首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A soluble form of an alkaline phosphatase obtained from rat osseous plates was purified 204-fold with a yield of 24.3%. The purified enzyme showed a single protein band of Mr 80,000 on SDS-PAGE and an apparent molecular weight of 163,000 by gel filtration on Sephacryl S-300 suggesting a dimeric structure for the soluble enzyme. The specific activity of the enzyme at pH 9.4 in the presence of 2 mM MgCl2 was 19,027 U/mg and the hydrolysis of p-nitrophenyl phosphate (K0.5 = 92 microM) showed positive cooperativity (n = 1.5). The purified enzyme showed a broad substrate specificity, however, ATP, bis(p-nitrophenyl) phosphate and pyrophosphate were among the less hydrolyzed substrates assayed. Surprisingly the enzyme was not stimulated by cobalt and manganese ions, in contrast with a 20-25% stimulation observed for magnesium and calcium ions. Zinc ions exerted a strong inhibition on p-nitrophenylphosphatase activity of the enzyme. This paper provides a simple experimental procedure for the isolation of a soluble form of alkaline phosphatase which is induced by demineralized bone matrix during endochondral ossification.  相似文献   

2.
The presence of alkaline phosphatase (EC 3.1.3.1) activity has been demonstrated in nuclei of rat ventral prostate. This enzyme activity remained after washing of isolated nuclei with 0.5% Triton X-100; an acid phosphatase initially present with the nuclear fraction was removed by this treatment. The nuclear alkaline phosphatase, examined by utilizing p-nitrophenyl phosphate as substrate, had a pH optimum of 9.5-10.3, and a broad substrate specificity: p-nitrophenyl phosphate greater than phosphothreonine greater than beta-glycerophosphate greater than phosphoserine. The nuclear phosphatase was sensitive to denaturation by heat or urea treatments and was also inhibited by Pi, L-phenylalanine, homoarginine, dithiothreitol, and EDTA. The EDTA-inhibited enzyme was maximally reactivated by Zn2+, although Mg2+, or Ca2+ were also effective at somewhat higher concentrations. Orchiectomy of adult rats resulted in an increase in the nuclear alkaline phosphatase activity (2-3-fold at 24 or 48 h postorchiectomy). A decline in the protein: DNA ratio also occurred following orchiectomy, but the increase in phosphatase specific activity was evident whether expressed per unit of protein or per unit of DNA. Testosterone replacement following orchiectomy abolished the increase in nuclear phosphatase activity. The results suggest that the prostatic nuclear alkaline phosphatase may be involved in events related to inactivation of the prostate nucleus following androgen deprivation.  相似文献   

3.
The enzymatic properties of acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) encoded by PHO3 gene in Saccharomyces cerevisiae, which is repressed by thiamin and has thiamin-binding activity at pH 5.0, were investigated to study physiological functions. The following results led to the conclusion that thiamin-repressible acid phosphatase physiologically catalyzes the hydrolysis of thiamin phosphates in the periplasmic space of S. cerevisiae, thus participating in utilization of the thiamin moiety of the phosphates by yeast cells: (a) thiamin-repressible acid phosphatase showed Km values of 1.6 and 1.7 microM at pH 5.0 for thiamin monophosphate and thiamin pyrophosphate, respectively. These Km values were 2-3 orders of magnitude lower than those (0.61 and 1.7 mM) for p-nitrophenyl phosphate; (b) thiamin exerted remarkable competitive inhibition in the hydrolysis of thiamin monophosphate (Ki 2.2 microM at pH 5.0), whereas the activity for p-nitrophenyl phosphate was slightly affected by thiamin; (c) the inhibitory effect of inorganic phosphate, which does not repress the thiamin-repressible enzyme, on the hydrolysis of thiamin monophosphate was much smaller than that of p-nitrophenyl phosphate. Moreover, the modification of thiamin-repressible acid phosphatase of S. cerevisiae with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide resulted in the complete loss of thiamin-binding activity and the Km value of the modified enzyme for thiamin monophosphate increased nearly to the value of the native enzyme for p-nitrophenyl phosphate. These results also indicate that the high affinity of the thiamin-repressible acid phosphatase for thiamin phosphates is due to the thiamin-binding properties of this enzyme.  相似文献   

