首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Specifically and effectively directing a therapeutic gene to its intended site of action is a critical issue for translation of basic genomics to clinical gene therapy. Delivering gene therapy vectors to specific cells or tissues through intravenous injection is the most desirable method for this purpose. In 2001, we reported successful targeted gene transduction in vitro utilizing both oncoretroviral and lentiviral vectors pseudotyped with a chimeric Sindbis virus envelope (ZZ SINDBIS). However, these pseudotypes mediated non-specific gene transduction to liver and spleen in vivo. To address this problem we generated the modified ZZ SINDBIS (termed m168) with significantly less non-specific infectivity. To investigate the ability of m168 pseudotyped lentiviral vector to mediate targeted gene transduction in vivo, we utilized a metastatic tumor model by using mouse melanoma cells engineered to express human P-glycoprotein. We administered the m168 pseudotyped vector conjugated with anti-P-glycoprotein antibody into the mice intravenously to target metastatic melanoma. The m168 pseudotyped vector selectively infected metastatic melanoma cells demonstrating successful targeted gene transduction in vivo. Targeting technology based upon m168 can be further modified for application not only to cancer but also potentially to genetic, neurologic, infectious and immune diseases, thereby expanding the future application of gene therapy.  相似文献   

2.
3.

Background

The delivery of therapeutic genes to the central nervous system (CNS) using viral vectors represents an appealing strategy for the treatment of nerve injury and disorders of the CNS. Important factors determining CNS targeting include tropism of the viral vectors and retrograde transport of the vector particles. Retrograde transport of equine anemia virus (EIAV)-based lentiviral vectors pseudotyped with the glycoprotein derived from the Rabies virus RabERA strain from peripheral muscle to spinal motor neurons (MNs) was previously reported. Despite therapeutic effects achieved in mouse models of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), the efficiency of this approach needs to be improved for clinical translation. To date there has not been a quantitative assessment of pseudotyped HIV-1-based lentiviral vectors to transduce MNs. Here, we describe quantitative tests to analyze the retrograde transport capacity of HIV-1 vectors pseudotyped with the G glycoprotein derived from Rabies and Rabies-related viruses (Lyssaviruses).

Methods

With a view toward optimizing the retrograde transport properties of HIV-1-based lentiviral vectors, we compared the glycoproteins from different enveloped viruses belonging to the Rhabdoviridae family, genus Lyssavirus, and evaluated their ability to transduce specific cell populations and promote retrograde axonal transport. We first tested the transduction performance of these pseudotypes in vitro in SH-SY5Y neuroblastoma cells, NSC-34 neuroblastoma-spinal cord hybrid cells, and primary mixed spinal cord and pure astrocyte cultures. We then analyzed the uptake and retrograde transport of these pseudotyped vectors in vitro, using Campenot chambers. Finally, intraneural injections were performed to evaluate the in vivo retrograde axonal transport of these pseudotypes.

Results

Both the in vitro and in vivo studies demonstrated that lentiviral vectors pseudotyped with the glycoprotein derived from the Rabies virus PV strain possessed the best performance and neuronal tropism among the vectors tested.

Conclusion

Our results indicate that HIV-1-based lentiviral vectors pseudotyped with the Rabies PV glycoprotein might provide important vehicles for CNS targeting by peripheral injection in the treatment of motor neuron diseases (MND), pain, and neuropathy.  相似文献   

4.
We present a flexible and highly specific targeting method for lentiviral vectors based on single-chain antibodies recognizing cell-surface antigens. We generated lentiviral vectors specific for human CD105(+) endothelial cells, human CD133(+) hematopoietic progenitors and mouse GluA-expressing neurons. Lentiviral vectors specific for CD105 or for CD20 transduced their target cells as efficiently as VSV-G pseudotyped vectors but discriminated between endothelial cells and lymphocytes in mixed cultures. CD133-targeted vectors transduced CD133(+) cultured hematopoietic progenitor cells more efficiently than VSV-G pseudotyped vectors, resulting in stable long-term transduction. Lentiviral vectors targeted to the glutamate receptor subunits GluA2 and GluA4 exhibited more than 94% specificity for neurons in cerebellar cultures and when injected into the adult mouse brain. We observed neuron-specific gene modification upon transfer of the Cre recombinase gene into the hippocampus of reporter mice. This approach allowed targeted gene transfer to many cell types of interest with an unprecedented degree of specificity.  相似文献   

