首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
On the basis of metabolite and enzyme studies a new type of acute hepatic porphyria with porphobilinogen synthase defect and repeated intermittent acute manifestations, abdominal colics, tachycardia and hypertension, and a persistent neurological syndrome was found in two young male patients. The main characteristic features are the following:
  • 1.1. High urinary δ-aminolevulinic acid excretion( ⪢ 1 mmol/24hr), slight increase of porphobilinogen (up to 25 μmol/24 hr) and high increase of porphyrins (up to 22 μmol/24 hr) with coproporphyrin dominance.
  • 2.2. Normal fecal and liver porphyrins.
  • 3.3. Slight increase of erythrocyte protoporphyrin.
  • 4.4. Decrease of porphobilinogen synthase activity in erythrocytes in both cases below 1% of healthy and not lead-exposed persons; normal activities of uroporphyrinogen synthase and decarboxylase in erythrocytes.
  • 5.5. Low-normal lead concentrations in blood and low-normal lead excretion in urine in both cases; normal lead content in bone.
  • 6.6. Normal plasma and urinary amino acids.
  • 7.7. Irrelevant hepatological (liver biopsy), general clinical chemical and hematological findings.
  • 8.8. Diminished activity of porphobilinogen synthase in nearly all family members of both patients. From these investigations it can be concluded that there is no exogeneous, “toxic” cause of this porphyria. Porphobilinogen synthase in lead poisoning is not diminished to such an extent as demonstrated here; in contrast to lead intoxication, porphobilinogen synthase activity cannot be activated or reactivated by thiols. All clinical and pathobiochemical data point at a new enzymatic type of endogeneous acute hepatic porphyria with intermittent acute manifestations, clinically analogous to so-called acute intermittent porphyria. Porphyrin precursors and porphyrin excretion both reflects the enzymatic defect and the regulatory consequences starting with the induction of δ-aminolevulinic acid synthase.
  相似文献   

2.
  • 1.1. Exposure to dioxin triggered a clinically manifest chronic hepatic porphyria (porphyria cutanea tarda) in two patients (brother and sister) with hereditary uroporphyrinogen decarboxylase deficiency.
  • 2.2. The patients showed a decrease of erythrocyte uroporphyrinogen decarboxylase activity to ~ 50% of controls even in reinvestigations after three years, whereas clinical symptoms and porphyrinuria had improved considerably. Only a subclinical phase of chronic hepatic porphyria persisted. Subnormal uroporphyrinogen decarboxylase activity could be determined in altogether nine family members.
  • 3.3. The remission of porphyria cutanea tarda into a subclinical phase occurred after chloroquine therapy. Subclinical phases of chronic hepatic porphyria (type A) in other family members remitted without special therapy.
  • 4.4. Among the 60 persons dioxin-exposed by the Seveso accident, a secondary coproporphyrinuria was found in 22% of examined patients with transition to a subclinical chronic hepatic porphyria in 5 cases. The changes had subsided completely after one year. A persistence of the transition state in 3 cases is probably due to alcohol influence. None of these cases developed a porphyria cutanea tarda.
  • 5.5. The investigations showed that a hereditary disposition is necessary for biochemical and clinical expression of chronic hepatic porphyria after a unique dioxin exposure. This is not given in the sporadic cases: after a unique dioxin exposure they indeed develop a symptomatic disturbance of porphyrin metabolism but not a clinically relevant chronic hepatic porphyria.
  • 6.6. We conclude that a unique acute exposure to dioxin can trigger the chronic hepatic porphyria disease process in persons with an underlying genetic abnormality of uroporphyrinogen decarboxylase.
  相似文献   

3.
Summary Patients with acute intermittent porphyria are now known to have a decrease of the third enzyme and, in liver, an increase of the first enzyme of the heme biosynthetic pathway. It is possible that the induction of the first enzyme (ALA synthetase) in the liver of these patients results from the partial block in heme synthesis, since heme is known to be involved in the repression of hepatic ALA synthetase via a closed negative feedback loop. Presumably, an increase of hepatic ALA synthetase allows the delivery of a higher substrate concentration to the enzyme at the level of the block, thus raising the rate of the synthesis of end product toward normal. Using a simplified Michaelis-Menten model of an irreversible pathway in a homogeneous system, quantitative relationships between the degree of block and the magnitude of induction of the first enzyme necessary to return the steady state rate of the pathway to normal have been developed. This is intended as a point of departure for refinements which may ultimately lead to more accurate quantitative relationships.Despite the fact that various forms of experimental porphyria do not produce the specific enzyme decrease of acute intermittent porphyria, they have provided the basis for a number of discoveries which have direct application to this disease.Reprint requests should be sent to this address.  相似文献   

4.

