首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metals bound to proteins play essential roles in living systems. Elements such as phosphorus, selenium and iodine are commonly covalently linked to proteins while others are non-covalently complexed. Thus, the identification and characterization of the metal-protein complexes require a careful hyphenation of techniques able to separate and detect the intact binding complexes with both high resolution and high sensitivity. This study has investigated for the first time the potential of microsolution isoelectric focussing to separate a mixture of metal-binding protein standards under well-established denaturing conditions and a novel non-denaturing separation protocol has also been developed. SEC-ICP-MS analysis was used to evaluate the ability of the two separation procedures to separate and maintain the integrity of standard metal-protein complexes. Microsolution isoelectric focussing under denaturing conditions separates the metalloprotein mixtures with high resolution, although the stability of the complexes is affected. Microsolution isoelectric focussing under our newly developed non-denaturing conditions shows a lower degree of resolution, although the stability of the metal-protein complexes is preserved. The applicability of the two procedures to a biological metalloproteome has also been evaluated.  相似文献   

2.
Protein–protein interaction (PPI) establishes the central basis for complex cellular networks in a biological cell. Association of proteins with other proteins occurs at varying affinities, yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation, signaling, immunity, and inhibition, playing a crucial role in functional genomics. The molecular principle of such interactions is often elusive in nature. Therefore, a comprehensive analysis of known protein complexes from the Protein Data Bank (PDB) is essential for the characterization of structural interface features to determine structure–function relationship. Thus, we analyzed a nonredundant dataset of 278 heterodimer protein complexes, categorized into major functional classes, for distinguishing features. Interestingly, our analysis has identified five key features (interface area, interface polar residue abundance, hydrogen bonds, solvation free energy gain from interface formation, and binding energy) that are discriminatory among the functional classes using Kruskal-Wallis rank sum test. Significant correlations between these PPI interface features amongst functional categories are also documented. Salt bridges correlate with interface area in regulator-inhibitors (r = 0.75). These representative features have implications for the prediction of potential function of novel protein complexes. The results provide molecular insights for better understanding of PPIs and their relation to biological functions.  相似文献   

3.
Telleman P  Kingsbury GA  Junghans RP 《BioTechniques》2000,29(6):1240-2, 1244, 1246 passim
Phage libraries may display hormones, receptors, antibody fragments, etc., by fusion to phage envelope proteins. This report describes the direct precipitation of phage-Fab-antigen complexes by polyethylene glycol precipitation, resulting in highly selective and efficient recovery of antigen from complex mixtures without nonspecific protein contamination. The method demonstrates efficiency and specific recovery of phage-Fab-antigen complexes from a background of a complex mixture of unrelated proteins as may occur in the analysis of biological specimens. This simple, fast, and effective method allows isolation and characterization of target antigens, with no need to further process Fab or sFv, and may reasonably be extended to isolate any interacting partner molecule for any displayed protein.  相似文献   

4.
Bashir Q  Scanu S  Ubbink M 《The FEBS journal》2011,278(9):1391-1400
Electron transfer proteins transport electrons safely between large redox enzymes. The complexes formed by these proteins are among the most transient. The biological function requires, on the one hand, sufficient specificity of the interaction to allow for rapid and selective electron transfer, and, on the other hand, a fast turnover of the complex. Recent progress in the characterization of the nature of these complexes has demonstrated that the encounter state plays an important role. This state of initial binding is dominated by electrostatic interactions, and consists of an ensemble of orientations. Paramagnetic relaxation enhancement NMR and chemical shift perturbation analysis provide ways for the experimental characterisation of the encounter state. Several studies that have used these techniques have shown that the surface area sample in the encounter state can be limited to the immediate environment of the final, specific complex. The encounter complex can represent a large fraction and, in some small complexes, no specific binding is detected at all. It can be concluded that, in electron transfer protein complexes, a fine balance is sought between the low-specificity encounter state and the high-specificity productive complex to meet the opposing requirements of rapid electron transfer and a high turnover rate.  相似文献   

