首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The peroxidase activity of prostaglandin H (PGH) synthase catalyzes reduction of 5-phenyl-4-pentenyl hydroperoxide to 5-phenyl-4-pentenyl alcohol with a turnover number of approximately 8000 mol of 5-phenyl-4-pentenyl hydroperoxide/mol of enzyme/min. The kinetics and products of reaction establish PGH synthase as a classical heme peroxidase with catalytic efficiency similar to horseradish peroxidase. This suggests that the protein of PGH synthase evolved to facilitate peroxide heterolysis by the heme prosthetic group. Comparison of an extensive series of phenols, aromatic amines, beta-dicarbonyls, naturally occurring compounds, and nonsteroidal anti-inflammatory drugs indicates that considerable differences exist in their ability to act as reducing substrates. No correlation is observed between the ability of compounds to support peroxidatic hydroperoxide reduction and to inhibit cyclooxygenase. In addition, the resolved enantiomers of MK-410 and etodolac exhibit dramatic enantiospecific differences in their ability to inhibit cyclooxygenase but are equally potent as peroxidase-reducing substrates. This suggests that there are significant differences in the orientation of compounds at cyclooxygenase inhibitory sites and the peroxidase oxidation site(s). Comparison of 5-phenyl-4-pentenyl hydroperoxide reduction by PGH synthase and horseradish peroxidase reveals considerable differences in reducing substrate specificity. Both the cyclooxygenase and peroxidase activities of PGH synthase inactivate in the presence of low micromolar amounts of hydroperoxides and arachidonic acid. PGH synthase was most sensitive to arachidonic acid, which exhibited an I50 of 0.6 microM in the absence of all protective agents. Inactivation by hydroperoxides requires peroxidase turnover and can be prevented by reducing substrates. The I50 values for inactivation by 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid are 4.0 and 92 microM, respectively, in the absence and presence of 500 microM phenol, a moderately good reducing substrate. The ability of compounds to protect against hydroperoxide-induced inactivation correlates directly with their ability to act as reducing substrates. Hydroquinone, an excellent reducing substrate, protected against hydroperoxide-induced inactivation when present in less than 3-fold molar excess over hydroperoxide. The presence of a highly efficient hydroperoxide-reducing activity appears absolutely essential for protection of the cyclooxygenase capacity of PGH synthase. The peroxidase activity is, therefore, a twin-edged sword, responsible for and protective against hydroperoxide-dependent inactivation of PGH synthase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Methimazole, an irreversible, mechanism-based (suicide substrate) inhibitor of thyroid peroxidase and lactoperoxidase, also inhibits the oxidation of xenobiotics by prostaglandin hydroperoxidase. The mechanism(s) by which methimazole inhibits prostaglandin H synthase-catalyzed oxidations is not conclusively known. In studies reported here, methimazole inhibited the prostaglandin H synthase-catalyzed oxidation of benzidine, phenylbutazone, and aminopyrine in a concentration-dependent manner. Methimazole poorly supported the prostaglandin H synthase-catalyzed reduction of 5-phenyl-4-pentenyl hydroperoxide to the corresponding alcohol (5-phenyl-4-pentenyl alcohol), suggesting that methimazole is not serving as a competing reducing cosubstrate for the peroxidase. Methimazole is not a mechanism-based inhibitor of prostaglandin hydroperoxidase or horseradish peroxidase since methimazole did not inhibit the peroxidase-catalyzed, benzidine-supported reduction of 5-phenyl-4-pentenyl hydroperoxide. In contrast, methimazole inhibited the reduction of 5-phenyl-4-pentenyl hydroperoxide to 5-phenyl-4-pentenyl alcohol catalyzed by lactoperoxidase, confirming that methimazole is a mechanism-based inhibitor of that enzyme and that such inhibition can be detected by our assay. Glutathione reduces the aminopyrine cation free radical, the formation of which is catalyzed by the hydroperoxidase, back to the parent compound. Methimazole produced the same effect at concentrations equimolar to those required for glutathione. These data indicate that methimazole does not inhibit xenobiotic oxidations catalyzed by prostaglandin H synthase and horseradish peroxidase through direct interaction with the enzyme, but rather inhibits accumulation of oxidation products via reduction of a free radical-derived metabolite(s).  相似文献   