Background

The porphyrias are a heterogeneous group of rare metabolic diseases. The full spectrum of porphyria diagnostics is usually performed by specialized porphyria laboratories or centres. The European Porphyria Initiative (EPI), a collaborative network of porphyria centres formed in 2001, evolved in 2007 into the European Porphyria Network (EPNET), where participating centres are required to adhere to agreed quality criteria. The aim of this study was to examine the state and distribution of porphyria diagnostic services in 2009 and to explore potential effects of increased international collaboration in the field of these rare diseases in the period 2006–2009.

Methods

Data on laboratory, diagnostic and clinical activities and services reported to EPI/EPNET in yearly activity reports during 2006 through 2009 were compared between reporting centres, and possible time trends explored.

Results

Thirty-five porphyria centres from 22 countries, five of which were non-European associate EPNET members, filed one or more activity reports to EPI/EPNET during the study period. Large variations between centres were observed in the analytical repertoire offered, numbers of analyses performed and type and number of staff engaged. The proportion of centres fulfilling the minimum criteria set by EPNET to be classified as a specialist porphyria centre increased from 80% to 94% during the study period.

Conclusions

Porphyria services are unevenly distributed, and some areas are probably still lacking in specialized porphyria services altogether. However, improvements in the quality of diagnostic services provided by porphyria centres participating in EPI/EPNET were observed during 2006 through 2009.
  相似文献   

5.
The activity of oxaloacetate decarboxylase was revealed in leaves of a C4 plant, maize (Zea mays L.). This activity was unrelated to decarboxylase activities of other enzymes, e.g., NAD-malate dehydrogenase (EC 1.1.1.38) or NADP-malate dehydrogenase (EC 1.1.1.40), and was located in chloroplasts (83.1%). Using a four-step purification procedure, an electrophoretically pure enzyme preparation of oxaloacetate decarboxylase was obtained from maize leaves. The specific activity of the enzyme was 3.150 EU/mg protein, the factor of purification was 40.4, and the yield was 11.0%. The enzyme exhibited Michaelis–Menten kinetics with K m for oxaloacetate 30 ± 5 M and pH optimum 7.1 ± 0.5. The metabolite-mediated regulation of oxaloacetate decarboxylase activity has been investigated. It is found that sodium chloride (1.0 mM) activates the enzyme, whereas ATP inhibits the enzyme activity.  相似文献   

6.
Coenzyme A-linked acetaldehyde dehydrogenase (ACDH) of ethanol-grown cells of Acetobacterium woodii was purified to apparent homogeneity; a 28-fold purification was achieved with 13% yield. The enzyme proved to be oxygen-sensitive and was inactive in the absence of dithioerythritol. During the purification procedure addition of 1 mM MgCl2 was necessary to maintain enzyme activity. Alcohol dehydrogenase (ADH) activity was separated from ACDH during anion exchange chromatography using DEAE Sephacel. A part of the ACDH activity coeluted with ADH, but both could be separately eluted from a Cibacron Blue 3GA-Agarose column, revealing the same subunit structure and activity band for ACDH as found before and, thus, indicating an aggregation of the enzyme. The remaining ADH activity could be separated by gel filtration. For the native ACDH a molecular mass of 255 kDa was determined by polyacrylamide gel electrophoresis and of 272 kDa by gel filtration using Superose 12. The enzyme subunit sizes were 28 kDa and 40 kDa, respectively, indicating a 44 structure for the active form. The enzyme catalyzed the oxidation of several straight chain aldehydes although it was most active with acetaldehyde. NADH strongly inhibited oxidation of acetaldehyde whereas NADPH had no effect. The inhibition was noncompetitive.Non-standard abbrevations ACDH acetaldehyde dehydrogenase - ADH alcohol dehydrogenase - CHES 2-(N-cyclohexylamino)-ethanesulfonate - DTE dithioerythritol - KP-buffer 25 mM K-PO4, pH 7.5, containing, 4 mM DTE - MES 2-(N-morpholino)-ethanesulfonate - TAPS N-Tris-(hydroxymethyl)-methyl-3-aminopropa-nesulfonate  相似文献   

