首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
兔肌甘油醛-3-磷酸脱氢酶以NADP~ 作氢受体时,有极轻微的活力,实验表明它不是由于所用NADP~ 试剂中含有NAD~ 或酶制剂中含有磷酸酯酶、转氢酶等造成的干扰。采用高浓度酶对纯化后的NADP~ 测定结果是:NADP~ 作为氢受体的活力仅及NAD~ 的二百分之一。米氏常数K_m为700μm。NADP~ 对NAD~ 的还原无明显抑制作用。不同来源的甘油醛-3-磷酸脱氢酶对辅酶专一性程度有差别,酵母酶的专一性较兔肌酶为高:NADP~ 作为氢受体的活力仅为NAD~ 的千分之一。  相似文献   

2.
兔肌甘油醛-3-磷酸脱氢酶以NADP~ 作氢受体时,有极轻微的活力,实验表明它不是由于所用NADP~ 试剂中含有NAD~ 或酶制剂中含有磷酸酯酶、转氢酶等造成的干扰。采用高浓度酶对纯化后的NADP~ 测定结果是:NADP~ 作为氢受体的活力仅及NAD~ 的二百分之一。米氏常数K_m为700μm。NADP~ 对NAD~ 的还原无明显抑制作用。不同来源的甘油醛-3-磷酸脱氢酶对辅酶专一性程度有差别,酵母酶的专一性较兔肌酶为高:NADP~ 作为氢受体的活力仅为NAD~ 的千分之一。  相似文献   

3.
核苷酸的生物学功能   总被引:2,自引:0,他引:2  
核苷酸除了构成遗传信息的基础DNA和RNA以外,在活细胞内,大量的核苷酸在物质和能量的代谢中还显示出多种多样的生物学功能. (一)重要辅酶的构件 1.是辅酶Ⅰ(NAD~+)和辅酶Ⅱ(NADP~+)的组分:腺苷酸是NAD~+和NADP~+的组成成分.NAD~+和NADP~+是细胞内很多脱氢酶的辅酶,是重要的载氢体,能传递质子和电子:2H=2H~+(质子)+2e(电子)  相似文献   

4.
葡萄糖-6-磷酸脱氢酶是磷酸戊糖途径(HMP)的限速酶,在十字花科黑腐病菌8004的基因组中,有2个基因XC1977和XC4082被注释为葡萄糖-6-磷酸脱氢酶(G6PD)。前期工作发现XC1977突变后,细胞的胞外多糖产量明显降低,而XC4082突变不影响胞外多糖产量。为明确这两个基因的编码产物在Xcc中的生化功能,本工作表达纯化了这两个蛋白,并对这两个蛋白的特征进行分析,发现这两个蛋白均具有6-葡萄糖脱氢酶的活性,但是它们的最适反应温度、最适反应pH、金属离子和烷化剂的敏感性完全不同。而且,XC1977以NAD~+和NADP~+为电子受体,而XC4082只能以NADP~+为电子受体。在以NAD~+和NADP~+为受体时,XC1977的K_m值分别为0.125 mmol/L和0.927 mmol/L,而XC4082以NADP~+为受体时的K_m值为0.364 mmol/L。这表明Xcc细胞合成胞外多糖时,需要NAD~+参与能量代谢。  相似文献   

5.
地中海诺卡氏菌(Nocardia mediterranei)的硝酸还原酶是底物—诱导酶,和细菌一样以NADH为专一性电子供体,并可能在细胞膜上,但与细菌不同,对超声波不敏感。加入硝酸盐促使菌体的力复霉素合成能力提高的同时,诱导硝酸还原酶和亚硝酸还原酶的合成,但需较长的诱导期。同时戊糖循环的G-6-P脱氢酶、6-P-G脱氢酶、莽草酸脱氢酶以及三羧酸循环的异柠檬酸脱氢酶、苹果酸脱氢酶亦相应提高。G-6-P脱氢酶和莽草酸脱氢酶活力的提高,可由莽草酸途径提供合成力复霉素的芳香环来源,三羧酸循环酶活力的提高看来是在脂肪合成与多聚酮(polyketide)合成之间起着调节作用,使菌体合成更多的力复霉素的环桥部份。至于硝酸盐如何引起这一系列酶活力的变化而使力复霉素的合成增加,尚有待进一步深入研究。  相似文献   

