首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The competition between filaments and floc formers in activated sludge has been historically described using kinetic selection. However, recent studies have suggested that bacterial storage may also be an important factor in microbial selection, since the dynamic nature of substrate flows into wastewater treatment plants elicit transient responses from microorganisms. Respirometry-based kinetic selection should thus be reevaluated by considering cell storage, and a more reliable method should be developed to include bacterial storage in the analysis of growth of filaments and floc formers in activated sludge. In this study, we applied substrate uptake tests combined with metabolic modeling to determine the growth rates, yields and maintenance coefficients of bulking and non-bulking activated sludge developed in lab scale reactors under feast and famine conditions. The results of quantitative fluorescence in situ hybridization (FISH) showed that the filaments Eikelboom Type 1851, Type 021N, and Thiothrix nivea were dominant in bulking sludge, comprising 42.0 % of mixed liquor volatile suspended solids (MLVSS), with 61.6% of the total filament length extending from flocs into bulk solution. Only low levels of Type 1851 filament length (4.9% of MLVSS) occurred in non-bulking sludge, 83.0% of which grew inside the flocs. The kinetic parameters determined from the substrate uptake tests were consistent with those from respirometry and showed that filamentous bulking sludge had lower growth rates and maintenance coefficients than non-bulking sludge. These results provide support for growth kinetic differences in explaining the competitive strategy of filamentous bacteria.  相似文献   

2.
To examine the relationship between activated-sludge bulking and levels of specific filamentous bacteria, we developed a statistics-based quantification method for estimating the biomass levels of specific filaments using 16S rRNA-targeted fluorescent in situ hybridization (FISH) probes. The results of quantitative FISH for the filament Sphaerotilus natans were similar to the results of quantitative membrane hybridization in a sample from a full-scale wastewater treatment plant. Laboratory-scale reactors were operated under different flow conditions to develop bulking and nonbulking sludge and were bioaugmented with S. natans cells to stimulate bulking. Instead of S. natans, the filament Eikelboom type 1851 became dominant in the reactors. Levels of type 1851 filaments extending out of the flocs correlated strongly with the sludge volume index, and extended filament lengths of approximately 6 x 10(8) micro m ml(-1) resulted in bulking in laboratory-scale and full-scale activated-sludge samples. Quantitative FISH showed that high levels of filaments occurred inside the flocs in nonbulking sludge, supporting the "substrate diffusion limitation" hypothesis for bulking. The approach will allow the monitoring of incremental improvements in bulking control methods and the delineation of the operational conditions that lead to bulking due to specific filaments.  相似文献   

3.
Summary Laboratory scale activated sludge systems were operated under regimes of continuous or intermittent feeding of substrate. It was found that continuously fed systems repeatedly resulted in the development of filamentous bacteria and bulking of the sludge. Intermittently fed systems did form good settling sludges, without filamentous bacteria. The same results were found using different sludge loadings and different concentrations of mixed liquor suspended solids. High dissolved oxygen concentration did not prevent bulking in continuous systems while low dissolved oxygen concentration resulted in bulking with intermittently fed systems. It was found that the substrate removal rate of intermittently operated systems was always higher than for continuously fed systems. The hypothesis is formulated that intermittent feeding leads to higher substrate removal rates by floc forming bacteria and their predominance in intermittently fed systems, which can be compared to plug flow systems.  相似文献   

4.
To examine the relationship between activated-sludge bulking and levels of specific filamentous bacteria, we developed a statistics-based quantification method for estimating the biomass levels of specific filaments using 16S rRNA-targeted fluorescent in situ hybridization (FISH) probes. The results of quantitative FISH for the filament Sphaerotilus natans were similar to the results of quantitative membrane hybridization in a sample from a full-scale wastewater treatment plant. Laboratory-scale reactors were operated under different flow conditions to develop bulking and nonbulking sludge and were bioaugmented with S. natans cells to stimulate bulking. Instead of S. natans, the filament Eikelboom type 1851 became dominant in the reactors. Levels of type 1851 filaments extending out of the flocs correlated strongly with the sludge volume index, and extended filament lengths of approximately 6 × 108 μm ml−1 resulted in bulking in laboratory-scale and full-scale activated-sludge samples. Quantitative FISH showed that high levels of filaments occurred inside the flocs in nonbulking sludge, supporting the “substrate diffusion limitation” hypothesis for bulking. The approach will allow the monitoring of incremental improvements in bulking control methods and the delineation of the operational conditions that lead to bulking due to specific filaments.  相似文献   