7.
The interaction of 5-aminolevulinic acid (ALA) with GABAA receptors has been proposed to underlie the neurological dysfunctions of ALA-accumulating disorders, such as acute intermittent porphyria. The effects of ALA on [3H]muscimol binding to human and rat cerebral cortical membranes were compared. ALA (0.1–10 mM) significantly inhibited the binding of [3H]muscimol (12 nM), with a similar potency in rat and human membranes (IC50 = 199 vs. 228 M, respectively). Kinetical analysis revealed that ALA (1 mM) significantly increased the Kd and decreased the Bmax of [3H]muscimol to both rat (100 and 50%, respectively) and human (200 and 40%, respectively) membranes, indicating a mixed-type inhibition. The similarity in the potency and mechanism of the ALA-induced inhibition of muscimol binding in rat and human membranes indicate that rat studies are useful to evaluate the neurotoxic properties of ALA towards the human GABAergic system, and may help to understand the pathophysiology of porphyria.  相似文献   

8.
Uroporphyrinogen decarboxylase is a cytosolic enzyme involved in the biosynthetic pathway of heme production. Decreased activity of this enzyme results in porphyria cutanea tarda and hepato erythropoietic porphyria. Nonsynonymous single nucleotide polymorphisms (nsSNPs) alter protein sequence and can cause disease. Identifying the deleterious nsSNPs that contribute to disease is an important task. We used five different in silico tools namely SIFT, PANTHER, PolyPhen2, SNPs&GO, and I-mutant3 to identify deleterious nsSNPs in UROD gene. Further, we used molecular dynamic (MD) approach to evaluate the impact of deleterious mutations on UROD protein structure. By comparing the results of all the five prediction results, we screened 35 (51.47 %) nsSNPs as highly deleterious. MD analysis results show that all the three L161Q, L282R, and I334T deleterious variants were affecting the UROD protein structural stability and flexibility. Our findings provide strong evidence on the effect of deleterious nsSNPs in UROD gene. A detailed MD study provides a new insight in the conformational changes occurred in the mutant structures of UROD protein.  相似文献   

9.
Summary Assay conditions for measurement of human skin fibroblast branched-chain L-amino acid aminotransferase activity were established and applied to studies on subcellular distribution and kinetic properties of the enzyme. Digitonin fractionation of cultured cells revealed that the aminotransferase activity was mainly (at least about 95%) associated with mitochondrial citrate synthase activity. As tested with L-leucine, activity of the enzyme against amino group acceptors (forward reaction) was in the order 2-oxoglutarate branched-chain > straight-chain 2-oxo acids (C3-C8). With 4-methyl-2-oxopentanoate, activity against amino group donors (reverse reaction) was in the order L-glutamate branched-chain > straight-chain (C2-C6) and other L-amino acids. The data suggest that, in human fibroblasts, isoenzyme type I resides within the mitochondrial space. Possible implications for the metabolism of branched-chain compounds are discussed.  相似文献   

10.
The genotoxic carcinogen aflatoxin B1 (AFB1) inhibited the calmodulin-stimulated membrane-bound (Ca2+Mg2+)-ATPase. Using the purified enzyme, 12 nmoles per ml of AFB1 caused maximum inhibition of 28% and 50%, of the acidic phospholipid-stimulated and calmodulin-activated Ca2+-ATPase activity respectively. Treatment of red cell ghosts with increasing concentrations of Triton X-100, a non-ionic detergent caused a progressive loss of both the basal and calmodulin-stimulated Ca2+-ATPase activity. The activity of the phospholipid-free, detergent-solubilized enzyme was almost fully restored by phosphatidyl serine (PS) and its sensitivity to calmodulin was restored in the presence of phosphatidyl choline (PC). Analysis of the results obtained using varying concentrations of ATP shows that AFB1 did not affect the Km and Vmax of the unstimulated enzyme whereas these parameters were reduced by about 75% and 50%, respectively, in the presence of calmodulin. Using the product of limited proteolysis by trypsin i.e. the 90 kDa fragment which still retains its calmodulin binding-domain and the 76 kDa fragment which has lost this domain, kinetic studies on the enzyme activity revealed that AFB1 inhibited the calmodulin-activated 90 kDa fragment by about 50% while the 76 kDa was not affected at all by the toxin and calmodulin. The toxin had no significant affect on the basal activity of the 90 kDa limited proteolysis fragment of the enzyme. These observations suggest that AFB1 inhibits the activated Ca2+-ATPase by binding to an important site in the calmodulin-binding domain of the enzyme. It seems likely that the toxin binds to tryptophan in the calmodulin-binding domain, thus causing a reduction in the rate at which this domain can interact with Ca2+-calmodulin or acidic phospholipids. The implication of these observations is that Ca2+-extrusion and other calmodulin-activated enzymes and processes may be slowed down during prolonged exposure to AFB1 because of its anticalmodulin effect.Abbreviations ATP adenosine 5-triphosphate - EGTA ethylenglycolbis (-aminoethylether) N,N-tetraacetic acid - Hepes 4-(2 hydroxyethyl)-1-piperazine ethanesulphonic acid - AFB1 aflatoxin B1 - PMSF phenylmethylsulfonylfluoride - TLCK N--p-tosyl-L-lysine chloromethyl ketone - PC phosphatidycholine - PS phosphatidylserine - PI phosphatidyl inositol - DPG diphosphatidyl glycerol - SDS sodium dodecyl sulphate - Tris-HCl Tris (hydroxymethyl)aminomethane hydrochloride  相似文献   