3.
5-Phenyl-4-pentenyl-hydroperoxide (PPHP) is reduced to 5-phenyl-4-pentenyl-alcohol (PPA) by plant and animal peroxidases in the presence of reducing substrates. PPHP and PPA are rapidly isolated with solid phase extraction, separated by isocratic reverse-phase high-performance liquid chromatography, and quantitated with a fixed-wave-length ultraviolet detector. The procedure described is suitable for detecting peroxide-reducing enzymes, determining the kinetic properties of heme- and non-heme-containing peroxidases, and evaluating oxidizable compounds as reducing substrates for peroxidases. Horseradish peroxidase (HRP) and phenol reduce PPHP with a Km for phenol of 252 microM and a turnover number of 1.05 X 10(4) min-1. Under similar conditions, the Km of HRP for PPHP is 18 microM in the oxidation of guaiacol. A series of 21 compounds was evaluated for the ability to serve as reducing substrates for HRP. The results indicate that the procedure described can not only identify compounds that are reducing substrates but also rank them for relative activity. This may provide a new method with which to identify novel antithrombotic, antimetastatic, or anti-inflammatory drugs as well as to detect and characterize mammalian peroxidases.  相似文献   

4.
The mutagenic response of L5178Y mouse lymphoma cells to the model aromatic amine carcinogens, benzidine (BNZ) and 2-aminofluorene (2-AF) in the presence of the mammalian peroxidase prostaglandin H synthase (PHS) was examined. Standard incubation conditions for mouse lymphoma cells and the PHS system were developed. The cells were exposed to BNZ and 2-AF with purified PHS in the presence or absence of a peroxide, 5-phenyl-4-pentenyl hydroperoxide (PPHP) which is required for PHS-dependent amine oxidation. Incubations were carried out in a medium consisting of Hanks' balanced salt solution with calcium and magnesium and 0.1% pluronic F-68. BNZ by itself or in the presence of PPHP induced a weak mutagenic response in mouse lymphoma cells, but the addition of PHS or PHS and its co-factor PPHP increased the mutagenic response approximately 5-fold over that observed in the absence of PHS. A maximal mutagenic response for BNZ was observed after incubation with the complete activating system, PHS and PPHP. These data are in agreement with the fact that BNZ is an excellent substrate for PHS. When 2-AF was incubated with mouse lymphoma cells, only a minimal mutagenic response was observed. Incubation of 2-AF with either PPHP or PPHP and PHS (complete peroxidase system produced a significant enhancement in mutagenic response. Thus, the mutagenic response of the mouse lymphoma cells to 2-AF was dependent on the peroxide, PPHP but not the enzyme PHS. These data suggest that 2-AF, which is a poor PHS substrate, is oxidized by a different catalyst than PHS. This work demonstrates that BNZ and 2-AF are converted by peroxide-dependent mechanisms to mutagens that can be detected in mammalian cells.  相似文献   

5.
We have recently characterized the major hydroperoxide-reducing enzyme of human plasma as a glutathione peroxidase (Maddipati, K. R., Gasparski, C., and Marnett, L. J. (1987) Arch. Biochem. Biophys. 254, 9-17). We now report the purification and kinetic characterization of this enzyme. The purification steps involved ammonium sulfate precipitation, hydrophobic interaction chromatography on phenyl-Sepharose, anion exchange chromatography, and gel filtration. The purified peroxidase has a specific activity of 26-29 mumol/min/mg with hydrogen peroxide as substrate. The human plasma glutathione peroxidase is a tetramer of identical subunits of 21.5 kDa molecular mass as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and is different from human erythrocyte glutathione peroxidase. The plasma peroxidase is a selenoprotein containing one selenium per subunit. Unlike several other glutathione peroxidases this enzyme exhibits saturation kinetics with respect to glutathione (Km for glutathione = 4.3 mM). The peroxidase exhibits high affinity for hydroperoxides with Km values ranging from 2.3 microM for 13-hydroperoxy-9,11-octadecadienoic acid to 13.3 microM for hydrogen peroxide at saturating glutathione concentration. These kinetic parameters are suggestive of the potential of human plasma glutathione peroxidase as an important regulator of plasma hydroperoxide levels.  相似文献   