6.
蜂毒肽的溶血作用与红细胞膜上两种酶活性变化的关系   总被引:1,自引:0,他引:1  
从蜂毒肽作用于红细胞膜上的Na-K-ATPase和葡萄糖-6-磷酸脱氢酶(G-6-PD)活性变化的角度,利用分光光度法测定酶活性,研究蜂毒肽与红细胞及膜作用过程中可能的靶点,讨论了蜂毒肽溶血过程与RBC膜上2种酶活性的变化.结果发现,蜂毒肽抑制RBC膜上酶活性的主要模式为附着/插入质膜与游离态并存模式,附着/插入质膜中的作用大于游离态的作用.Na-K-ATPase的K+结合位点是蜂毒肽的1个作用靶点.蜂毒肽插膜过程与其对此酶的作用随时间延长同步发生.蜂毒肽通过作用于葡萄糖-6-磷酸和NADP使G-6-PD的催化受到缓慢抑制,蜂毒肽形成四聚体的程度与酶活性密切相关.EDTA抑制蜂毒肽聚集,干扰蜂毒肽作用于G-6-P,蜂毒肽作用于底物G-6-P及辅酶NADP的生化机理相似,蜂毒肽抑制作用与G-6-PD的结构无关.  相似文献   

7.
[目的]改造谷氨酸棒杆菌(Corynebacterium glutamicum)中NADPH合成途径,阻断胞内NADPH的合成,获得1株NADPH营养缺陷型菌株。[方法]通过失活L-赖氨酸高产菌C. glutamicum Lys-χ中葡萄糖-6-磷酸脱氢酶(Zwf)和苹果酸酶(MalE)并将NADP~+依赖型异柠檬酸脱氢酶(NADP~+-Icdcg)替换成变形链球菌(Streptococcus mutans)中的NAD~+-Icdsm,阻断胞内NADPH的合成。随后结合辅因子工程,引入大肠杆菌(Escherichia coli)中膜结合吡啶核苷酸转氢酶(PntAB)并通过不同强度启动子控制PntAB的表达水平。最后,分析不同重组菌中胞内氧化还原水平和L-赖氨酸生产强度的变化。[结果]重组菌C.glutamicum Lys-χΔZMI_(Cg)::I_(Sm)(即Lys-x1)胞内检测不到NADPH,为1株NADPH营养缺陷型菌株。该重组菌只在以葡萄糖酸为碳源的基础培养基中生长和积累L-赖氨酸,而以葡萄糖、丙酮酸、α-酮戊二酸和草酰乙酸为碳源时无法生长。此外,表达E.coli中的PntAB可回补重组菌Lys-χ1胞内NADPH的水平,但由于不同强度启动子控制PntAB表达水平不同,重组菌胞内NADPH水平也不同,并影响L-赖氨酸的生产强度。[结论]重组菌Lys-χ1可作为有效的底盘细胞,用于考察不同的NADPH再生策略,获得不同胞内NADPH水平的重组菌株,为进一步阐明NADPH调控微生物细胞生理代谢功能的机制提供研究基础。  相似文献   

8.
早在三十年前就发现某些化学物质或电离辐射造成DNA损伤时,细胞内NAD~+含量减少.现在证明,NAD~+除作为脱氢酶的辅酶外,还作为多-ADP-核糖合成酶的底物,用以合成多-ADP-核糖,从而修饰核蛋白发挥生物效应,如参与DNA的复制及修复等.多-ADP-核糖合成酶的活性是DNA依赖的,而且和DNA链上的切口数有关,但多-ADP-核糖基化和DNA修复过程中的哪些反应步骤有关,目前尚无定论. 本文以人淋巴细胞为材料,紫外线(UV)照射造成DNA损伤,研究多-ADP-核糖基化  相似文献   

9.
乙醇酸、乙醛酸和草酸能明显促进烟草(Nicotiana rustica)叶片在黑暗中的硝酸还原,光呼吸抑制剂a-羟基吡啶甲烷磺酸能消除前二者的促进作用而不能完全消除草酸的作用。草酸+NAD~+能显著促进离体的硝酸还原。烟叶提取液加入草酸和NAD~+后生成NADH和CO_2认为活体内由乙醛酸氧化生成的草酸是经脱氢生成NADH供硝酸还原之用。未能证明在烟叶内存在乙醇酸脱氨酶,因此排除由乙醇酸直接脱氢以还原硝酸的可能。  相似文献   