5.
In normal mice, the lentiviral vector (LV) is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the outer limiting membrane (OLM). Two different LV pseudotypes were tested using the VSVG and the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/-) mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an alteration of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptor-specific promoter activity changes during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the Mokola envelope allows a wide dispersion of the vector into the retina (corresponding to the injection bleb) with preferential targeting of Müller cells, a situation which does not occur in the wild-type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina.  相似文献   

6.
Gene transfer vectors such as lentiviral vectors offer versatile possibilities to express transgenic antigens for vaccination purposes. However, viral vaccines leading to broad transduction and transgene expression in vivo, are undesirable. Therefore, strategies capable of directing gene transfer only to professional antigen-presenting cells would increase the specific activity and safety of genetic vaccines. A lentiviral vector pseudotype specific for murine major histocompatibilty complex class II (LV-MHCII) was recently developed and the present study aims to characterize the in vivo biodistribution profile and immunization potential of this vector in mice. Whereas the systemic administration of a vector pseudotyped with a ubiquitously-interacting envelope led to prominent detection of vector copies in the liver of animals, the injection of an equivalent amount of LV-MHCII resulted in a more specific biodistribution of vector and transgene. Copies of LV-MHCII were found only in secondary lymphoid organs, essentially in CD11c+ dendritic cells expressing the transgene whereas B cells were not efficiently targeted in vivo, contrary to expectations based on in vitro testing. Upon a single injection of LV-MHCII, naive mice mounted specific effector CD4 and CD8 T cell responses against the intracelllular transgene product with the generation of Th1 cytokines, development of in vivo cytotoxic activity and establishment of T cell immune memory. The targeting of dendritic cells by recombinant viral vaccines must therefore be assessed in vivo but this strategy is feasible, effective for immunization and cross-presentation and constitutes a potentially safe alternative to limit off-target gene expression in gene-based vaccination strategies with integrative vectors.  相似文献   

7.
Vectors derived from lentiviruses provide a promising gene delivery system. We examined the in vivo gene transfer efficiency and tissue or cell tropism of a feline immunodeficiency virus (FIV)-based lentiviral vector pseudotyped with the glycoproteins from Ross River Virus (RRV). RRV glycoproteins were efficiently incorporated into FIV virions, generating preparations of FIV vector, which after concentration attain titers up to 1.5 x 10(8) TU/ml. After systemic administration, RRV-pseudotyped FIV vectors (RRV/FIV) predominantly transduced the liver of recipient mice. Transduction efficiency in the liver with the RRV/FIV was ca. 20-fold higher than that achieved with the vesicular stomatitis virus G protein (VSV-G) pseudotype. Moreover, in comparison to VSV-G, the RRV glycoproteins caused less cytotoxicity, as determined from the levels of glutamic pyruvic transaminase and glutamic oxalacetic transaminase in serum. Although hepatocytes were the main liver cell type transduced, nonhepatocytes (mainly Kupffer cells) were also transduced. The percentages of the transduced nonhepatocytes were comparable between RRV and VSV-G pseudotypes and did not correlate with the production of antibody against the transgene product. After injection into brain, RRV/FIV preferentially transduced neuroglial cells (astrocytes and oligodendrocytes). In contrast to the VSV-G protein that targets predominantly neurons, <10% of the brain cells transduced with the RRV pseudotyped vector were neurons. Finally, the gene transfer efficiencies of RRV/FIV after direct application to skeletal muscle or airway were also examined and, although transgene-expressing cells were detected, their proportions were low. Our data support the utility of RRV glycoprotein-pseudotyped FIV lentiviral vectors for hepatocyte- and neuroglia-related disease applications.  相似文献   

