首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 2beta-[3'-(substituted benzyl)isoxazol-5-yl]- and 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes were prepared and evaluated for affinities at dopamine, serotonin, and norepinephrine transporters using competitive radioligand binding assays. The 2beta-[3'-(substituted benzyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (3a-h) showed high binding affinities for the dopamine transporter (DAT). The IC(50) values ranged from 5.9 to 22nM. On the other hand, the 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (4a-h), with IC(50) values ranging from 65 to 173nM, were approximately 3- to 25-fold less potent than the corresponding 2beta-[3'-(substituted benzyl)isoxazol]tropanes. All tested compounds were selective for the DAT relative to the norepinephrine transporter (NET) and serotonin transporter (5-HTT). 3Beta-(4-Methylphenyl)-2beta-[3'-(4-fluorobenzyl)isoxazol-5-yl]tropane (3b) with IC(50) of 5.9nM at the DAT and K(i)s of 454 and 113nM at the NET and 5-HTT, respectively, was the most potent and DAT-selective analog. Molecular modeling studies suggested that the rigid conformation of the isoxazole side chain in 4a-h might play an important role on their low DAT binding affinities.  相似文献   

2.
Preparation of cocaine analogues has been aimed largely at development of stable compounds with high affinity and selectivity for the dopamine transporter (DAT). We now report the synthesis and monoamine transporter affinity of 10 new 2beta-carbomethoxy-3beta-[4-(substituted thiophenyl)]phenyltropanes. Among these, compound 4b exhibited very high affinity for the serotonin transporter (SERT: K(i)=17 pM) and good selectivity over dopamine (DAT: 710-fold) and norepinephrine transporters (NET: 11,100-fold).  相似文献   

3.
A series of front bridged tricyclic 3beta-(4'-halo or 4'-methyl)phenyltropanes bearing methylene or carbomethoxymethylene on the bridge to the 2beta-position was synthesized, and their binding affinities were determined in cells transfected to express human norepinephrine transporter (NET), serotonin transporter (SERT), and dopamine transporter (DAT) via competition binding assays. All compounds studied in this series exhibit a moderate to high potency at all three transporters with SERT or DAT selectivity. 3beta-(4'-iodo)phenyltropane bearing methylene on the bridge to the 2beta-position (24) presents a particularly attractive pharmacological profile, with very high SERT affinity (K(i) = 0.09 nM) and selectivity versus NET (65-fold) and DAT (94-fold).  相似文献   

4.
A series of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-(substituted benzyl) piperidines with substituents at the ortho and meta positions in the aromatic ring of the N-benzyl side chain were synthesized and their affinities and selectivities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) were determined. One analogue, 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl)piperidine (the C(2)-trifluoromethyl substituted compound), has been found to act as an allosteric modulator of hSERT binding and function. It had little affinity for any of the transporters. Several compounds showed affinity for the DAT in the low nanomolar range and displayed a broad range of SERT/DAT selectivity ratios and very little affinity for the NET. The pharmacological tools provided by the availability of compounds with varying transporter affinity and selectivity could be used to obtain additional information about the properties a compound should have to act as a useful pharmacotherapeutic agent for cocaine addiction and help unravel the pharmacological mechanisms relevant to stimulant abuse.  相似文献   

5.
A series of 3-[2-(diarylmethoxyethylidene)]-8-alkylaryl-8-azabicyclo[3.2.1]octanes was synthesized and the binding affinities of the compounds were determined at the dopamine and serotonin transporters. The 8-phenylpropyl analogues 8a (K(i)=4.1 nM) and 8b (K(i)=3.7 nM) were the most potent compounds of the series with binding affinities 3 times greater than GBR-12909. In addition, 8a (SERT/DAT=327) was over 300-fold more selective for the dopamine transporter than the serotonin transporter.  相似文献   