11.
A polygalacturonase was purified from the thermophilic fungus, Thermomyces lanuginosus to apparent homogeneity by ultrafiltration, acetone precipitation and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60 °C. The apparent KM with potassium pectate was 0.67 mg/ml and the Vmax was 7.2 × 105 mol/min/mg protein. The apparent molecular weight of the enzyme was 59 kDa and it contained approximately 10% carbohydrate. The enzyme was completely stable at room temperature (32 ± 3 °C) and retained about 50% activity at 50 °C for 6 h. The zymogram of the purified enzyme revealed two activity bands, one of which was a major one. Polyclonal antibodies raised against the enzyme did not show any immunological relatedness with other mesophilic polygalacturonases.  相似文献   

12.
  • 1.1. In the last decade specific enzyme deficiencies have been reported in five out of the six known varieties of human porphyrias.
  • 2.2. These deficiences concern uroporphyrinogen III-consynthetase in erythropoietic porphyria; uroporphyrinogen I-synthetase in acute intermittent porphyria; uroporphyrinogen decarboxylase in porphyria cutanea tarda; coproporphyrinogen oxidase in heredity coporphyria and ferrochelatase in protoporphyria.
  • 3.3. These enzyme deficiences explain the specific troubles in prophyrin metabolism in these diseases and hence the main clinical and biochemical manifestations.
  相似文献   

13.
Neurocatin, a small (about 2,000 Dalton) neuroregulator isolated from mammalian brain, is a powerful effector of monoamine oxidase B in rat brain synaptosomes. Incubation of intact synaptosomes with neurocatin caused an inhibition of the enzyme dependent on the concentration of neurocatin. This inhibition became statistically significant at a neurocatin concentration of 10 ng/200 l and was significant at all higher neurocatin concentrations. At 40 ng/200 l, neurocatin inhibited monoamine oxidase B activity by about 60%. This inhibitory effect was almost completely abolished by breaking the synaptosomal membrane by hypotonic buffer prior to incubation with neurocatin. In addition, incubation of the synaptosomes in calcium free medium almost completely abolished the inhibitory effect of neurocatin on monoamine oxidase B. The inhibition appeared to involve covalent modification of the enzyme mediated by a neurocatin receptor(s). Measurements of the kinetic parameters of the enzyme showed that 20 ng of neurocatin caused a statistically significant decrease in Vmax (by 20%) with no significant change in KM, compared to controls. Inhibition of monoamine oxidase by neurocatin is potentially of great clinical importance because this enzyme plays a major role in catabolism of the biogenic amines and alterations in its activity is believed to contribute to several neurological disorders.  相似文献   

14.
Calcium-activated neutral proteinase (CANP) activity was determined in subcellular fractions and in different regions of bovine brain. The CANP specific activity in spinal cord and corpus callosum, areas rich in myelin, were almost six-fold greater than cerebral cortex and cerebellum. Treatment of whole homogenate and myelin with 0.1% Triton X-100 increased the CANP activity by tenfold. Subcellular fractions were prepared from bovine brain gray and white matter. Most of the CANP activity (70%) was in the primary particulate fractions P1 (nuclear), P2 (mitochondrial) and P3 (microsomal). On subfractionation of each particulate fraction, the majority of the activity (greater than 50%) was recovered in the myelin-enriched fractions (P1A, P2A, P3A) which separate at the interphase of 0.32 M- and 0l85 M-sucrose. The distribution of activity was P2A>P1A>P3A. Further purification of myelin (of P2A) increased the specific activity over homogenate by more than three-fold. The same myelin fractions contained the highest proportion (60%) and specific activity (five-fold increase) of CNPase. The enzyme activity in different regions of brain and in subcellular fractions was increased by 20–39% after the inhibitor was removed. Electron microscopic study confirmed that the myelin fractions were highly purified. The cytosolic fraction contained 20–30% of the total homogenate CANP activity. Other fractions contained low enzyme activity. CANP was identified in the purified myelin fraction by electroimmublot-technique. It is concluded that the bulk of CANP in CNS is tightly bound to the membrane, may be masked or hidden and is intimately associated with the myelin sheath.Abbreviations Used CANP calcium-activated neutral proteinase - CNPase adenosine-2, 3-cyclic nucleotide 3-phosphohydrolase  相似文献   