8.
Lymphocytic choriomeningitis virus (LCMV) is a noncytopathic arenavirus shown to infect a broad range of different cell types. Here, we combined the beneficial characteristics of the LCMV glycoprotein (LCMV-GP) and those of retroviral vectors to generate a new, safe, and efficient gene transfer system. These LCMV-GP pseudotypes were systematically compared with vectors containing the widely used amphotropic murine leukemia virus envelope (A-MLVenv) or the vesicular stomatitis virus G protein (VSV-G). Production of LCMV-GP-pseudotyped oncoretroviral and lentiviral vectors by transient transfection resulted in vector titers similar to those with A-MLVenv or VSV-G. In contrast to A-MLVenv particles, LCMV-GP pseudotypes could be efficiently concentrated by ultracentrifugation without loss of vector titer. Unlike the cell-toxic VSV-G, a stable retroviral packaging cell line constitutively expressing LCMV-GP could be established. Vectors pseudotyped with LCMV-GP efficiently transduced many cell lines from different species and tissues relevant for gene therapy. Transduction of human glioma cells was studied in detail. These cells are a major target for cancer gene therapy and were transduced more efficiently with LCMV-GP-pseudotyped vectors than with the generally used A-MLVenv particles. The high stability, low toxicity, and broad host range make LCMV-GP-pseudotyped vectors attractive for gene transfer applications. The recombinant LCMV-GP-pseudotyped vectors will also allow functional characterization of naturally occurring and recombinant LCMV-GP variants.  相似文献   

9.
Murine oncoretroviruses and lentiviruses pseudotyped with envelope proteins of alphaviruses have shown great potential in providing broad-host-range, stable vectors for gene therapy. Unlike vesicular stomatitis virus G protein-pseudotyped vectors, they are not neutralized by complement and do not appear to cause significant tissue damage. Here we report the production of murine oncoretroviral and lentiviral vectors pseudotyped with the envelope proteins of Venezuelan equine encephalitis virus (VEEV). When optimized, these pseudotypes achieve titers of 106 CFU/ml, which is 5- to 10-fold higher than for previous vectors pseudotyped with envelope proteins from other alphaviruses. They can also be concentrated or stored frozen without significant loss of infectivity. Consistent with the tropism of the envelope donor, they transduce a broad array of human cell types, including lung epithelial cells, neuronal cells, lymphocytes, and fibroblasts. Infection is blocked by agents that inhibit endosomal acidification and by neutralizing antibodies against VEEV. These observations indicate that the pseudotypes present native epitopes on their surface and enter through a VEEV envelope-dependent, pH-sensitive mechanism. The fact that the pseudotypes are unaffected by sera reactive to other alphaviruses indicates that they may be useful when successive gene therapies are required in the presence of an active immune response. In this case, having an array of alphavirus-based vectors with similar cell tropisms would be highly advantageous. These vectors may also be useful in diagnostic assays in which infectious VEEV is undesirable but immune reactivity to native epitopes is required.  相似文献   

10.
The family of non‐coding mitochondrial RNAs (ncmtRNA) is differentially expressed according to proliferative status. Normal proliferating cells express sense (SncmtRNA) and antisense ncmtRNAs (ASncmtRNAs), whereas tumor cells express SncmtRNA and downregulate ASncmtRNAs. Knockdown of ASncmtRNAs with oligonucleotides induces apoptotic cell death of tumor cells, leaving normal cells unaffected, suggesting a potential application for developing a novel cancer therapy. In this study, we knocked down the ASncmtRNAs in melanoma cell lines with a lentiviral‐encoded shRNA approach. Transduction with lentiviral constructs targeted to the ASncmtRNAs induced apoptosis in murine B16F10 and human A375 melanoma cells in vitro and significantly retarded B16F10 primary tumor growth in vivo. Moreover, the treatment drastically reduced the number of lung metastatic foci in a tail vein injection assay, compared to controls. These results provide additional proof of concept to the knockdown of ncmtRNAs for cancer therapy and validate lentiviral–shRNA vectors for gene therapy.  相似文献   