6.
The 3'-iodo positional isomer of 2-beta-carbomethoxy-3-beta-(4'-iodophenyl)tropane (beta-CIT) and other 3'-substituted analogs were synthesized and evaluated for binding to monoamine transporters in rat forebrain and membranes of cell lines selectively expressing human transporter genes. All 3'-substituted compounds displayed affinity for both serotonin (SERT) and dopamine (DAT), but much less for norepinephrine transporters (NET), with selectivity for rat (r) or human (h) SERT over NET, but only 3'-iodo-substituted phenyltropanes showed selectivity for SERT versus DAT. The 3'-iodo, N-methyl analog of beta-CIT (7) displayed 29-fold selectivity and high affinity for hSERT (K(i) =9.6 nM) over hDAT (K(i) =279 nM), and its nor-congener (8) showed even higher hSERT potency (K(i) =1.2 nM) and selectivity over DAT (415-fold).  相似文献   

7.
A series of 16 new 2beta-carbomethoxy-3beta-[aryl or heteroaryl]phenyltropane derivatives was synthesized and evaluated for binding to monoamine transporters. Most of the compounds exhibited nanomolar affinity for the serotonin transporter (SERT). Four compounds presented a particularly attractive pharmacological profile, with very high SERT affinity (K(i) 0.15-0.5 nM) and selectivity versus the dopamine transporter of 25- to 77-fold.  相似文献   

8.
The synthesis and structure–activity relationships of 8-substituted-3-[2-(diarylmethoxyethylidenyl)]-8-azabicyclo[3.2.1]octane derivatives were investigated at the dopamine transporter (DAT), the serotonin transporter (SERT) and norepinephrine transporter (NET). The rigid ethylidenyl-8-azabicyclic[3.2.1]octane skeleton imparted modestly stereoselective binding and uptake inhibition at the DAT. Additional structure–activity studies provided a transporter affinity profile that was reminiscent of the structure–activity of GBR 12909. From these studies, the 8-cyclopropylmethyl group has been identified as a unique moiety that imparts high SERT/DAT selectivity. In this study the 8-cyclopropylmethyl derivative 22e (DAT Ki of 4.0 nM) was among the most potent compounds of the series at the DAT and was the most DAT selective ligand of the series (SERT/DAT: 1060). Similarly, the 8-chlorobenzyl derivative 22g (DAT Ki of 3.9 nM) was found to be highly selective for the DAT over the NET (NET/DAT: 1358).  相似文献   

9.
A series of diarylmethoxymethyltropane-GBR hybrid analogues with all three possible stereochemical orientations at C3 were synthesized and evaluated at dopamine and serotonin transporters. The 3alpha derivatives were found to be the most potent compounds with the 3alpha-di(4-fluorophenyl)methoxymethyl-8-(3-phenylpropyl)-8-azabicyclo[3.2.1]octane 15b (Ki = 5 nM) being the most potent compound of the series. The corresponding 3-di(4-fluorophenyl)-methoxymethyl-8-(3-phenylpropyl)-8-azabicyclo[3.2.1]oct-2-ene 12b (Ki = 12 nM) was slightly less potent than the 3alpha-analogue, while the 3beta-di(4-fluorophenyl)methoxymethyl-8-(3-phenylpropyl)-8-azabicyclo[3.2.1]octane 23b (Ki = 78 nM) exhibited only modest affinity for the dopamine transporter. Only the 3alpha-analogue 15b (SERT/DAT = 48) exhibited higher SERT/DAT selectivity than GBR 12909. These results indicate that the dopamine transporter can tolerate some variability in proximity of the benzhydryl ether to the basic nitrogen atom of the tropane without loss in potency. In addition, the structure-activity data for these tropane-GBR 12909 hybrid analogues support previous findings that the stereochemical and conformational effects imparted by unsaturation at C3 are important for dopamine transporter selectivity over the serotonin transporter.  相似文献   

10.
3Beta-(5-indolyl)-8-azabicyclo[3.2.1]octanes display potent binding affinity for both the dopamine and serotonin transporters, while certain 3beta-(4-(2-pyrrolyl)phenyl)-8-azabicyclo[3.2.1]octanes selectively bind to the serotonin transporter.  相似文献   

11.
A series of new 3-aryl-tropanes have been synthesized, and their affinities and selectivities were evaluated for monoamine transporters. (1RS)-3-(Fluoren-2-yl)-8-methyl-8-azabicyclo[3.2.1]oct-2-ene exhibited the highest affinity for the human serotonin transporter (IC50 = 14.5 nM). It is also 52-fold and 230-fold selective over human dopamine and norepinephrine transporters, respectively.  相似文献   