10.
从菠菜叶绿体分离纯化Fd-NADP还原酶   总被引:1,自引:1,他引:0  
叶绿体光合电子传递链光系统I(PSI)还原端的成员,包括非血红铁硫蛋白Ferredoxin(Fd)和Fd—NADP~+还原酶。此酶是一种水溶性的黄素蛋白,它调节光还原的Fd到NADP~+之间的电子传递,暗中催化Fd和 NADP~+的可逆氧化还原,故又称作Fd—NADP~+氧化还原酶,它又有转氢作用,通过此酶可还原 NAD,FMN,FAD,吲哚染料等。还原酶和 Fd,NADP~+有强亲和力,Fd和 NADP~+以1:1的比例与还原酶形成复合物。还原酶的分子量为40000,含1FAD/分子蛋白,是一电子或二电子受体。  相似文献   

11.
烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD~+)是存在于所有活细胞中的必需吡啶核苷酸。NAD~+作为一种重要的辅酶和底物,参与能量产生、DNA修复、基因表达、钙依赖的二级信使信号和免疫调节作用等多种生物学过程。NAD~+代谢长期失衡会扰乱机体的生理功能,导致代谢性疾病、神经退行性疾病以及癌症的发生。NAD~+的水平随着老龄化以及年龄相关性疾病的发生逐渐降低。最近的研究表明,提高细胞内NAD~+水平是延缓衰老,预防年龄相关退行性疾病的一种有前景的方法。尽管细胞内NAD~+代谢与人类健康和疾病密切相关,但NAD~+含量的检测极具挑战性。目前为止,开发了多种用于定量分析细胞内NAD~+水平的分析方法。该文就细胞内NAD~+水平分析方法作一综述,着重分析近年来国内外细胞内NAD~+水平检测的研究进展以及提出未来NAD~+定量分析所需解决的问题。  相似文献   

12.
早在三十年前就发现某些化学物质或电离辐射造成DNA损伤时,细胞内NAD~ 含量减少。现在证明,NAD~ 除作为脱氢酶的辅酶外,还作为多-ADP-核糖合成酶的底物,用以合成多-ADP-核糖,从而修饰核蛋白发挥生物效应,如参与DNA的复制及修复等。多-ADP-核糖合成酶的活性是DNA依赖的,而且和DNA链上的切口数有关,但多-ADP-核糖基化和DNA修复过程中的哪些反应步骤有关,目前尚无定论。本文以人淋巴细胞为材料,紫外线(UV)照射造成DNA损伤,研究多-ADP-核糖基化  相似文献   

13.
【目的】烟酰胺腺嘌呤二核苷酸(NAD~+)在细胞基因表达、氧化还原反应、能量代谢以及调控细胞生命周期中具有重要的作用,其细胞内含量是能量效率的关键因素。强化辅因子合成策略,获得高产NAD~+菌株,对于NAD~+依赖型氧化还原反应的速率和调节相关生化合成途径的代谢流具有重要意义。【方法】首先通过内源性调节,对代谢途径中的关键酶基因进行强化,过量表达和共表达NAD~+合成途径中的关键酶基因pncB、nadD和nadE;其次,通过外源调节增加NAD~+前体物,优化诱导条件提高发酵过程中关键酶的表达量,增加NAD~+的合成量;最后在单因素优化试验的基础上,以NAD~+含量为响应值,采用Box-Bohnken试验设计方法,研究3个显著性影响因素相互作用对NAD~+积累量的影响,确定最佳的优化条件。【结果】根据关键酶基因强化策略,构建了7株重组菌,其中重组菌E.coli BL21/p ET-21a-nad E-pncB胞内NAD~+含量相比初始菌株E.coli BL21/pET-21a提高了405.2%。通过对该菌株诱导条件和NAD~+合成前体的优化,使用Design Expert 8.0分析实验数据,得出该重组菌株的最佳发酵条件为:诱导温度控制在15–20 oC,OD_(600)为0.6–0.8时添加IPTG 0.63 mmol/L、烟酸15.8 mg/L、诱导时长控制在24 h。NAD~+含量在最优条件下实验验证值可达43.16μmol/g DCW,与优化前相比提高了123.6%,与初始菌株相比提高了1029.8%。【结论】在大肠杆菌中共表达关键酶基因pncB和nadE,胞内NAD~+合成量明显增加,前体物以及诱导条件的外源调节使NAD~+积累量达到最佳优化值。实现了提高NAD~+含量的目标,胞内辅因子浓度的增加为提高生物催化效率奠定了可行性基础。  相似文献   

14.
真核有机体的呼吸链位于线粒体的内膜上(3.1节),主要催化NAD(P)H和琥珀酸(同较小的底物,诸如3—磷酸甘油,脂肪乙酰辅酶A一起)做分子氧的氧化作用。它是四个彼此无关的氧化还原载体复合物(ⅠⅡⅢ和Ⅳ)、转氢酶、辅酶Q和细胞色素C的聚合体。氧化还原载体能藉各种分光技术监测,这些分光技术在历史上已被用作在原来位置上呼吸膜  相似文献   