5.
Progress in proteomic researches is largely determined by development and implementation of new methods for the revelation and identification of proteins in biological material in a wide concentration range (from 10(-3) M to single molecules). The most perspective approaches to address this problem involve (i) nanotechnological physicochemical procedures for the separation of multicomponent protein mixtures; among these of particular interest are biospecific nanotechnological procedures for selection of proteins from multicomponent protein mixtures with their subsequent concentration on solid support; (ii) identification and counting of single molecules by use of molecular detectors. The prototypes of biospecific nanotechnological procedures, based on the capture of ligand biomolecules by biomolecules of immobilized ligate and the concentration of the captured ligands on appropriate surfaces, are well known; these are affinity chromatography, magnetic biobeads technology, different biosensor methods, etc. Here, we review the most promising nanotechnological approaches for selection of proteins and kinetic characterization of their complexes based on these biospecific methods with subsequent MS/MS identification of proteins and protein complexes. Two major groups of methods for the analysis and identification of individual molecules and their complexes by use of molecular detectors will be reviewed: scanning probe microscopy (SPM) (including atomic-force microscopy) and cryomassdetector technology.  相似文献   

6.
Many biological processes take place in close proximity to lipid membranes. For a detailed understanding of the underlying mechanisms, tools are needed for the quantitative characterization of such biomolecular interactions. In this work, we describe the development of methods addressing the dynamics and affinities of protein complexes attached to an artificial membrane system. A semisynthetic approach provides the Ras protein with palmitoyl anchors, which allow stable membrane insertion, as a paradigm for membrane associated proteins that interact with multiple effectors. An artificial membrane system is constituted by nanoparticles covered with a lipid bilayer. Such a stable suspension allows for the characterization of the interaction between membrane-bound Ras and effector proteins using conventional fluorescence-based methods.  相似文献   

7.
The utility of mass spectrometry for the analysis of proteins has grown enormously in the past decade. Significant advances in detection and ionization techniques are allowing questions about noncovalent assembly to be addressed by the direct observation of gas phase complexes, their assembly in real time and their disassembly by perturbation of solution or instrument conditions. These technological innovations have plainly captured the imagination of biological researchers. Recent and novel developments include the combination of mass spectrometry with isotopic labeling, affinity labeling and genomic information. Collectively, these advances are opening new doors to the isolation of complexes, the identification of their substituents and the characterization of their conformations and assembly.  相似文献   

8.
9.
A strategy for identifying and characterizing protein interactions among gel-separated proteins and complexes has been developed and tested. The method involves the efficient recovery of proteins or complexes from native gels without affecting their conformational integrity. The use of limited proteolysis of protein complexes, isolated from the gel or formed from the interaction of gel-recovered proteins with potential binding partners, has enabled local binding domains to be efficiently identified using a combination of microfiltration and mass spectrometric analysis. The application of mass spectrometry affords high detection sensitivities, enabling the strategy to be applied to low levels of protein and protein mixtures. The approach is demonstrated for both antigen-antibody and peptide-protein complexes for which protein-binding regions are characterized among simple peptide mixtures and proteolytic digests. The strategy can be easily adapted to achieve high sample throughput and automation using gel-excision robotics and provides a means to study protein interactions in complex biological mixtures and extracts.  相似文献   

10.
Micellar complexes of melittin with fully deuterated detergents have been studied by high resolution 1H nuclear magnetic resonance (NMR). The synthesis of deuterated micelles is described and it is shown that the 1H NMR spectrum of micelle-bound melittin is well resolved and suitable for detailed analysis by conventional high-resolution NMR methods. A preliminary characterization of micelle-bound melittin shows that interaction with the micelle results in different conformational and dynamic features for the hydrophobic and hydrophilic regions of the melittin amino acid sequence. The present experiments on melittin and preliminary results with other polypeptides and proteins demonstrate that in favourable cases high-resolution 1H NMR studies of the complexes formed between membrane proteins and deuterated micelles provides a viable method for conformational studies of membrane-bound proteins.  相似文献   

11.
Goal 1 of Department of Energy's Genomes to Life (GTL) program seeks to identify and characterize the complete set of protein complexes within a cell. Goal 1 forms the foundation necessary to accomplish the other objectives of the GTL program, which focus on gene regulatory networks and molecular level characterization of interactions in microbial communities. Together this information would allow cells and their components to be understood in sufficient detail to predict, test and understand the responses of a biological system to its environment. The Center for Molecular and Cellular Systems has been established to identify and characterize protein complexes using high through-put analytical technologies.A dynamic research program is being developed that supports the goals of the Center by focusing on the development new capabilities for sample preparation and complex separations, molecular level identification of the protein complexes by mass spectrometry, characterization of the complexes in living cells by imaging techniques, and bioinformatics and computational tools for the collection and interpretation of data and formation of databases and tools to allow the data to be shared by the biological community.  相似文献   