4.
A partially purified bovine cortical bone acid phosphatase, which shared similar characteristics with a class of acid phosphatase known as tartrate-resistant acid phosphatase, was found to dephosphorylate phosphotyrosine and phosphotyrosyl proteins, with little activity toward other phosphoamino acids or phosphoseryl histones. The pH optimum was about 5.5 with p-nitrophenyl phosphate as substrate but was about 6.0 with phosphotyrosine and about 7.0 with phosphotyrosyl histones. The apparent Km values for phosphotyrosyl histones (at pH 7.0) and phosphotyrosine (at pH 5.5) were about 300 nM phosphate group and 0.6 mM, respectively, The p-nitrophenyl phosphatase, phosphotyrosine phosphatase, and phosphotyrosyl protein phosphatase activities appear to be a single protein since these activities could not be separated by Sephacryl S-200, CM-Sepharose, or cellulose phosphate chromatographies, he ratio of these activities remained relatively constant throughout the purification procedure, each of these activities exhibited similar thermal stabilities and similar sensitivities to various effectors, and phosphotyrosine and p-nitrophenyl phosphate appeared to be alternative substrates for the acid phosphatase. Skeletal alkaline phosphatase was also capable of dephosphorylating phosphotyrosyl histones at pH 7.0, but the activity of that enzyme was about 20 times greater at pH 9.0 than at pH 7.0. Furthermore, the affinity of skeletal alkaline phosphatase for phosphotyrosyl proteins was low (estimated to be 0.2-0.4 mM), and its protein phosphatase activity was not specific for phosphotyrosyl proteins, since it also dephosphorylated phosphoseryl histones. In summary, these data suggested that skeletal acid phosphatase, rather than skeletal alkaline phosphatase, may act as phosphotyrosyl protein phosphatase under physiologically relevant conditions.  相似文献   

5.
Ubiquitin, a unique protein with esterase and carbonic anhydrase activity, has been found to have also a p-nitrophenyl phosphatase activity. This phosphomonoesterase activity of ubiquitin has an acidic pH optimum; its true substrate appears to be the phosphomonoanion, with a Km of 1.8 X 10(-3) M. It is competitively inhibited by the typical acid phosphatase inhibitors, arsenate (Ki = 1.3 X 10(-3) M), molybdate (Ki = 1.2 X 10(-6) M), and phosphate (Ki = 1.4 X 10(-3) M). These inhibitors have no effect on the CO2 hydration and p-nitrophenyl acetate esterase activities of the ubiquitin. Acetazolamide slightly inhibited the p-nitrophenyl phosphatase activity.  相似文献   

6.
Tham SC  Lim SH  Yeoh HH 《Biotechnology letters》2005,27(23-24):1865-1868
An acid phosphatase, free of deoxyribonuclease activity, was isolated from Manihot glaziovii leaves. It had a Mr of 78 kDa and was optimally active at pH 4.3 and 52 degrees C. It was inactivated at 65 degrees C over 15 min. It had a broad substrate specificity with strongest activity towards p-nitrophenyl phosphate. The enzyme dephosphorylated linearized pUC18 DNA and preventing self-ligation under the same conditions used for calf intestine alkaline phosphatase.  相似文献   

7.
Lung SC  Leung A  Kuang R  Wang Y  Leung P  Lim BL 《Phytochemistry》2008,69(2):365-373
Phytases are enzymes that catalyze liberation of inorganic phosphates from phytate, the major organic phosphorus in soil. Tobacco (Nicotiana tabacum) responds to phosphorus starvation with an increase in extracellular phytase activity. By a three-step purification scheme, a phosphatase with phytase activity was purified 486-fold from tobacco root exudates to a specific activity of 6,028 nkat mg(-1) and an overall yield of 3%. SDS-PAGE revealed a single polypeptide of 64 kDa, thus indicating apparent homogeneity of the final enzyme preparation. Gel filtration chromatography suggested that the enzyme was a ca. 56 kDa monomeric protein. De novo sequencing by tandem mass spectrometry resulted in a tryptic peptide sequence that shares high homology with several plant purple acid phosphatases. The identity of the enzyme was further confirmed by molybdate-inhibition assay and cDNA cloning. The purified enzyme exhibited pH and temperature optima at 5.0-5.5 and 45 degrees C, respectively, and were found to have high affinities for both p-nitrophenyl phosphate (pNPP; K(m)=13.9 microM) and phytate (K(m)=14.7 microM), but a higher kcat for pNPP (2,056 s(-1)) than phytate (908 s(-1)). Although a broad specificity of the enzyme was observed for a range of physiological substrates in soil, maximum activity was achieved using mononucleotides as substrates. We conclude that the phytase activity in tobacco root exudates is exhibited by a purple acid phosphatase and its catalytic properties are pertinent to its role in mobilizing organic P in soil.  相似文献   