15.
Krebs等发现在pH6左右,甘油醛-3-磷酸脱氢酶能催化NADH转变成一个新的衍生物NADH-X。NADH-X的吸收光谱与NADH的酸分解产物相似,吸收高峰在265mμ,在340mμ没有光吸收,290mμ—300mμ附近的光吸收此NADH大。Hilvers等报告当用甘油醛作底物时,在甘油醛-3-磷酸脱氢酶催化NAD~+还原的反应初期生成一个新的衍生物“340 mμ化合物”,此化合物在340 mμ有吸收高峰,但此化合物显然不是NADH,它在反应过程中能逐渐转变成NADH。  相似文献   

16.
自然界中依赖烟酰胺类辅酶(NAD+或NADP+)的脱氢酶是氧化还原酶中最重要的一类,基于此类酶的生物传感器应用前景广阔,近年来发展迅速。构建这类传感器需要两项关键技术,即氧化型辅酶在电极表面的再生和辅酶固定化。本文介绍了辅酶电化学再生的主要方法、辅酶固定化的常见手段,以及相关的研究进展。  相似文献   

17.
(一)和 Morell 的观察相同鸡肝黄嘌呤脱氢酶能还原辅酶 I,活力和用2,6-二氯酚靛酚作受体相近。次黄嘌呤同样也能作底料。(二)辅酶 I 氧化黄嘌呤的作用是可逆的,鸡肝黄嘌呤脱氢酶能接鉵还原辅酶 I 为尿酸所氧化的作用。(三)辅酶 I 明显地增加鸡肝黄嘌呤氧化酶系和黄嘌呤细胞色素 c 还原酶系的活力。(四)用辅酶 I 及用2,6-二氯酚靛酚作受体的二种黄嘌呤脱氢酶活力受氰化物作用失效的程度相同,两种活力的比例在提纯过程中基本上不变,因此认为二种活力由同一酶所接触。  相似文献   

18.
氧化还原生物合成体系在绿色生物制造手性化合物中具有重要应用价值.甲酸脱氢酶(formate dehydrogenase,FDH)能氧化甲酸盐生成二氧化碳,同时将NAD(P)+还原为NAD(P)H,是氧化还原生物合成中辅酶再生体系的关键酶.但天然的FDH催化效率低、稳定性差、辅酶利用率不高等缺点制约了其在工业生产中的应用...  相似文献   

19.
β-烟酰胺单核苷酸(nicotinamide mononucleotide,NMN)是辅酶I——NAD~+(nicotinamide adenine dinucleotide)合成的关键中间体,存在于各种生物体内。NAD~+广泛参与体内多种反应,对人体健康起着非常重要的作用。服用烟酰胺单核苷酸后可以快速提升体内NAD~+水平,从而在体内起到多种关键功能。近年来,研究NMN为年龄相关性功能衰退和疾病的发病机制提供了许多重要的见解。研究发现NMN具有多种功能作用,例如抗衰老,促进心脑健康等。NMN已经成为保健品、食品原料等领域研究的热点,其市场容量增长迅速,目前已有多种以NMN为主要成分的保健品上市销售。基于NMN持续火热的研究态势以及未来巨大的市场预期,本文较为系统地综述了NMN的研究背景、作用机理、保健功能、全球品牌产品、主要的化学方法与生物学方法的合成路线等,旨在为普及以及推动NMN在人类健康领域的研究和应用提供参考。  相似文献   

20.
烟酰胺磷酸核糖转移酶(nicotinamide phosphoribosyltransferase,NAMPT)是哺乳动物NAD~+生物合成中的限速酶,因此是细胞内NAD~+水平的控制器。NAMPT介导的NAD~+的生物合成在能量代谢、DNA修复、染色质重塑、细胞衰老和免疫细胞功能调节等方面发挥重要的作用。然而NAMPT的循环水平随着年龄的增长而显著下降,导致年龄相关性疾病包括代谢性疾病、神经退行性疾病、衰老和癌症的发生。最近研究发现,通过脂肪组织过表达eNAMPT来提高NAD~+水平可延长小鼠的健康寿命。因此推测NAMPT-NAD~+是一种有前景的抗衰老干预途径。该文系统概述了NAMPT,总结其与年龄相关性疾病的研究进展,NAMPT作为一种具有临床意义的分子,在年龄相关性疾病的诊断、预后和治疗中具有广泛的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号