11.
BACKGROUND: Efficient gene transfer to bone marrow derived mesenchymal stem cells (MSC) would provide an important opportunity to express potent anticancer agents in the tumour microenvironment because of their contribution to the tumour stroma. METHODS: HIV-based lentiviral vectors were pseudotyped with four different envelope proteins; amphotropic murine leukaemia virus (ampho), murine leukaemia virus (10A1), feline endogenous virus (RD114), and the vesicular stomatitis virus glycoprotein (VSVG). These pseudotypes were examined for transduction efficiency in human bone marrow derived MSC. The effect of lentiviral expression of truncated soluble vascular endothelial growth factor decoy receptor (tsFlk-1) in MSC on growth of Raji cells was determined, both in vitro and in vivo. RESULTS: All lentiviral vectors produced significant levels of transduction at an multiplicity of infection (MOI) of 1, those bearing the RD114 envelope glycoprotein consistently produced higher transduction levels (mean 70 +/- 6%) compared with the other pseudotyped lentiviral vectors, although there was significant inter-donor variation. Stable transgene expression was achieved after multiple rounds of transduction with VSVG-pseudotyped particles, without alteration in the differentiative capacity of transduced cells. Co-injection of MSC stably expressing tsFlk-1 with Raji Burkitt's lymphoma cells significantly impaired subcutaneous tumour growth in immunodeficient mice when compared to controls where either unmanipulated MSC or GFP-expressing MSC were used. CONCLUSIONS: Human MSC are easily transduced by pseudotyped lentiviral particles but there is inter-donor variation in transduction efficiency. Gene-modified MSC expressing a gene of therapeutic potential can moderate growth of haematological malignancies.  相似文献   

12.
Lentivirus vectors are being investigated as gene delivery vehicles for cystic fibrosis airway gene therapy. Vesicular stomatitis virus G glycoprotein (VSV-G)-pseudotyped vectors transduce airway epithelia via receptors that are located predominantly on the basolateral surface of the airway epithelium. Effective transduction with VSV-G-pseudotyped vectors requires the use of a pre-treatment that disrupts epithelial tight junctions, allowing access to these basolateral receptors. In contrast, it has been reported that apically targeted lentiviral vectors allow efficient gene transfer in the absence of any pre-treatment. In a direct comparison of transduction by a VSV-G-pseudotyped vector, in combination with a pre-treatment with lysophosphatidylcholine (LPC), and the same vector pseudotyped with the apically targeted baculovirus GP64 envelope (without any pre-treatment), the GP64 vector was found to be significantly less efficient. However, when a pre-treatment with LPC was used the level of transduction with the GP64-pseudotyped lentiviral vector was not significantly different to that resulting from the VSV-G-pseudotyped vector. The cell types transduced with each vector were essentially the same, with the majority of cells transduced being respiratory (ciliated cells). However, unlike the VSV-G-pseudotyped vector, which results in persisting gene expression, transduction with the GP64-pseudotyped vector resulted in gene expression that declined to undetectable levels over six months, whether or not an LPC pre-treatment was used.  相似文献   

13.
We investigated the ability of western equine encephalitis virus envelope glycoproteins (WEEV GP) to pseudotype lentiviral vectors. The titers of WEEV GP-pseudotyped human immunodeficiency virus type 1 (HIV) ranged as high as 8.0 × 104 IU/ml on permissive cells. Sera from WEEV-infected mice specifically neutralized these pseudotypes; cell transduction was also sensitive to changes in pH. The host range of the pseudotyped particles in vitro was somewhat limited, which is atypical for most alphaviruses. HIV vectors pseudotyped by WEEV GP may be a useful tool for characterizing WEEV cell binding and entry and screening for small-molecule inhibitors.  相似文献   