8.
Wysocki P  Strzezek J 《Theriogenology》2006,66(9):2152-2159
The fluid of boar epididymis is characterized by a high activity of acid phosphatase (AcP), which occurs in three molecular forms. An efficient procedure was developed for the purification of a molecular form of epididymal acid phosphatase from boar seminal plasma. We focused on the epididymal molecular form, which displayed the highest electrophoretic mobility. The purification procedure (dialysis, ion exchange chromatography, affinity chromatography and hydroxyapatite chromatography) used in this study gave more than 7000-fold purification of the enzyme with a yield of 50%. The purified enzyme was homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The purified molecular form of the enzyme is a thermostable 50kDa glycoprotein, with a pI value of 7.1 and was highly resistant to inhibitors of acid phosphatase when p-nitrophenyl phosphate was used as the substrate. Hydrolysis of p-nitrophenyl phosphate by the purified enzyme was maximally active at pH of 4.3; however, high catalytic activity of the enzyme was within the pH range of 3.5-7.0. Kinetic analysis revealed that the purified enzyme exhibited affinity for phosphotyrosine (K(m)=2.1x10(-3)M) and was inhibited, to some extent, by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor. The N-terminal amino acid sequence of boar epididymal acid phosphatase is ELRFVTLVFR, which showed 90% homology with the sequence of human, mouse or rat prostatic acid phosphatase. The purification procedure described allows the identification of the specific biochemical properties of a molecular form of epididymal acid phosphatase, which plays an important role in the boar epididymis.  相似文献   

9.
The inhibitory effect of a marine-sponge toxin, okadaic acid, was examined on type 1, type 2A, type 2B and type 2C protein phosphatases as well as on a polycation-modulated (PCM) phosphatase. Of the protein phosphatases examined, the catalytic subunit of type 2A phosphatase from rabbit skeletal muscle was most potently inhibited. For the phosphorylated myosin light-chain (PMLC) phosphatase activity of the enzyme, the concentration of okadaic acid required to obtain 50% inhibition (ID50) was about 1 nM. The PMLC phosphatase activities of type 1 and PCM phosphatase were also strongly inhibited (ID50 0.1-0.5 microM). The PMCL phosphatase activity of type 2B phosphatase (calcineurin) was inhibited to a lesser extent (ID50 4-5 microM). Similar results were obtained for the phosphorylase a phosphatase activity of type 1 and PCM phosphatases and for the p-nitrophenyl phosphate phosphatase activity of calcineurin. The following phosphatases were not affected by up to 10 microM-okadaic acid: type 2C phosphatase, phosphotyrosyl phosphatase, inositol 1,4,5-trisphosphate phosphatase, acid phosphatases and alkaline phosphatases. Thus okadaic acid had a relatively high specificity for type 2A, type 1 and PCM phosphatases. Kinetic studies showed that okadaic acid acts as a non-competitive or mixed inhibitor on the okadaic acid-sensitive enzymes.  相似文献   