5.
The stability with respect to filamentous bulking of two activated sludge fully-aerobic systems, one with a completely mixed tank and one with a channel reactor, fed either by a synthetic wastewater or by a primary-settled municipal wastewater, of variable composition and flow rate, has been investigated. The morphological characteristics of the biomass in terms of floc size and roughness and of filamentous bacteria abundance have been monitored by image analysis. Severe bulking was only observed in the well-mixed tank fed at a constant flow rate by synthetic substrate of constant concentration, when the channel reactor fed in a similar manner was fully stable. Variations of biomass characteristics as well as of settling properties were observed on both systems fed with the real wastewater, but these events were related to the characteristics of the wastewater, as similar changes were observed on the full-scale plant fed with the same substrate. In any case, automated image analysis was an efficient way to monitor in detail the fate of the activated sludge at pilot and full scale.  相似文献   

6.
Filamentous bulking is a complicated problem in wastewater treatment plants treating various wastewaters, leading to the deterioration of the settling properties and the effluent quality. This study systematically investigated long-term effects of various carbon sources and feeding patterns on the growth of filamentous bacteria, in order to reveal the mechanism of filamentous bulking. Sludge volume index (SVI), microscopic observations, staining (Gram and Neisser staining), scan electron microscopic, and fluorescent in situ hybridization (FISH) were used to monitor the bulking and track the changes of microbial morphology and community structure of activated sludge in six lab-scale sequencing batch reactors (SBRs) fed with different carbon sources. Filamentous bulking was not observed in all SBRs under anoxic feeding pattern with a short fill time, in which SVI remained below 150 mL/g. In contrast, serious bulking (SVI?>?500 mL/g) occurred under aerobic feeding pattern when fed with ethanol, propionate, acetate, and glucose, in which Thiothrix and Sphaerotilus natans proliferated as dominant filaments. Compared to glucose-fed reactor, relatively light bulking was caused in starch-fed reactor with the growth of Nostocoida limicola II. In addition, flocs in starch-fed reactor were more open and fluffy than flocs formed on readily biodegradable substrates. Finally, a framework integrating kinetic selection, diffusion selection, storage selection, and protozoa capture mechanism was proposed to explain filamentous bulking.  相似文献   

7.
Microbes in activated sludge tanks mostly occur in flocs rather than in cell suspensions. Flocculation results in a limited supply of substrate to the bacteria inside the flocs, which reduces the biodegradation rate of organic compounds by several orders of magnitude. This article presents a simple two-parameter extension of growth models for cell suspensions to account for the ensuing reduction of the degradation rate. The additional parameters represent floc size at division and diffusion length. The biomass of small flocs initially increases exponentially at a rate equal to that of cell suspensions. After this first phase, the growth rate gradually decreases and finally the radius becomes a linear function of time. At this time flocs are large and have a kernel of dead biomass. This kernel arises when the substrate concentration decreases below the threshold level at which cells are just able to pay their maintenance costs. We deduce an explicit approximative expression for the interdivision time of flocs, and thereby for the growth of flocculated microbial biomass at constant substrate concentrations. The model reveals that the effect of stirring on degradation rates occurs through a reduction of the floc size at division. The results can be applied in realistic biodegradation quantifications in activated sludge tanks as long as substrate concentrations change slowly.  相似文献   