6.
Addition of arachidonic acid or 5-phenyl-4-pentenylhydroperoxide to manganese-prostaglandin endoperoxide synthase (Mn-PGH synthase) produced a species with an absorbance maximum at 418 nm. This maximum is distinct from those of resting enzyme (372 and 468 nm) or reduced enzyme (434 nm). The formation of the 418 nm-absorbing species was observed immediately after the addition of hydroperoxide to enzyme but only after a 10-s lag period following addition of arachidonate. Mn-PGH synthase exhibited a peroxidase activity that was 0.8% that of Fe-PGH synthase. Addition of peroxidase reducing substrates to the oxidized form of Mn-PGH synthase diminished the absorbance at 418 nm. In the case of N,N,N',N'-tetramethylphenylenediamine, reduction of the 418 nm-absorbing species was accompanied by an increase in absorbance at 610 nm due to the oxidized form of the amine. Thus, the spectral and chemical properties of the 418 nm-absorbing species are consistent with its existence as a higher oxidation state of Mn-PGH synthase. Kinetic analysis indicated that formation of the higher oxidation state preceded or was coincident with oxygenation of the fatty acid substrate, eicosa-11,14-dienoic acid. The cyclooxygenase activity of Mn-PGH synthase was inhibited by the combination of glutathione and human plasma glutathione peroxidase at a glutathione peroxidase concentration 227-fold lower than the concentration that inhibited Fe-PGH synthase. The results suggest that Mn-PGH synthase forms a higher oxidation state following reaction with hydroperoxides added exogenously or generated endogenously from polyunsaturated fatty acid substrates. This higher oxidation state functions in the peroxidase catalytic cycle of Mn-PGH synthase, and its formation appears to be essential for activation of the cyclooxygenase catalytic cycle.  相似文献   

7.
In the present investigation, 12-L-hydroxyeicosa-5,8,14-tetraenoic acid (12-HPETE) peroxidase in the platelet 12-lipoxygenase pathway was characterized by using a monoclonal antibody to erythrocyte glutathione peroxidase. Pure glutathione peroxidase was used for the immunization of mice. Monoclonal antibody directed against the erythrocyte glutathione peroxidase was obtained from hybridomas, following fusion of mouse NS-1 myeloma cells with spleen cells from a mouse immunized with the enzyme. The subclass of monoclonal antibody was immunoglobulin M with kappa-light chain. Enzyme activity assays using cumene hydroperoxide and [1-14C]12-HPETE as substrates were employed. The monoclonal antibody reacted with glutathione peroxidase in the cumene hydroperoxide assay. In order to see whether platelet 12-HPETE peroxidase reacts with the monoclonal antibody, platelet cytosol and glutathione peroxidase were incubated with the monoclonal antibody and the antibody was precipitated by goat anti-mouse immunoglobulin M. The activities of platelet 12-HPETE peroxidase and glutathione peroxidase remaining were then assayed by using [1-14C]12-HPETE as substrate. The ability of glutathione peroxidase to transform 12-HPETE to 12-HETE was removed by the monoclonal antibody; however, the activity of platelet cytosol was not removed by the antibody. The results indicated that the antigenic specificity of 12-HPETE peroxidase in the platelet 12-lipoxygenase pathway is different from that of erythrocyte glutathione peroxidase.  相似文献   

8.
Effect of organophosphorus insecticide, phosphomidon (250 and 500 ppm) on human erythrocyte and plasma were studied in vitro to get insight into the cellular antioxidant defence mechanism and malondialdehyde formation. The antioxidant defence system of erythrocyte was altered as evident by depression of glutathione reductase, glucose 6 phosphate dehydrogenase, whereas the level of reduced glutathione, glutathione peroxidase, glutathione-S-transferase, superoxidedismutase and catalase were stimulated. In the case of plasma fraction, glutathione reductase, glutathione peroxidase, glutathione-s-transferase, glucose-6-phosphate dehydrogenase, superoxide dismutase and levels of reduced glutathione were significantly depressed and the malondialdehyde formation and catalase activity were elevated indicating the less adaptive response of plasma to protect it from oxidative damage.  相似文献   