14.
We report a method of inducing antigen production in dendritic cells by in vivo targeting with lentiviral vectors that specifically bind to the dendritic cell-surface protein DC-SIGN. To target dendritic cells, we enveloped the lentivector with a viral glycoprotein from Sindbis virus engineered to be DC-SIGN-specific. In vitro, this lentivector specifically transduced dendritic cells and induced dendritic cell maturation. A high frequency (up to 12%) of ovalbumin (OVA)-specific CD8(+) T cells and a significant antibody response were observed 2 weeks after injection of a targeted lentiviral vector encoding an OVA transgene into naive mice. This approach also protected against the growth of OVA-expressing E.G7 tumors and induced regression of established tumors. Thus, lentiviral vectors targeting dendritic cells provide a simple method of producing effective immunity and may provide an alternative route for immunization with protein antigens.  相似文献   

15.
BACKGROUND: We have previously reported long-term expression of lacZ in myocytes after in utero intramuscular injection of Mokola and Ebola pseudotyped lentiviral vectors. In further experiments, we have noted that these vectors also transduce small cells at the periphery of the muscle fibers that have the morphology of satellite cells, or muscle stem cells. In this study we performed experiments to further define the morphology and function of these cells. METHODS: Balb/c mice at 14-15 days gestation were injected intramuscularly with Ebola or Mokola pseudotyped lentiviral vectors carrying CMV-lacZ. Animals were harvested at various time points, muscles were stained with X-gal, and processed for electron microscopy (EM) and immunofluorescence. To determine whether transduced satellite cells were functionally capable of regenerating injured muscles, animals were injected with notexin in the same area 8 weeks after the in utero injection of viral vector. RESULTS: Transmission EM of transduced cells confirmed the ultrastructural appearance of satellite cells. Double immunofluorescence for beta-galactosidase and satellite cell markers demonstrated co-localization of these markers in transduced cells. In the notexin-injured animals, small blue cells were seen at the areas of regeneration that co-localized beta-galactosidase with markers of regenerating satellite cells. Central nucleated blue fibers were seen at late time points, indicating regenerated muscle fibers arising from a transduced satellite cell. CONCLUSIONS: This study demonstrates transduction of muscle satellite cells following prenatal viral vector mediated gene transfer. These findings may have important implications for gene therapy strategies directed toward muscular dystrophy.  相似文献   

16.
The development of a lentiviral system to deliver genes to specific cell types could improve the safety and the efficacy of gene delivery. Previously, we have developed an efficient method to target lentivectors to specific cells via an antibody–antigen interaction in vitro and in vivo. We report herein a targeted lentivector that harnesses the natural ligand–receptor recognition mechanism for targeted modification of c‐KIT receptor‐expressing cells. For targeting, we incorporate membrane‐bound human stem cell factor (hSCF), and for fusion, a Sindbis virus‐derived fusogenic molecule (FM) onto the lentiviral surface. These engineered vectors can recognize cells expressing surface CD117, resulting in efficient targeted transduction of cells in an SCF‐receptor dependent manner in vitro, and in vivo in xenografted mouse models. This study expands the ability of targeting lentivectors beyond antibody targets to include cell‐specific surface receptors. Development of a high titer lentivector to receptor‐specific cells is an attractive approach to restrict gene expression and could potentially ensure therapeutic effects in the desired cells while limiting side effects caused by gene expression in non‐target cells. Biotechnol. Bioeng. 2009; 104: 206–215 © 2009 Wiley Periodicals, Inc.  相似文献   