8.
活性污泥法是借助活性污泥微生物菌胶团形成来实现泥水重力分离和部分污泥回用,辅以曝气供氧,在曝气池中高密度的微生物细胞可将溶解性有机污染物迅速降解、转化后为己所用,外排的剩余污泥带走大量有机质和氮磷,水质得以净化。活性污泥微生物所合成的胶质状胞外多聚物(Extracellular polymeric substances,EPS)是污泥菌胶团形成必不可少的"黏合剂",吸水性极高,这也造成剩余污泥难以处置和利用。我们初步总结了活性污泥微生物宏基因组研究概况,利用分子遗传学和基因组学手段,对活性污泥优势种动胶菌(Zoogloea)和其他菌胶团形成菌的EPS生物合成途径和菌胶团形成与调控机制加以研究,鉴定出一个约40 kb的胞外多糖生物合成大型基因簇和一个由7个基因组成的小型基因簇,该基因簇中除胞外多糖合成相关基因外,还编码组氨酸激酶Prs K和反应调节蛋白Prs R双组分系统,可激活RpoNσ因子共同调控一类称之为PEP-CTERM的新型胞外蛋白质的表达,参与菌胶团的形成。PEP-CTERM富含天冬酰胺(缩写为Asn或者N)残基,可能与胞外多糖通过N-连锁的糖基化形成复合物,包裹微生物细胞群体来介导菌胶团的形成。类似的PEP-CTERM基因和胞外多糖合成基因簇在许多重要的活性污泥细菌如聚磷菌和全程氨氧化菌中存在,说明这些细菌也是菌胶团形成菌,可通过污泥沉淀和回用在活性污泥中得以富集。这些研究结果可供活性污泥膨胀控制、污泥减量和剩余污泥资源和能源回收利用参考。  相似文献   

9.
The performance of the activated sludge process is limited by the ability of the sedimentation tank (1) to separate the activated sludge from the treated effluent and (2) to concentrate it. Apart from bad operating strategies or poorly designed clarifiers, settling failures can mainly be attributed to filamentous bulking. Image analysis is a promising technique that can be used for early detection of filamentous bulking. The aim of this paper is therefore twofold. Foremost, correlations are sought between image analysis information (i.e., the total filament length per image, the mean form factor, the mean equivalent floc diameter, the mean floc roundness and the mean floc reduced radius of gyration) and classical measurements (i.e., the Sludge Volume Index (SVI)). Secondly, this information is both explored and exploited in order to identify dynamic ARX and state space-type models. Their performance is compared based on two criteria.  相似文献   

10.
Tian Y  Chen L  Zhang S  Cao C  Zhang S 《Bioresource technology》2011,102(19):8820-8827
Two submerged membrane bioreactors were operated for a period of 3 months to study the filtration behavior of normal sludge and bulking sludge. Comparison of sludge morphology and bound extracellular polymeric substances (EPS) from the two systems was made to elucidate the different filtration characteristics. Experimental results showed that the membrane fouling behavior induced by bulking sludge was more severe than normal sludge. Concomitantly, the adsorption tests and atomic force microscopy observation confirmed that the EPS properties played an important role in membrane adsorption, eventually causing the different fouling behavior. Correlations between image analysis information and diluted sludge volume index (DSVI) have been identified. The combinations of EFLI/FAI (the ratio between extended filamentous lengths and floc area), from factor and floc elongation related parameters (aspect ratio or roundness) were the preferred input candidates in autoregressive exogenous model to describe the filamentous bulking phenomena, which aided in predicting membrane fouling.  相似文献   

11.
Summary Laboratory scale activated sludge systems were operated under regimes of continuous or intermittent feeding of substrate. In a previous paper it was shown that continuously operated systems resulted in the development of filamentous bacteria and bulking sludges. Intermittently fed sludges resulted in good settling. These results are now confirmed when substrates other than glucose are present in the influent, such as nutrient broth, acetate and starch. With casein deflocculation occurred. For intermittent systems the substrate removal rates were higher than for continuous systems. Based on the results a theory is presented to account for the growth of filamentous bacteria (and bulking) in continuous systems (completely mixed systems). This theory assumes that in intermittently fed systems (plug flow systems) floc forming bacteria become dominant as a result of higher substrate uptake rates and the possibility to survive a starvation phase by thriving on accumulated intracellular metabolites.  相似文献   