12.
Abnormal dopamine signaling in brain has been implicated in several conditions such as cocaine abuse, Parkinson's disease and depression. Potent and selective dopamine transporter inhibitors may be useful as pharmacological tools and therapeutic agents. Simple substituted pyridines were discovered as novel dopamine transporter (DAT) inhibitors through pharmacophore-based 3D-database search. The most potent compound 18 has a K(i) value of 79 nM in inhibition of WIN35,248 binding to dopamine transporter and 255 nM in inhibition of dopamine reuptake, respectively, as potent as cocaine. Preliminary structure-activity relationship studies show that the geometry and the nature of the substituents on the pyridine ring determine the inhibitory activity and selectivity toward the three monoamine transporters. The substituted pyridines described herein represent a class of novel DAT inhibitors with simple chemical structures and their discovery provides additional insights into the binding site of DAT.  相似文献   

13.
A series of 3alpha-(4-substituted)nortropane-2beta-carboxylic acid methyl esters was synthesized and evaluated for the ability to inhibit radioligand binding at the dopamine, serotonin, and norepinephrine transporters. 3alpha-(4-Methylphenyl)nortropane-2beta-carboxylic acid methyl ester (4c) was found to be selective and highly potent for the norepinephrine transporter (NET) relative to the dopamine and serotonin transporters.  相似文献   

14.
A series of 3-carbomethoxy-4-(aryl-substituted)piperidines with various aryl groups were synthesized and examined for binding and reuptake inhibition at the human dopamine transporter, the human serotonin transporter, and the human norepinephrine transporter. The binding potency and reuptake inhibition efficacy was compared with that of (-)-cocaine to determine the significance of removing the two-carbon bridge of the cocaine nucleus on the inhibition of transporter binding and reuptake. Of the transporters examined, the substituted piperidines were relatively selective for the human dopamine transporter. In all cases examined, the cis-diastereomer of the 3-carbomethoxy-4-(aryl-substituted)piperidine was observed to be a more potent inhibitor of the human dopamine transporter than the trans diastereomer. Based on the K(i) (binding) and IC(50) (reuptake inhibition) values obtained, the most potent inhibitor of the series was cis-3-carbomethoxy-4-(4'-chlorophenyl)piperidine, and this compound suppressed spontaneous- and cocaine-induced stimulation in non-habituated male Swiss-Webster mice. The conclusion is that substantial portions of the cocaine structure can be dissected away to provide compounds with significant binding and reuptake inhibition of the human dopamine transporter.  相似文献   

15.
The effects of structural modifications of 2 beta-carbomethoxy-3 beta-phenyl tropane analogues were evaluated on in vitro affinity to the dopamine (DAT) and serotonin (5-HTT) transporters in rat brain tissue. The introduction of a large alkyl group at the 4'-position of the phenyl ring, affording 2 beta-carbomethoxy-3 beta-(4'-alkylphenyl) tropane, diminished the affinity for the DAT whereas moderate 5-HTT affinity was obtained. The introduction of an iodine at the 3'-position of the 4'-alkylphenyl, affording 2 beta-carbomethoxy-3 beta-(3'-iodo-4'-alkylphenyl) tropane, and N-demethylation, affording 2 beta-carbomethoxy-3 beta-(3'-iodo-4'-alkylphenyl) nortropane, improved affinity and specificity for the 5-HTT. It could be assumed from these results that the combination of these three modifications of tropane structure yielded highly selective compounds for the 5-HTT. Of the new compounds synthesized, the most selective cocaine derivative, 2 beta-carbomethoxy-3 beta-(3'-iodo-4'-isopropylphenyl) nortropane (8d) labeled with iodine-123 or carbon-11, could be a potential ligand for exploration of the 5-HT transporter by SPET or PET.  相似文献   

