首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This article describes the optimization of an experimental technique referred to as electric cell-substrate impedance sensing (ECIS) to monitor attachment and spreading of mammalian cells quantitatively and in real time. The method is based on measuring changes in AC impedance of small gold-film electrodes deposited on a culture dish and used as growth substrate. Based on experimental data and theoretical considerations we demonstrate that high-frequency capacitance measurements (f = 40 kHz) are most suited to follow the increasing surface coverage of the electrode due to cell spreading. The excellent time resolution of the method allowed an in-depth analysis of cell spreading kinetics under various experimental conditions. Using ECIS we studied the attachment and spreading of epithelial MDCK cells (strain II) on different protein coatings, and investigated the influence of divalent cations on spreading kinetics. We quantified the inhibitory effect of soluble peptides that mimic the recognition sequence of fibronectin and other extracellular matrix proteins (RGDS). We also applied the ECIS technique to monitor the detachment of confluent fibroblastic cell layers (WI38/VA-13) by means of these peptides.  相似文献   

2.
Using an electrical measurement known as electric cell-substrate impedance sensing (ECIS), we have recorded the dynamics of viral infections in cell culture. With this technique, cells are cultured on small gold electrodes where the measured impedance mirrors changes in attachment and morphology of cultured cells. As the cells attach and spread on the electrode, the measured impedance increases until the electrode is completely covered. Viral infection inducing cytopathic effect results in dramatic impedance changes, which are mainly due to cell death. In the current study, two different fish cell lines have been used: chinook salmonid embryonic (CHSE-214) cells infected with infectious pancreatic necrosis virus (IPNV) and epithelioma papulosum cyprini (EPC) carp cells infected with infectious hematopoeitic necrosis virus (IHNV). The impedance changes caused by cell response to virus are easily measured and converted to resistance and capacitance. An approximate linear correlation between log of viral titer and time of cell death was determined.  相似文献   

3.
Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells.  相似文献   

4.
De Blasio BF  Laane M  Walmann T  Giaever I 《BioTechniques》2004,36(4):650-4, 656, 658 passim
A new method combining optical and electrical impedance measurements is described that enables submicroscopic cell movements to be monitored. The cells are grown on small gold electrodes that are transparent to light. This modified electrical cell-substrate impedance sensor (ECIS) allows simultaneous microscopic recording of both growth and motility, thus enabling cell confluence on the electrodes to be systematically correlated to the impedance in regular time intervals of seconds and for extended periods of time. Furthermore, the technique provides an independent measure of monolayer cell densities that we compare to calculated values from a theoretical model. We have followed the attachment and spreading behavior of epithelial Madin-Darby canine kidney strain I (MDCK-I) cell cultures on microelectrodes for up to 40 h. The studies reveal a high degree of correlation between the measured resistance at 4 kHz and the corresponding cell confluence in 4- to 6-h intervals with typical linear cross-correlation factors of r equaling approximately 0.9. In summary, the impedance measured with the ECIS technique provides a good quantitative measure of cell confluence.  相似文献   

5.
An on-line and continuous technique based on electric cell-substrate impedance sensing (ECIS) was developed for measuring the concentration and time response function of fibroblastic V79 cells exposed to mercury chloride and 1,3,5-trinitrobenzene (TNB). Attachment, spreading and proliferation of V79 fibroblastic cells cultured on a microarray of small gold electrodes precoated with fibronectin were detected as resistance changes. The response function was derived to reflect the resistance change as a result of cell attachment, spreading, mitosis and cytotoxicity effect. Exposure of V79 cells to mercury chloride or TNB led to alterations in cell behavior, and therefore, chemical cytotoxicity was easily screened by measuring the response function of the attached and spread cells in the presence of inhibitor. The half inhibition concentration, the required concentration to achieve 50% inhibition, was obtained from the response function to provide information about cytotoxicity during the course of the assay. A simple mathematical model was developed to describe the responses of ECIS that were related to the attachment, spreading, and proliferation of V79 fibroblastic cells. The novel results of this paper are mainly characterized by the systematic study of several parameters including the cell number, detection limit, sensor sensitivity, and cytotoxicity, and they may motivate further research and study of ECIS sensors.  相似文献   