17.
Inhibiting gene expression in specific tissues and organs through intravenous injection would be the ultimately preferred method of disease therapy. Here, we report the successful delivery of lentivirus-mediated small interfering RNA (siRNA) to suppress GFP gene expression in living mice. First, a lentiviral vector with siRNA (len-siRNA) driven by H1 promoter was constructed to effectively suppress GFP expression in Mel cells. When the len-siRNA virus was injected into transgenic mice, the GFP expression was significantly suppressed (over 15% reduction) in the recipient mice compared to the control mice and the suppressing effect lasted more than 1 week after injection. Our results demonstrate a new effective approach to inhibit gene expression by siRNA and lentiviral vectors. Further development of this drug for suppression of gene expression siRNA should result in applications not only for cancers but also for infectious and immune diseases. Published in Russian in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 6, pp. 990–996. The text was submitted by the authors in English.  相似文献   

18.
Dendritic cells (DCs) are potent antigen-presenting cells and therefore have enormous potential as vaccine targets. We have previously developed an engineered lentiviral vector (LV) that is pseudotyped with a mutated Sindbis virus glycoprotein (SVGmu), which is capable of targeting DCs through Dendritic Cell-specific ICAM3-grabbing Nonintegrin (DC-SIGN), a receptor that is predominantly expressed by DCs. In this study, we aimed to elucidate the internalization and trafficking mechanisms of this viral vector system through direct visualization of GFP-Vpr-tagged viral particles in target DCs, which was further corroborated by drug inhibition and dominant-negative mutants of cellular proteins that regulate the endocytic traffic. We demonstrated that our engineered LVs enter the cell via receptor-mediated clathrin- and dynamin-dependent endocytosis. Microtubule networks were also involved in a productive infection. Viral vector fusion was low-pH-dependent and occurred in the early endosomal stage of the intracellular transport. Autophagy was also examined for its effect on transduction efficiency, and we observed that enhanced autophage activity reduced vector infectivity, while suppressed autophagy boosted transduction efficiency. This study shed some light on the internalization and trafficking mechanisms of DC-directed LVs and offers some strategies to further improve the efficiency of LV-mediated gene therapy.  相似文献   

19.
Delivery of small interfering RNAs (siRNAs) into cells is a key obstacle to their therapeutic application. We designed a protamine-antibody fusion protein to deliver siRNA to HIV-infected or envelope-transfected cells. The fusion protein (F105-P) was designed with the protamine coding sequence linked to the C terminus of the heavy chain Fab fragment of an HIV-1 envelope antibody. siRNAs bound to F105-P induced silencing only in cells expressing HIV-1 envelope. Additionally, siRNAs targeted against the HIV-1 capsid gene gag, inhibited HIV replication in hard-to-transfect, HIV-infected primary T cells. Intratumoral or intravenous injection of F105-P-complexed siRNAs into mice targeted HIV envelope-expressing B16 melanoma cells, but not normal tissue or envelope-negative B16 cells; injection of F105-P with siRNAs targeting c-myc, MDM2 and VEGF inhibited envelope-expressing subcutaneous B16 tumors. Furthermore, an ErbB2 single-chain antibody fused with protamine delivered siRNAs specifically into ErbB2-expressing cancer cells. This study demonstrates the potential for systemic, cell-type specific, antibody-mediated siRNA delivery.  相似文献   

20.
Gene therapy has been applied to the treatment of cancer and metastatic disease for over ten years. Research in this area has utilised multiple gene therapy approaches including targeting tumour suppressor genes and oncogenes, stimulating the immune system, targeted chemotherapy, antiangiogenic strategies, and direct viral oncolysis. In recent years, gene delivery vectors have been developed that selectively target tumour cells through tumour-specific receptors, deletion of certain viral gene sequences, or incorporation of tumour-specific promoter sequences that drive gene expression. Preclinical models have produced promising results, demonstrating significant tumour regression and reduction of metastatic disease. Unfortunately, only limited responses have been observed in clinical trials. The main limitations in treating metastatic disease include poor vector transduction efficiencies and difficulties in targeting remote tumour cells with systemic vector delivery. Currently, various groups are investigating means to improve gene delivery and clinical responses by continuing to modify gene delivery vectors and by concentrating on combination gene therapy and multimodality therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号