12.
During the last decade, protein analysis and proteomics have been established as new tools for understanding various biological problems. As the identification of proteins after classical separation techniques, such as two-dimensional gel electrophoresis, have become standard methods, new challenges arise in the field of proteomics. The development of "functional proteomics" combines functional characterization, like regulation, localization and modification, with the identification of proteins for deeper insight into cellular functions. Therefore, different mass spectrometric techniques for the analysis of post-translational modifications, such as phosphorylation and glycosylation, have been established as well as isolation and separation methods for the analysis of highly complex samples, e.g. protein complexes or cell organelles. Furthermore, quantification of protein levels within cells is becoming a focus of interest as mass spectrometric methods for relative or even absolute quantification have currently not been available. Protein or genome databases have been an essential part of protein identification up to now. Thus, de novo sequencing offers new possibilities in protein analytical studies of organisms not yet completely sequenced. The intention of this review is to provide a short overview about the current capabilities of protein analysis when addressing various biological problems.  相似文献   

13.
The characterization of biological processes on the basis of alterations in the cellular proteins, or "proteomic" analysis, is a powerful approach that may be adopted to decipher the signaling mechanisms that underlie various pathophysiological conditions, such as ischemic heart disease. This review represents a prospectus for the implementation of proteomic analyses to delineate the myocardial intracellular signaling events that evoke cardioprotection against ischemic injury. In concert with this, the manifestation of a protective phenotype has recently been shown to involve dynamic modulation of protein kinase C-epsilon (PKC epsilon) signaling complexes (Ping P, Zhang J, Pierce WM Jr, and Bolli R. Circ Res 88: 59--62, 2001). Accordingly, "the signaling module hypothesis" is formulated as a plausible mechanism by which multipurpose stress-activated proteins and signaling kinases may function collectively to facilitate the genesis of cardioprotection.  相似文献   

14.
To understand the function of protein complexes and their association with biological processes, a lot of studies have been done towards analyzing the protein-protein interaction (PPI) networks. However, the advancement in high-throughput technology has resulted in a humongous amount of data for analysis. Moreover, high level of noise, sparseness, and skewness in degree distribution of PPI networks limits the performance of many clustering algorithms and further analysis of their interactions.In addressing and solving these problems we present a novel random walk based algorithm that converts the incomplete and binary PPI network into a protein-protein topological similarity matrix (PP-TS matrix). We believe that if two proteins share some high-order topological similarities they are likely to be interacting with each other. Using the obtained PP-TS matrix, we constructed and used weighted networks to further study and analyze the interaction among proteins. Specifically, we applied a fully automated community structure finding algorithm (Auto-HQcut) on the obtained weighted network to cluster protein complexes. We then analyzed the protein complexes for significance in biological processes. To help visualize and analyze these protein complexes we also developed an interface that displays the resulting complexes as well as the characteristics associated with each complex.Applying our approach to a yeast protein-protein interaction network, we found that the predicted protein-protein interaction pairs with high topological similarities have more significant biological relevance than the original protein-protein interactions pairs. When we compared our PPI network reconstruction algorithm with other existing algorithms using gene ontology and gene co-expression, our algorithm produced the highest similarity scores. Also, our predicted protein complexes showed higher accuracy measure compared to the other protein complex predictions.  相似文献   

15.
Glycosphingolipid behaviour in complex membranes   总被引:2,自引:0,他引:2  
Glycosphingolipids, due to their tendency to form laterally separated liquid-ordered phases, possess a high potential for the creation of order in biological membranes. The formation of glycosphingolipid-rich domains within the membrane has profound consequences on the membrane organization at different levels, and on the conformational and biological properties of membrane-associated proteins and multimolecular protein complexes. In this review, we will discuss 1) how glycosphingolipids influence the lateral organization of biological membranes; 2) how glycosphingolipids influence the function of membrane-associated proteins.  相似文献   

