficient among a class of consistent estimators. The proposed estimator is shown to be consistent and asymptotically normal under very weak distributional assumptions. For Poisson or linear regression, the proposed estimator is consistent even if the measurement error from the surrogate or IV is heteroscedastic. Finite-sample performance of the proposed estimator is examined and compared with other estimators via intensive simulation studies. The proposed method and other methods are applied to a bladder cancer case-control study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号