10.
Protein phosphatases are signalling molecules that regulate a variety of fundamental cellular processes including cell growth, metabolism and apoptosis. The aim of this work was to correlate the cytotoxicity of pervanadate and okadaic acid on HL60 cells and their effect on the phosphatase obtained from these cells. The cytotoxicity of these protein phosphatase inhibitors was evaluated on HL60 cells using phosphatase activity, protein quantification and MTT reduction as indices. The major phosphatase presents in the cellular extract showed high activity (80%) and affinity (Km = 0.08 mM) to tyrosine phosphate in relation to p-nitrophenyl phosphate (pNPP)-(Km = 0.51 mM). Total phosphatase (pNPP) was inhibited in the presence of 10 mM vanadate (98%), 200 microM pervanadate (95%) and 100 microM p-chloromercuribenzoate (80%) but okadaic acid caused a slight increase in enzyme activity (25%). When the HL60 cells were treated with the phosphatase inhibitors (pervanadate and okadaic acid) for 24hours, only 20% residual activity was observed in presence of 200 microM pervanadate, whereas in the presence of okadaic acid this inhibitory effect was not observed. However, in respect to mitochondrial function, cell viability decreased about 80% in the presence of 100 nM okadaic acid. The total protein content was decreased 25% when the cells were treated with 100 nM okadaic acid in combination with 200 microM pervanadate. Our results suggest that both phosphatase inhibitors presented different mechanisms of action on HL60 cells. However, their effect on the cell redox status have to be considered.  相似文献   

11.
The carbethoxylation of prostatic acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2) was accompanied by modification of histidine residues and the inactivation of the enzyme. These findings are consistent with photoinactivation experiments described earlier (Rybarska, J. and Ostrowski, W (1974) Acta Biochim, Polon. 21, 377--390). Prostatic acid phosphatase was phosphorylated at alkaline pH using p-nitrophenyl [32P]phosphate as substrate. Phosphoryl enzyme is stable in alkaline solutions and undergoes dephosphorylation at acidic pH. After hydrolysis of phosphoryl enzyme in strong alkaline solution, a single phosphoryl amino acid was isolated from hydrolyzate and identified as the tau-phosphohistidine.  相似文献   

12.
Purification and partial amino acid sequences of an esterase from tomato   总被引:8,自引:0,他引:8  
Screening of 18 suspension plant cell cultures of taxonomically distant species revealed that a methyl jasmonate hydrolysing enzyme activity (0.21-5.67 pkat/mg) occurs in all species so far analysed. The methyl jasmonate hydrolysing esterase was purified from cell cultures of Lycopersicon esculentum using a five-step procedure including anion-exchange chromatography, gel-filtration and chromatography on hydroxylapatite. The esterase was purified 767-fold to give an almost homogenous protein in a yield of 2.2%. The native enzyme exhibited a M(r) of 26 kDa (gel-filtration chromatography), which was similar to the M(r) determined by SDS-PAGE and MALDI-TOF analysis (M(r) of 28547 kDa). Enzyme kinetics revealed a K(m) value of 15 microM and a V(max) value of 7.97 nkat/mg, an pH optimum of 9.0 and a temperature optimum of 40 degrees C. The enzyme also efficiently hydrolyzed methyl esters of abscisic acid, indole-3-acetic acid, and fatty acids. In contrast, methyl esters of salicylic acid, benzoic acid and cinnamic acid were only poor substrates for the enzyme. N-Methylmaleimide, iodacetamide, bestatin and pepstatin (inhibitors of thiol-, metal- and carboxyproteases, respectively) did not inactivate the enzyme while a serine protease inhibitor, phenylmethylsulfonyl fluoride, at a concentration of 5 mM led to irreversible and complete inhibition of enzyme activity. Proteolysis of the pure enzyme with endoproteinase LysC revealed three peptide fragments with 11-14 amino acids. N-Terminal sequencing yielded an additional peptide fragment with 10 amino acids. Sequence alignment of these fragments showed high homologies to certain plant esterases and hydroxynitrile lyases that belong to the alpha/beta hydrolase fold protein superfamily.  相似文献   

13.
1. The phosphorylation of milk alkaline phosphatase was studied under various conditions: maximum incorporation occurred at pH5.0 and 50% incorporation at pH6.6-7.0. 2. The phosphorylation was shown to be specific and the results suggest that the active centre of the enzyme is involved in the process. 3. Phosphoryl-enzyme is rapidly hydrolysed at alkaline pH. at pH7.0 the results suggest that a phosphoryl-enzyme could occur as a transient intermediate in the hydrolysis of phosphate esters by the phosphatase. 4. The catalytic-centre activity of the enzyme was found to be 2700sec.(-1) at pH10.0 and 25 degrees with p-nitrophenyl phosphate as substrate.  相似文献   