6.
This study describes the fabrication and performance of an endothelial cell compatible, optically thin, indium tin oxide (ITO) microimpedance biosensor. The biosensor was constructed by sputtering a thin insulating layer of silicon nitride (Si(3)N(4)) onto a 100 nm thick ITO layer. Indium tin oxide electrodes were formed by chemically etching 250 or 500 microm diameter holes through the Si(3)N(4) insulating layer. The exposed ITO electrode was electrically connected to an ITO counter electrode, approximately 2 cm(2) in area, via a 400 microL well containing cell culture media. A lock-in amplifier circuit monitored the impedance of porcine pulmonary artery endothelial cells (PPAECs) cultivated on the electrodes as a function of frequency, between 10 and 100 kHz, and as a function of time, at 5.62 kHz. The ITO-Si(3)N(4) microelectrodes provided consistent and repeatable impedance measurements to the attachment and spreading of PPAECs. In addition, the ITO-Si(3)N(4) electrodes were recyclable, robust, resistant to ethanol sterilization, and had a high optical transmittance. Most importantly, the ITO-Si(3)N(4) electrodes allowed optical access for dynamic cellular attachment imaging. The 5.62 kHz time dependent cellular impedance response to the drug Cytochalasin D further demonstrated the feasibility of using this electrode configuration for dynamic cellular impedance studies.  相似文献   

7.
Electrochemical impedance spectroscopy was tested to monitor the cell attachment and the biofilm proliferation in order to identify characteristic events induced on the metal surface by Gram-negative (Pseudomonas aeruginosa PAO1) and Gram-positive (Bacillus subtilis) bacteria strains. Electrochemical impedance spectra of AISI 304 electrodes during cell attachment and initial biofilm growth for both strains were obtained. It can be observed that the resistance increases gradually with the culture time and decreases with the biofilm detachment. So, the applicability of electric cell-substrate impedance sensing (ECIS) for studying the attachment and spreading of cells on a metal surface has been demonstrated. The biofilm formation was also characterized by the use of scanning electron microscopy and confocal laser scanning microscopy and COMSTAT image analysis. The electrochemical results roughly agree with the microscope image observations. The ECIS technique used in this study was used for continuous real-time monitoring of the initial bacterial adhesion and the biofilm growth. It provides a simple and non-expensive electrochemical method for in vitro assessment of the presence of biofilms on metal surfaces.  相似文献   

8.
Impedance measurements of cell-based sensors are a primary characterization route for detection and analysis of cellular responses to chemical and biological agents in real time. The detection sensitivity and limitation depend on sensor impedance characteristics and thus on cell patterning techniques. This study introduces a cell patterning approach to bind cells on microarrays of gold electrodes and demonstrates that single-cell patterning can substantially improve impedance characteristics of cell-based sensors. Mouse fibroblast cells (NIH3T3) are immobilized on electrodes through a lysine-arginine-glycine-aspartic acid (KRGD) peptide-mediated natural cell adhesion process. Electrodes are made of three sizes and immobilized with either covalently bound or physically adsorbed KRGD (c-electrodes or p-electrodes). Cells attached to c-electrodes increase the measurable electrical signal strength by 48.4%, 24.2%, and 19.0% for three electrode sizes, respectively, as compared to cells attached to p-electrodes, demonstrating that both the electrode size and surface chemistry play a key role in cell adhesion and spreading and thus the impedance characteristics of cell-based sensors. Single cells patterned on c-electrodes with dimensions comparable to cell size exhibit well-spread cell morphology and substantially outperform cells patterned on electrodes of other configurations.  相似文献   

9.
Correlated motion and oscillation of neighboring cells in vitro   总被引:2,自引:0,他引:2  
It has long been realized that fibroblastic and epithelial cells establish recognizable patterns in tissue culture. This behavior implies that neighboring cells interact with one another to produce organized populations. Interaction between cells that are separated by many intervening cells is also possible and is demonstrated here using a special configuration of a biosensor referred to as electric cell-substrate impedance sensing (ECIS). Normally the electrical impedance of a single electrode covered with a confluent cell layer is measured, and the morphological changes of the cells are reflected in the impedance. In this case the cells are cultured on two closely spaced electrodes whose impedances are measured independently as a function of time, and communication between the cell populations is revealed as a correlation between these two time series. We also report for the first time another striking manifestation of dynamic cell interaction, where confluent layers of Madin-Darby canine kidney cells (MDCK) on a single electrode are observed to oscillate in synchrony with a period of approximately 2.5 h.  相似文献   