15.
The kinetics of glutaraldehyde inactivation of a protoplasmic (-fructofuranosidase) and an extracytoplasmic (acid phosphatase) enzyme inSaccharomyces rouxii cells were studied at pH 5.5 and 30°C. The effects of glutaraldehyde concentration (0.5–3%), pH value, and temperature were surveyed by varying the fixation conditions. Cells from 1- to 10-day cultures retained 50–75% of their acid phosphatase activity and 15–24% of their -fructofuranosidase activity after 1-h exposures to 0.5% glutaraldehyde. The surviving -fructofuranosidase activity remained physically cryptic and was revealed only after further membrane perturbation with ethyl acetate. This crypticity barrier disappeared after overnight incubation of the treated cells at 4°C, with or without added glutaraldehyde, during which time the enzyme was resistant to further inactivation. The velocity ratio for raffinose versus sucrose, as substrate, decreased in treated cells, and changes inV max andK m were indicative of frank destruction of some enzyme molecules as well as modification of survivors. A comparable set of changes was also generated by treating cell-free extract with glutaraldehyde. Glutaraldehyde (0.5%) killed all yeast cells at 30°C within 5 min; at 4°C survival rates were quite high—81% after 15 min and 65% after 1 h. The bearing of these examples of enzyme inactivation, permeability barrier abolition, and structural stabilization on the general problems of yeast cytochemistry is discussed.  相似文献   

16.
Choline acetyltransferase (ChAT, acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6), involved in the learning and memory processes is responsible for the synthesis of acetylcholine. There are many discrepancies in literature concerning ChAT activity during brain aging and the role of amyloid beta peptides in modulation of this enzyme. The aim of the study was to investigate the mechanism of ChAT regulation and age-related alteration of ChAT activity in different parts of the brain. Moreover the effect of A peptides on ChAT activity in adult and aged brain was investigated. The enzyme activity was determined in the brain cortex, hippocampus and striatum in adult (4-months-old), adult-aged (14-months-old) and aged (24-months-old) animals. The highest ChAT activity was observed in the striatum. We found that inhibitors of protein kinase C, A, G and phosphatase A2 have no effect on ChAT activity and that this enzyme is not dependent on calcium ions. About 70% of the total ChAT activity is present in the cytosol. Arachidonic acid significantly inhibited cytosolic form of this enzyme. In the brain cortex and striatum from aged brain ChAT activity is inhibited by 50% and 37%, respectively. The aggregated form of A 25-35 decreased significantly ChAT activity only in the aged striatum and exerted inhibitory effect on this enzyme in adult, however, statistically insignificant. ChAT activity in the striatum was diminished after exposure to 1 mM H2O2. The results from our study indicate that aging processes play a major role in inhibition of ChAT activity and that this enzyme in striatum is selectively sensitive for amyloid beta peptides.  相似文献   

17.
Studies of the subcellular distribution of-glutamyl transpeptidase from sheep brain by discontinuous sucrose density gradient centrifugation showed that 40% of the transpeptidase activity associated with the mitochondrial-synaptosomal fraction was localized with the synaptosomal-enriched fraction. The microsomal fraction was found to have the highest specific activity when-glutamylp-nitroanalide was used as substrate. This activity, however, represented only 5% of the total-glutamyl transpeptidase activity. Approximately 90% of the total enzyme activity was apparently associated with the fraction containing cell debris and membrane fragments.The 160,000g supernatant fluid (soluble supernatant fraction) represented the least total activity, with only 1.2% recovery; however, this fraction contained two apparent forms of the enzyme. One form had a highK mand the other a lowK m for the substrate,-glutamylp-nitroanilide.It was observed that the enzyme-glutamyl transpeptidase was not evenly distributed in all areas of brain when the homogenate was used as the enzyme source. The brain region with the highest enzyme activity was the thalamus, which was able to form 1.10 molp-nitroanaline/min/g wet brain tissue. The cortex was found to have the lowest activity. The 40,000g supernatant fluid from each region, however, exhibited only slight distribution differences.  相似文献   