14.
The effect of brief heat shock on Chenopodium cells was investigated by measuring biochemical parameters for cellular vitality, membrane function and integrity: extracellular pH, release of osmotic compounds, phosphatase, protein and betalain, and cellular reduction of DCPIP and MTT. A threshold temperature was found at 45 degrees C, where release of osmotic compounds, protein and betalain, and reduction of DCPIP and MTT indicate loss of vitality. Extracellular pH and an alkaline phosphatase responded 10-20 degrees C below this threshold, suggesting that extracellular alkalinization, and probably the release of a phosphatase, are part of a specific cellular response to abiotic stress induced by heat shock. The extracellular proton concentration did not increase above 45 degrees C: this may indicate equilibration of gradients driving this process or an inactivation of cellular mechanisms responsible for extracellular alkalinization. The response of extracellular pH to heat shock in Chenopodium cell suspensions was fast, i.e., up to +1 pH in 5 min. Addition of the K+/H+ antiporter nigericin to Chenopodium cells caused an extracellular alkalinization similar to heat shock. The heat shock-induced extracellular alkalinization was characterized by Q10 values for distinct ranges of temperature (Q10 of 56 for 24-31 degrees C, 2.3 for 31-42 degrees C, and 1.0 for 42-50 degrees C). To the author's knowledge, the Q10 of 56 is the highest found up to now. These results suggest that extracellular protons are involved in temperature sensing and signalling in plant cells, probably via a channel-mediated pathway.  相似文献   

15.
Human liver acid phosphatases.   总被引:2,自引:0,他引:2  
Human liver contains three chromatographically distinct forms of non-specific acid phosphatase (EC 3.1.3.2). Acid phosphatases I, II and III have molecular weights of greater than 200 000, of 107 000, and of 13 400, respectively. Following partial purification, isoenzyme II was obtained as a single activity band, as assessed by activity staining with p-nitrophenyl phosphate and alpha-naphthyl phosphate on polyacrylamide gels run at several pH values. With 50mM p-nitrophenyl phosphate as a substrate, enzymes II and III exhibit plateaus of activity over the pH range 3 - 5 and 3.5 - 6, respectively.Acid phosphatase II is not significantly inhibited by 0.5% formaldehyde. The activity of human liver acid phosphatase II and of human prostatic acid phosphatase towards several substrates is compared. The liver enzyme, is marked contrast to the prostatic enzyme, does not hydrolyze O-phosphoryl choline.  相似文献   

16.
Soybean acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) was completely separated from phytase (EC 3.1.3.8) isolated from cotyledons of germinating seeds and purified to homogeneity. A four-step purification regimen consisting of ammonium sulfate fractionation, and ion-exchange, affinity, and chromatofocusing gel chromatographies was employed to achieve a homogeneous preparation. Acid phosphatase activity appeared as a major band of the three forms of acid phosphatase identified on native gels. The purified enzyme had a molecular weight of 53,000 when electrophoresed on 8% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a molecular weight of 53,000 from its mobility in a Fracto-gel TSK HW-50F gel permeation column. The molar extinction coefficient of the enzyme at 278 nm was estimated to be 4.2 X 10(4) M-1 cm-1. The isoelectric point of the protein, as revealed by chromatofocusing, was about 6.7. The optimal pH for activity, like other plant acid phosphatases, was 5.0. While the enzyme failed to accommodate phytate as a substrate, the enzyme did exhibit a broad substrate selectivity. The affinity of the enzyme for p-nitrophenyl phosphate was high (Km = 70 microM), and activity was competitively inhibited by orthophosphate (Ki = 280 microM). The estimated catalytic turnover number (Kcat) of the enzyme for p-nitrophenyl phosphate was about 430 per second. Although the purified enzyme was stable at 0 degrees C and exhibited maximum catalytic activity at 60 degrees C, thermal inactivation studies indicated that the enzyme lost 100% activity after treatment at 68 degrees C for 10 min.  相似文献   