10.
It has long been realized that fibroblastic and epithelial cells establish recognizable patterns in tissue culture. This behavior implies that neighboring cells interact with one another to produce organized populations. Interaction between cells that are separated by many intervening cells is also possible and is demonstrated here using a special configuration of a biosensor referred to as electric cell-substrate impedance sensing (ECIS). Normally the electrical impedance of a single electrode covered with a confluent cell layer is measured, and the morphological changes of the cells are reflected in the impedance. In this case the cells are cultured on two closely spaced electrodes whose impedances are measured independently as a function of time, and communication between the cell populations is revealed as a correlation between these two time series. We also report for the first time another striking manifestation of dynamic cell interaction, where confluent layers of Madin-Darby canine kidney cells (MDCK) on a single electrode are observed to oscillate in synchrony with a period of approximately 2.5 h.  相似文献   

11.
Metastatic dissemination of malignant cells requires degradation of basement membrane, attachment of tumor cells to vascular endothelium, retraction of endothelial junctions and finally invasion and migration of tumor cells through the endothelial layer to enter the bloodstream as a means of transport to distant sites in the host1-3. Once in the circulatory system, cancer cells adhere to capillary walls and extravasate to the surrounding tissue to form metastatic tumors4,5. The various components of tumor cell-endothelial cell interaction can be replicated in vitro by challenging a monolayer of human umbilical vein endothelial cells (HUVEC) with cancer cells. Studies performed with electron and phase-contrast microscopy suggest that the in vitro sequence of events fairly represent the in vivo metastatic process6. Here, we describe an electrical-impedance based technique that monitors and quantifies in real-time the invasion of endothelial cells by malignant tumor cells.Giaever and Keese first described a technique for measuring fluctuations in impedance when a population of cells grow on the surface of electrodes7,8. The xCELLigence instrument, manufactured by Roche, utilizes a similar technique to measure changes in electrical impedance as cells attach and spread in a culture dish covered with a gold microelectrode array that covers approximately 80% of the area on the bottom of a well. As cells attach and spread on the electrode surface, it leads to an increase in electrical impedance9-12. The impedance is displayed as a dimensionless parameter termed cell-index, which is directly proportional to the total area of tissue-culture well that is covered by cells. Hence, the cell-index can be used to monitor cell adhesion, spreading, morphology and cell density.The invasion assay described in this article is based on changes in electrical impedance at the electrode/cell interphase, as a population of malignant cells invade through a HUVEC monolayer (Figure 1). The disruption of endothelial junctions, retraction of endothelial monolayer and replacement by tumor cells lead to large changes in impedance. These changes directly correlate with the invasive capacity of tumor cells, i.e., invasion by highly aggressive cells lead to large changes in cell impedance and vice versa. This technique provides a two-fold advantage over existing methods of measuring invasion, such as boyden chamber and matrigel assays: 1) the endothelial cell-tumor cell interaction more closely mimics the in vivo process, and 2) the data is obtained in real-time and is more easily quantifiable, as opposed to end-point analysis for other methods.Download video file.(52M, mov)  相似文献   

12.
At present, establishment of a cell line from bivalve molluscs has been unsuccessful, and in vitro work is limited to primary cell cultures. We sought to improve attachment and spreading of cells of the eastern oyster, Crassostrea virginica, to aid primary cultures and to assist development of a bivalve cell line. Our objectives were to examine the effects of substrate on ventricle cell viability, attachment, and spreading by testing of collagen I, collagen IV, fibronectin, laminin, poly-D-lysine, and two types of uncoated tissue culture plates (Falcon and Corning). Experiments were conducted by incubating cells with the various substrates for 24 h and 5 d. An assay with a tetrazolium compound (MTS) was used to estimate cell numbers based on metabolic activity. Although differences in MTS assay values for substrate effect on cell viability were detected at 24 h and at 5 d (P > 0.0001), these were attributed to variations in metabolic activity due to different levels of attachment and spreading among treatments. Differences among treatments were detected in attachment and spreading at 24 h and 5 d (for all, P > 0.0001). At 24 h, poly-D-lysine induced the highest levels of attachment and spreading; no other factor performed better than the uncoated Falcon substrate, and collagen I performed most poorly. At 5 d, poly-D-lysine and the uncoated Corning substrate induced significantly higher levels of attachment and spreading than did the uncoated Falcons substrate, and collagen I performed most poorly. From these results, poly-D-lysine best promoted cell attachment and spreading. Fibronectin (at 24 h) and laminin (at 5 d) warrant further study. Along with improvements in medium composition, future work should involve screening of other attachment factors and combinations of factors, including those of bivalve origin.  相似文献   