12.
A mathematical model has been developed which describes substrate removal, oxygen utilization, and biomass production in an aggregated microbial suspension containing the substrate as a soluble biodegradable material and a uniform floc size. It is applicable to both steady-state and transient conditions. The model, consisting of three partial differential equations and two ordinary differential equations, takes into account the flow pattern in the reactor, intraparticle mass transport of oxygen and substrate, and biochemical reaction by individual cells embedded in the floc. Efficient numerical solution of the coupled nonlinear equations is obtained using an implicit finite difference approach for both the reactor and floc equations. A convergent solution is realized through block interation utilizing the tridiagonal algorithm. Results indicate that a unifying theory of activated sludge dynamics will have to consider coupling between floc chemical kinetics and changes in the bulk liquid characteristics. Floc size emerges as an important influence on system performance. It appears necessary to distinguish between a system response caused by diffuslonal resistances and nutrient limitations within the floc and a response caused by physiological adaption when analyzing the transient behavior of an activated sludge process. Future research should be devoted to rigorous laboratory determinations of model parameters along with extensions to include limitations of nutrients other than orgabnic carbon and oxygen.  相似文献   

13.
In recent years, a great deal of attention has been focused on the research of activated sludge processes, where the solid–liquid separation phase is frequently considered of critical importance, due to the different problems that severely affect the compaction and the settling of the sludge. Bearing that in mind, in this work, image analysis routines were developed in Matlab environment, allowing the identification and characterization of microbial aggregates and protruding filaments in eight different wastewater treatment plants, for a combined period of 2 years. The monitoring of the activated sludge contents allowed for the detection of bulking events proving that the developed image analysis methodology is adequate for a continuous examination of the morphological changes in microbial aggregates and subsequent estimation of the sludge volume index. In fact, the obtained results proved that the developed image analysis methodology is a feasible method for the continuous monitoring of activated sludge systems and identification of disturbances.  相似文献   

14.
The in situ physiology of the filamentous sulphur bacterium Thiothrix spp. was investigated in an industrial wastewater treatment plant with severe bulking problems as a result of overgrowth of Thiothrix. Identification and enumeration using fluorescence in situ hybridization (FISH) with species-specific 16S and 23S rRNA probes revealed that 5–10% of the bacteria in the activated sludge were Thiothrix spp. By using a combination of FISH and microautoradiography it was possible to study the in situ physiology of probe-defined Thiothrix filaments under different environmental conditions. The Thiothrix filaments were very versatile and showed incorporation of radiolabelled acetate and/or bicarbonate under heterotrophic, mixotrophic and chemolithoautotrophic conditions. The Thiothrix filaments were active under anaerobic conditions (with or without nitrate) in which intracellular sulphur globules were formed from thiosulphate and acetate was taken up. Thiothrix -specific substrate uptake rates and growth rates in activated sludge samples were determined under different conditions. Doubling times of 6–9 h under mixotrophic conditions and 15–30 h under autotrophic conditions were estimated. The key properties that Thiothrix might be employing to outcompete other microorganisms in activated sludge were probably related to the mixotrophic growth potential with strong stimulation of acetate uptake by thiosulphate, as well as stimulation of bicarbonate incorporation by acetate in the presence of thiosulphate.  相似文献   

15.
Limited filamentous bulking (LFB) was proposed to save aeration energy consumption and enhance the capacity of filaments to degrade substrates with low concentrations in activated sludge systems. Operational parameters favorable for maintaining the LFB state were investigated in an anoxic-oxic reactor treating domestic wastewater. The experiments showed that the LFB state would deteriorate with sharply decreasing temperature, reducing substrate gradients or removing anoxic zones. The balance between filaments and floc-formers could be achieved by controlling dissolved oxygen and sludge loading rates to be in optimal ranges. Eikelboom Type 0041 and CandidatusMicrothrix parvicella were the filamentous bacteria responsible for the LFB state. However, the excess growth of Eikelboom Type 021N and Sphaerotilus natans were observed when serious bulking occurred under low substrate gradients. It was demonstrated that stable maintenance of LFB for energy saving was feasible by process control and optimization.  相似文献   