17.
1. ATP stimulated the p-nitrophenyl phosphatase activity of placental plasma membranes, with an increase in activity of approximately 100% at 5 mM ATP. The stimulation was not dependent on the presence of Mg-2-+. 2. The K-m for p-nitrophenyl phosphate was not changed by the presence of 5 mM ATP. 3. ATP hydrolysis by the plasma membrane preparation under the same assay conditions as for alkaline phosphatase was not influenced by the presence of 5 mM p-nitrophenyl phosphate. 4. Extraction of the plasma membrane preparation with n-butanol abolished the stimulatory effect of ATP, as well as Ca-2-+-activated ATPase activity.  相似文献   

18.
At temperatures between 45 and 50 C, staphylococcal acid phosphatase purified 44-fold had maximal activity at pH 5.2 to 5.3. However, the enzyme was most stable in the alkaline range (pH 8.5 to 9.5) at temperatures below 50 C. Iodoacetate and ethylenediamine-tetraacetic acid were effective inhibitors, whereas mercaptoethanol and Cu(2+) acted as stimulators. The energy of activation for hydrolytic cleavage of the synthetic substrate, p-nitrophenyl phosphate, was 19.5 Kcal/mole. K(m) for the same substrate was 4.5 x 10(-4)m. The purified enzyme was most active against the substrates p-nitrophenyl phosphate and glyceraldehyde 3-phosphate.  相似文献   

19.
Sopina VA 《Tsitologiia》2001,43(7):701-707
Activity and thermoresistance of acid phosphatase were determined in supernatant of Amoeba proteus homogenates using 1-naphthyl phosphate (pH 4.0) and p-nitrophenyl phosphate (pH 5.5). Although tartrate-resistant and tartrate-sensitive acid phosphatases hydrolyse both substrates, the former mainly hydrolyses p-nitrophenyl phosphate and the latter 1-naphthyl phosphate. A decrease in the activity of the total and tartrate-sensitive acid phosphatases, when using 1-naphthyl phosphate, and of the total and tartrate-resistant acid phosphatases, when using p-nitrophenyl phosphate, was found in amoebae acclimated to 10 degrees C (10 degrees-amoebae) compared to those acclimated to 25 degrees C (25 degrees-amoebae). Using 1-naphthyl phosphate, the thermoresistance of the total acid phosphatase was lower in 10 degrees-amoebae than in 25 degrees-amoebae, but the thermostability of tartrate-resistant enzyme was the same in both groups of amoebae. Using p-nitrophenyl phosphate, the thermoresistance of the total and tartrate-resistant acid phosphatases was lower (the latter only slightly) in 10 degrees-amoebae than in 25 degrees-amoebae. It is suggested that at least with the use of 1-naphthyl phosphate a decrease in thermostability of the total acid phosphatase may be due to a decrease in thermoresistance of tartrate-sensitive enzyme. The results obtained confirm the author's previous data on the activity and thermostability of electrophoretic forms of acid phosphatase using 2-naphthyl phosphate in 10- and 25 degrees-amoebae (Sopina, 2001). It is the first case of discovering a correlation between changes in primary cell thermoresistance of amoebae cultured at different temperatures and changes in the activity and thermostability of acid phosphatase in their homogenates, with the number of electrophoretic forms of this enzyme and their mobility being permanent.  相似文献   

20.
A survey of Salmonella typhimurium enzymes possessing phosphatase or phosphodiesterase activity was made using several different growth conditions. These studies revealed the presence of three major enzymes, all of which were subsequently purified: a cyclic 2' ,3'-nucleotide phosphodiesterase (EC 3.1.4.d), an acid hexose phosphatase (EC 3.1.3.2), and a nonspecific acid phosphatase (EC 3.1.3.2). A fourth enzyme hydrolyzed bis-(p-nitrophenyl)phosphate but none of the other substrates tested. No evidence was found for the existence of an alkaline phosphatase (EC 3.1.3.1) or a specific 5'-nucleotidase (EC 3.1.3.5) in S. typhimurium LT2. All three phosphatases could be measured efficiently in intact cells, which suggested a periplasmic location; however, they were not readily released by osmotic shock procedures. The nonspecific acid phosphatase, which was purified to apparent homogeneity, yielded a single polypeptide band on both sodium dodecyl sulfate and acidic urea gel electrophoretic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号