13.
Apoptosis is a strictly regulated and genetically encoded cell 'suicide' that may be triggered by cytokines, depletion of growth factors or certain chemicals. It is morphologically characterized by severe alterations in cell shape like cell shrinkage and disintegration of cell-cell contacts. We applied a non-invasive electrochemical technique referred to as electric cell-substrate impedance sensing (ECIS) in order to monitor the apoptosis-induced changes in cell shape in an integral and quantitative fashion with a time resolution in the order of minutes. In ECIS the cells are grown directly on the surface of small gold-film electrodes (d = 2 mm). From readings of the electrical impedance of the cell-covered electrode, performed with non-invasive, low amplitude sensing voltages, it is possible to deduce alterations in cell-cell and cell-substrate contacts. To improve the sensitivity of this impedance assay we used endothelial cells derived from cerebral micro-vessels as cellular model systems since these are well known to express electrically tight intercellular junctions. Apoptosis was induced by cycloheximide (CHX) and verified by biochemical and cytological assays. The time course of cell shape changes was followed with unprecedented time resolution by impedance readings at 1 kHz and correlated with biochemical parameters. From impedance readings along a broad frequency range of 1-10(6) Hz we could assign the observed impedance changes to alterations on the subcellular level. We observed that disassembly of barrier-forming tight junctions precedes changes in cell-substrate contacts and correlates strongly with the time course of protease activation.  相似文献   

14.
Human platelet thrombospondin adsorbed on plastic promotes attachment and spreading of human G361 melanoma cells. Attachment is rapid, and spreading is maximal by 90 min with 60-90% of the attached cells spread. In contrast, thrombospondin promotes attachment but not spreading of human C32 melanoma cells, which attach and spread only on laminin substrates. The specificity of these interactions and the regions of the thrombospondin molecule involved in attachment and spreading were examined using proteolytic fragments of thrombospondin and by inhibition studies. The sulfated fucan, fucoidan, and monoclonal antibody A2.5, which is directed against the heparin-binding domain of thrombospondin, selectively inhibit spreading but only weakly inhibit attachment. Monoclonal antibodies against some other domains of thrombospondin, however, are potent inhibitors of attachment. The amino-terminal heparin-binding domain of thrombospondin does not promote attachment. Large fragments lacking the heparin-binding domain support attachment but not spreading of G361 cells. Attachment activity is lost following removal of the 18-kD carboxyl-terminal domain. These results suggest that at least two melanoma ligands are involved in cell attachment and spreading on thrombospondin. The carboxyl-terminal region and perhaps other regions of the molecule bind to receptor(s) on the melanoma surface that promote initial attachment but not cell spreading. Interaction of the heparin-binding domain with sulfated glycoconjugates on melanoma surface proteoglycans and/or sulfated glycolipids mediates spreading. Monoclonal antibodies A2.5 and C6.7 also reverse spreading of G361 cells growing on glass culture substrates, suggesting that binding to thrombospondin mediates attachment of these melanoma cells in culture.  相似文献   

15.
Biosensor systems which enable impedance measurements on adherent cell layers under label-free conditions are considered powerful tools for monitoring specific biological characteristics. A radio frequency identification-based sensor platform was adopted to characterize cultivation and differentiation of human bone marrow-derived multipotent stem cells (bmMSC) over periods of up to several days and weeks. Electric cell-substrate impedance sensing was achieved through fabrication of sensitive elements onto glass substrates which comprised two comb-shaped interdigitated gold electrodes covering an area of 1.8 mm×2 mm. The sensing systems were placed into the wells of a 6-well tissue culture plate, stacked onto a reader unit and could thus be handled and operated under sterile conditions. Continuous measurements were carried out with a sinusoidal voltage of 35 mV at a frequency of 10 kHz. After seeding of human bmMSC, this sensor was able to trace significant impedance changes contingent upon cell spreading and adhesion. The re-usable system was further proven suitable for live examination of cell-substrate attachment or continuous cell monitoring up to several weeks. Induction of either osteogenic or adipogenic differentiation could be validated in bmMSC cultures within a few days, in contrast to state-of-the-art protocols, which require several weeks of cultivation time. In the context of medical cell production in a GMP-compliant process, the here presented interdigitated electric microsensor technology allows the documentation of MSC quality in a fast, efficient and reliable fashion.  相似文献   