16.
Our earlier effort to develop constrained analogues of flexible piperidine derivatives for monoamine transporters led to the development of a series of 3,6-disubstituted piperidine derivatives, and a series of 4,8-disubstituted 1,4-diazabicyclo[3.3.1]nonane derivatives. In further structure-activity relationship (SAR) studies on these constrained derivatives, several novel analogues were developed where an exocyclic hydroxyl group was introduced on the N-alkyl-aryl side chain. All synthesized derivatives were tested for their affinities for the dopamine transporter (DAT), serotonin (5-HT) transporter (SERT), and norepinephrine transporter (NET) in the brain by measuring their potency in inhibiting the uptake of [(3)H]DA, [(3)H]5-HT, and [(3)H]NE, respectively. Compounds were also tested for their binding potency at the DAT by their ability to inhibit binding of [(3)H]WIN 35,428. The results indicated that position of the hydroxyl group on the N-alkyl side chain is important along with the length of the side chain. In general, hydroxyl derivatives derived from more constrained bicyclic diamines exhibited greater selectivity for interaction with DAT compared to the corresponding 3,6-disubstituted diamines. In the current series of molecules, compound 11b with N-propyl side chain with the hydroxyl group attached in the benzylic position was the most potent and selective for DAT (K(i)=8.63nM; SERT/DAT=172 and NET/DAT=48.4).  相似文献   

17.
A series of racemic 6-hydroxy and carboalkoxy substituted-4('),4"-difluorobenztropines was synthesized and evaluated for binding at the dopamine (DAT), the serotonin (SERT), the norepinephrine (NET) transporters, and the muscarinic M1 receptor. Each of the analogues displaced [(3)H]WIN 35,428 (DAT) with a range of affinities from 5.81 to 175 nM and [(3)H]pirenzepine (M1), with a range of affinities ( K(i)= -8430 nM). Binding affinities at the SERT and the NET were generally low.  相似文献   

18.
CNS diseases such as Parkinson, schizophrenia, and attention deficit hyperactivity disorder (ADHD) are characterized by a significant alteration of dopamine transporter (DAT) density. Thus, the development of compounds that are able to selectively interact with DAT is of great interest. Herein we describe the design and synthesis of a new set of 3-aza-6,8-dioxabicyclo[3.2.1]octanes having a tropane-like structure with additional heteroatoms at positions 3 and 6. The compounds were evaluated for their in vitro receptor binding properties toward human dopamine (hDAT) and serotonin (hSERT) transporters using [3H]WIN35,428 and [3H]citalopram as specific radioligands, respectively. Biological assays revealed that some compounds having the N-3 atom substituted with aryl groups possess significant affinity and selectivity for monoamine transporters, and in particular, compound 5d displayed an IC50 of 21 nM toward DAT, and a good selectivity toward SERT (IC50=1042 nM). These results suggest that 3-aryl-3-aza-6,8-dioxabicyclo[3.2.1]octanes may represent a new class of DAT ligands.  相似文献   

19.
A series of optically pure phenyl-and non-phenyl-substituted 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(2-hydroxypropyl)piperazines was synthesized and their binding affinity for dopamine transporter (DAT) was investigated. The analogues with a hydroxyl group in the S configuration were more selective for the DAT over the serotonin transporter (SERT) than the corresponding R enantiomers. Compound (+)-11 showed high affinity and selectivity for DAT over the SERT and, therefore, is a potential candidate for the development of a long-acting cocaine abuse therapeutic agent.  相似文献   

20.
In our effort to further understand interaction of novel pyran derivatives with monoamine transporters, we have designed, synthesized, and biologically characterized side-chain-extended derivatives of our earlier developed cis- and trans-(6-benzhydryl-tetrahydro-pyran-3-yl)-benzylamine derivatives. Both 3- and 6-position extensions were explored. All synthesized derivatives were tested for their affinities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) in the brain by measuring their potency in inhibiting the uptake of [(3)H]DA, [(3)H]5-HT, and [(3)H]NE, respectively. Compounds were also tested for their binding affinity at the DAT by their ability to inhibit binding of [(3)H]WIN 35, 428. The results indicated that extension at the 3-position resulted in loss of activity compared to the original compound I. On the other hand, extension at the 6-position resulted in improvement of activity in the compound cis-12 by 2-fold over the parent compound I indicating favorable interaction. In addition, two glycoside derivatives were designed, synthesized, and biologically characterized. The glycosidic trans-isomer 24 exhibited highest potency for the NET in the current series of compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号