16.
A method was developed to assess the activity of filamentous bacteria in activated sludge. It involves the incubation of activated sludge with 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride followed by staining with malachite green. Both cells and 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-formazan crystals can be observed in prepared specimens by using bright-field microscopy. This procedure allowed us to distinguish between inactive and actively metabolizing filaments after chlorine application to control the bulking of activated sludge.  相似文献   

17.
Abstract Effects of aerobic and anaerobic conditions on the growth of Microthrix parvicella in the activated sludge were studied to prevent bulking caused by this filamentous bacterium. The study was conducted on a pilot plant with selector and the data were compared with those observed in a full scale plant subjected to severe bulking due to a massive growth of M. parvicella . Both plants were fed with the same settled waste water. A substantial suppression of the growth of M. parvicella was observed in only the experiments where returned activated sludge was mixed with waste water under aerobic conditions. Both the number of filaments and the sludge volume index (SVI) were lower in the pilot plant than in the full scale plant. Under anerobic conditions, the selector was not able to improve the settleability and avoid the growth of M. parvicella .  相似文献   

18.
The intrinsic kinetics of continuous yeast cell growth and ethanol production for a self-flocculating fusant yeast strain SPSC01 was investigated by means of mechanically dispersing the flocs and correspondingly established floc size distribution on-line monitoring technique using the focused beam reflectance measurement system, through which the floc intra-particle mass transfer limitation was effectively eliminated, but its ethanol formation metabolism was not affected. Modified kinetic models were developed, which can be used to predict the continuous kinetic behaviors of SPSC01, especially when low dilution rates are applied and limiting substrate concentrations are undetectable and almost all kinetic models developed previously are failed in predicting corresponding kinetic behaviors. Both substrate and product inhibitions reported for freely suspended yeast cell ethanol production were also observed for SPSC01 when high gravity media were fed and relatively high levels of residual sugar and ethanol presented. Model parameters were evaluated through numerical calculation method and validated by experimental data mu = 0.584C(s)/0.155 + C(s) + C(2)(s)/160.7(1 -P/125)(3.68) + 0.004 for growth, nu = 1.998C(s)/0.427 + C(s) + C(2)(s)/366.7(1- P/125)(1.72) + 0.060 for ethanol production These intrinsic kinetic models can be further used to develop the observed kinetic models that quantitatively correlate the impact of the self-flocculating yeast cell size distributions on their apparent rates for yeast cell growth, substrate uptake and ethanol production and optimize the ethanol production process.  相似文献   

19.
This review summarizes the microbiology and physiology of "Microthrix parvicella" and the methods of its growth control in activated sludge wastewater treatment plants. This filamentous bacterium is of high interest because of its worldwide involvement in severe bulking and foaming at wastewater treatment plants. We present a critical analysis of physiological and kinetic data on "M. parvicella" and discuss its growth and storage abilities in various environments with the aim of understanding the strategies of this organism to successfully compete with other bacteria in activated sludge. Additionally, this review elaborates on research needs for defining reliable control strategies of bulking and foaming based on key features of "M. parvicella".  相似文献   

20.
Sphaerotilus natans, a filamentous bacterium that causes bulking in activated sludge processes, can assume two distinct morphologies, depending on the substrate concentration for growth; in substrate-rich media it grows as single rod-shaped cells, whereas in substrate-limited media it grows as filaments. To identify genes responsible for sheath formation, we carried out transposon Tn5 mutagenesis. Of the approximately 20,000 mutants obtained, 7 did not form sheathed structures. Sequencing of the Tn5-flanking regions showed that five of the seven Tn5 insertions converged at the same open reading frame, designated sthA. The deduced amino acids encoded by sthA were found to be homologous to glycosyltransferase, which is known to be involved in linking sugars to lipid carriers during bacterial exopolysaccharide biosynthesis. Disruption of the gene of the wild-type strain by inserting a kanamycin resistance gene cassette also resulted in sheathless growth under either type of nutrient condition. These findings indicate that sthA is a crucial component responsible for sheath formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号