16.
Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells.  相似文献   

17.
Label-free and real-time monitoring of stem cells based on electrical impedance measurement is increasingly utilized for the quality control of the isolated stem cells to be used in stem cell-based tissue therapy or regenerative medicine. In spite of that the proliferative capacity and multipotency of stem cells are dependent on the type and age of the source tissue, however, the effect of the cell senescence on the impedance measurement of stem cells has not yet been studied. We investigated whether the senescence of adipose tissue-derived stem cells (ADSCs) can be detected by electrical impedance spectroscopy. For this, ADSCs at passage 9 and 31 were prepared and those genetic characteristics and growth kinetics were evaluated by quantitative polymerase chain reaction and cell counting. While the identified ADSCs were grown on the indium tin oxide electrodes, the impedance spectra were measured and interpreted by fitting analysis with an equivalent circuit model. ADSCs at passage 9 adhered on the electrode were small and spindle-shaped whereas the cells at passage 31 were flattened and larger than younger cells. At the beginning of culture time when the cell adhesion occurred, the resistance at 4.6 kHz of passage 31 cells was higher than passage 9 due to the larger size of older cells. Afterwards, the value of passage 9 cells increased higher than passage 31, since younger cells proliferated more than old cells. Therefore, the impedance measurement could characterize the proliferative capacity of ADSCs during expanded culture.  相似文献   

18.
Impedimetric analysis on adherently growing cells by micro-electrodes provides information related to cell number, cell adhesion and cellular morphology. In this study, cell-based biosensor with micro-electrode arrays (MEAs) was used to monitor the culture behavior of mammalian cancer cells and evaluate the chemosensitivity of anti-cancer drugs using electrochemical impedance spectroscopy. The platinum electrode arrays were fabricated by semiconductor technology to a 10 x 10 pattern, with diameter of 80 microm of each electrode. The human oesophageal cancer cell lines (KYSE 30) were cultured on the surface of the electrodes with the pre-coated fibronectin, the connecting protein for tumor cells metastasis and adhesion in extracellular matrix. Morphology changes during cells adhesion, spreading, and proliferation can be detected by impedimetric analysis in a real time and non-invasive way. Cisplatin was added to cells for potential drug screening applications. The experimental results show that this well-known anti-cancer drug has characteristic chemosensitivity effects on KYSE 30 cells which can be detected by MEA. Thus, this cell-based chip provides a useful analytical method for cancer research.  相似文献   

19.
This paper describes the improvement in the use of electrical impedance spectroscopy (EIS) for animal cell concentration monitoring of adherent cultures by using a four-electrode configuration instead of the commonly used two-electrode configuration. This four-electrode configuration prevents cell concentration measurements from external masking effects such as the electrode covering ratio, the degree of cellular adherence to the electrodes and the impedance of the measuring electrodes. Cell concentration was monitored using both four-electrode and two-electrode configurations in vero cell and human mesenchymal stem cell cultures in order to analyze the attained improvement in two cell lines with opposite growth characteristics. The experiments performed with vero cell cultures evidenced that the four-electrode configuration enables cell concentration measurements along all culture phases, even once the culture reached cell confluence (over 2×10(5) cells/cm(2)), confirming that this configuration is less effected by all the external influences. The experiments performed with human mesenchymal stem cells demonstrated good sensitivity of the measurement at very low cell concentrations, as well as a very good robustness all over the 12-days experiment. Finally, off-line cell measurements during cell cultures proved good accuracy of impedance measurements carried out with a four-electrode configuration along all cell growth phases, enabling determination of relevant cell growth parameters.  相似文献   

20.
The response of cells to a chemical or biological agent in terms of their impedance changes in real-time is a useful mechanism that can be utilized for a wide variety of biomedical and environmental applications. The use of a single-cell-based analytical platform could be an effective approach to acquiring more sensitive cell impedance measurements, particularly in applications where only diminutive changes in impedance are expected. Here, we report the development of an on-chip cell impedance biosensor with two types of electrodes that host individual cells and cell populations, respectively, to study its efficacy in detecting cellular response. Human glioblastoma (U87MG) cells were patterned on single- and multi-cell electrodes through ligand-mediated natural cell adhesion. We comparatively investigated how these cancer cells on both types of electrodes respond to an ion channel inhibitor, chlorotoxin (CTX), in terms of their shape alternations and impedance changes to exploit the fine detectability of the single-cell-based system. The detecting electrodes hosting single cells exhibited a significant reduction in the real impedance signal, while electrodes hosting confluent monolayer of cells showed little to no impedance change. When single-cell electrodes were treated with CTX of different doses, a dose-dependent impedance change was observed. This enables us to identify the effective dose needed for this particular treatment. Our study demonstrated that this single-cell impedance system may potentially serve as a useful analytical tool for biomedical applications such as environmental toxin detection and drug evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号