16.
Glycosphingolipids, due to their tendency to form laterally separated liquid-ordered phases, possess a high potential for the creation of order in biological membranes. The formation of glycosphingolipid-rich domains within the membrane has profound consequences on the membrane organization at different levels, and on the conformational and biological properties of membrane-associated proteins and multimolecular protein complexes. In this review, we will discuss 1) how glycosphingolipids influence the lateral organization of biological membranes; 2) how glycosphingolipids influence the function of membrane-associated proteins.  相似文献   

17.
The ensemble of expressed proteins in a given cell is organized in multiprotein complexes. The identification of the individual components of these complexes is essential for their functional characterization. The introduction of the 'tandem affinity purification' (TAP) methodology substantially improved the purification and systematic genome-wide characterization of protein complexes in yeast. The use of this approach in higher eukaryotic cells has lagged behind its use in yeast because the tagged proteins are normally expressed in the presence of the untagged endogenous version, which may compete for incorporation into multiprotein complexes. Here we describe a strategy in which the TAP approach is combined with double-stranded RNA interference (RNAi) to avoid competition from corresponding endogenous proteins while isolating and characterizing protein complexes from higher eukaryotic cells. This strategy allows the determination of the functionality of the tagged protein and increases the specificity and the efficiency of the purification.  相似文献   

18.
Interactions of proteins with other macromolecules or small molecules play important roles in most biological processes. Often, such interactions are weak and transient, and the complexes do not easily crystallize. NMR spectroscopy has the unique ability to retrieve information about these interactions and is increasingly used. Recent methodological developments have helped characterize weak protein interactions, and have in particular been applied to the study of proteins that are mostly unfolded alone but form well-defined complexes upon interaction. In addition, NMR methods have been applied to the identification and characterization of small chemicals that inhibit protein function, a primary objective of rational drug design.  相似文献   

19.
Among bacterial cell envelopes, the Borrelia burgdorferi outer membrane (OM) is structurally unique in that the identities of many protein complexes remain unknown; however, their characterization is the first step toward our understanding of membrane protein interactions and potential functions. Here, we used two-dimensional blue native/SDS-PAGE/mass spectrometric analysis for a global characterization of protein-protein interactions as well as to identify protein complexes in OM vesicles isolated from multiple infectious sensu stricto isolates of B. burgdorferi. Although we uncovered the existence of at least 10 distinct OM complexes harboring several unique subunits, the complexome is dominated by the frequent occurrence of a limited diversity of membrane proteins, most notably P13, outer surface protein (Osp) A, -B, -C, and -D and Lp6.6. The occurrence of these complexes and specificity of subunit interaction were further supported by independent two-dimensional immunoblotting and coimmunoprecipitation assays as well as by mutagenesis studies, where targeted depletion of a subunit member (P66) selectively abolished a specific complex. Although a comparable profile of the OM complexome was detected in two major infectious isolates, such as B31 and 297, certain complexes are likely to occur in an isolate-specific manner. Further assessment of protein complexes in multiple Osp-deficient isolates showed loss of several protein complexes but revealed the existence of additional complex/subunits that are undetectable in wild-type cells. Together, these observations uncovered borrelial antigens involved in membrane protein interactions. The study also suggests that the assembly process of OM complexes is specific and that the core or stabilizing subunits vary between complexes. Further characterization of these protein complexes including elucidation of their biological significance may shed new light on the mechanism of pathogen persistence and the development of preventative measures against the infection.  相似文献   

20.
Membrane proteins remain refractory to standard protein chip analysis. They are typically expressed at low densities in distinct subcellular compartments, their biological activity can depend on assembly into macromolecular complexes in a specific lipid environment. We report here a real-time, label-free method to analyze membrane proteins inserted in isolated native synaptic vesicles. Using surface plasmon resonance-based biomolecular interaction analysis (Biacore), organelle capture from minute quantities of 10,000 g brain supernatant (1-10 microg) was monitored. Immunological and morphological characterization indicated that pure intact synaptic vesicles were immobilized on sensor chips. Vesicle chips were stable for days, allowing repetitive use with multiple analytes. This method provides an efficient way in which to characterize organelle membrane components in their native context. Organelle chips allow a broad range of measurements, including interactions of exogenous ligands with the organelle surface (kinetics, Kd), and protein profiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号