18.
Sepiapterin synthase, the enzyme system responsible for the synthesis of sepiapterin from dihydroneopterin triphosphate, has been partially purified from extracts of the heads of young adult fruit flies (Drosophila melanogaster). The sepiapterin synthase system consists of two components, termed enzyme A (MW 82,000) and enzyme B (MW 36,000). Some of the properties of the enzyme system are as follows: NADPH and a divalent cation, supplied most effectively as MgCl2, are required for activity; optimal activity occurs at pH 7.4 and 30 C; the K m for dihydroneopterin triphosphate is 10 µm; and a number of unconjugated pterins, including biopterin and sepiapterin, are inhibitory. Dihydroneopterin cannot be used as substrate in place of dihydroneopterin triphosphate. Evidence is presented in support of a proposed reaction mechanism for the enzymatic conversion of dihydroneopterin triphosphate to sepiapterin in which enzyme A catalyzes the production of a labile intermediate by nonhydrolytic elimination of the phosphates of dihydroneopterin triphosphate, and enzyme B catalyzes the conversion of this intermediate, in the presence of NADPH, to sepiapterin. An analysis of the activity of sepiapterin synthase during development in Drosophila revealed the presence of a small amount of activity in eggs and young larvae and a much larger amount in late pupae and young adults. Sepiapterin synthase activity during development corresponds with the appearance of sepiapterin in the flies. Of a variety of eye color mutants of Drosophila melanogaster tested for sepiapterin synthase activity, only purple (pr) flies contained activity that was significantly lower than that found in the wild-type flies (22% of the wild-type activity). Further studies indicated that the amount of enzyme A activity is low in purple flies, whereas the amount of enzyme B activity is equal to that present in wild-type flies.This work was supported by research grants from the National Institutes of Health (AM03442) and the National Science Foundation (PCM75-19513 A02). G. G. K. was supported as a predoctoral trainee by National Institutes of Health Training Grant GM00515.  相似文献   

19.
Summary Saccharomyces anamensis having -galactosidase activity, has been immobilized in calcium alginate gel matrix that retained 78.6% enzyme activity to that of native cells. Optimum pH(7.0) was negligibly affected by immobilization. Km values for immobilized and native cells were 119 mM and 102 mM respectively. Protective agents like dithioerythritol, bovine serum albumin, enhance the enzyme activity when added prior to immobilization. Immobilized cells can be stored in refrigeration(4°C) for 42 days without a significant loss of enzyme activity.  相似文献   

20.
The study of plant DNA polymerases lags far behind that concerning their animal or yeast counterpart. In this work we describe the first extensive purification to apparent homogeneity, as well as a detailed biochemical and immunological characterization, of a low molecular weight DNA polymerase (DNA polymerase CI) purified from wheat embryos. The monomeric enzyme is a basic protein having a molecular weight of 52 kDa. Polyclonal antibodies raised in rabbits against DNA polymerase CI did not inhibit animal DNA polymerases and or wheat DNA polymerase A, whereas wheat DNA polymerases CII and B were much less affected than the CI enzyme. Several properties of enzyme CI were studied. Some known inhibitors of DNA polymerase activity including aphidicolin, phosphonoacetic acid and heparin, did not affect DNA polymerase CI while the activity of this enzyme was strongly inhibited by ddTTP and N-ethylmaleimide. The polyamine spermine decreased markedly the enzyme activity, while spermidine produced a strong stimulation at the same concentrations that spermine inhibited the enzyme. The best template for this enzyme is poly dA-oligo dT, although polymerase CI can recognize significantly some synthetic polyribonucleotide templates (poly rC-oligo dG, poly rA-oligo dT) but only at a given protein/template primer ratio. The enzyme is blocked at the amino terminus, thus preventing the automatic sequencing of the protein. The amino acid analysis showed a striking similarity with the animal low molecular weight DNA polymerase . The latter observation, as well as the effect of inhibitors (except N-ethylmaleimide which does not inhibit the animal polymerase) indicate that the DNA polymerase described in this work is a plant DNA polymerase very similar to the low molecular weight animal DNA polymerase , an enzyme believed to be involved in nuclear DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号