9.
The selenoenzyme glutathione peroxidase in the presence of GSH effectively replaced catalase in the in vitro assay for gamma-butyrobetaine hydroxylase. Quantitatively, glutathione peroxidase was an order of magnitude more efficient than catalase, with maximal activity at less than 0.1 microM glutathione peroxidase in a standard reaction. Glutathione peroxidase prevented the loss of gamma-butyrobetaine hydroxylase during preliminary incubation with ferrous ions but without other substrates as well as in the course of the reaction. Regardless of whether glutathione peroxidase or catalase was present in the assay, the ascorbate concentrations needed to achieve half-maximal rates were similar (about 1 mM). Phosphate stimulated the rate of L-carnitine synthesis. Ferrous ion saturation indicated a pronounced effect of phosphate on the maximal velocity of the enzyme-catalyzed reaction, but its mechanism of action remains to be elucidated. Based on the subcellular distribution of gamma-butyrobetaine hydroxylase, catalase, and glutathione peroxidase, the role of glutathione peroxidase assumes importance. However, initial studies indicated that the assayable activity of liver gamma-butyrobetaine hydroxylase and L-carnitine concentrations in liver, blood plasma, and muscle were not significantly altered in selenium-deficient rats.  相似文献   

10.
In the 5-lipoxygenase pathway for arachidonic acid metabolism, reduction of 5-hydroperoxyeicosatetraenoic acid (5-HPETE) to 5-hydroxyeicosatetraenoic acid (5-HETE) is catalyzed by an activity different from glutathione peroxidase. Glutathione peroxidase here refers to the nonspecific peroxidase that catalyzes the reduction by glutathione of cumene hydroperoxide and a variety of other peroxides including 5-HPETE. This enzyme is inhibited by mercaptosuccinic acid. Preparations of the 15,000xg supernatant from lysed rat peritoneal polymorphonuclear leukocytes were the source of these activities. Thus, when glutathione peroxidase is inhibited to less than 0.5% of its normal activity by mercaptosuccinic acid, 5-HPETE is reduced as efficiently as in the absence of mercaptosuccinate. In lysate preparations from which endogenous glutathione has been removed, reduction of 5-HPETE is still observed but only in the presence of added reducing agents, e.g., 0.2 mM glutathione. When endogenous glutathione peroxidase is not inhibited, reduction of 5-HPETE occurs at a rate greater than 15-fold faster than can be accounted for by this activity. We conclude, therefore, that the glutathione peroxidase in rat PMNs is not kinetically competent to account for reduction of 5-HPETE. There is a distinct peroxidase that catalyzes this reaction. The 5-HPETE peroxidase can utilize glutathione as reducing agent but is not inhibited by mercaptosuccinate, and additional results indicate that it is inactivated during turnover.  相似文献   

11.
In the 5-lipoxygenase pathway for arachidonic acid metabolism, reduction of 5-hydroperoxyeicosatetraenoic acid (5-HPETE) to 5-hydroxyeicosatetraenoic acid (5-HETE) is catalyzed by an activity different from glutathione peroxidase. Glutathione peroxidase here refers to the nonspecific peroxidase that catalyzes the reduction by glutathione of cumeme hydroperoxide and a variety of other peroxides including 5-HPETE. This enzyme is inhibited by mercaptosuccinic acid. Preparations of the 15,000xg supernatant from lysed rat peritoneal polymorphonuclear leukocytes were the source of these activities. Thus, when glutathione peroxidase is inhibited to less than 0.5% of its normal activity by mercaptosuccinic acid, 5-HPETE is reduced as efficiently as in the absence of mercaptosuccinate. In lysate preparations from which endogenous glutathione has been removed, reduction of 5-HPETE is still observed but only in the presence of added reducing agents, e.g., 0.2 mM glutathione. When endogenous glutahione peroxidase is not inhibited, reduction of 5-HPETE occurs at a rate >15-fold faster than can be accounted for by this activity. We conclude, therefore, that the glutathione peroxidase in rat PMNs is not kinetically competent to account for reduction of 5-HPETE. There is a distinct peroxidase that catalyzes this reaction. The 5-HPETE peroxidase can utilize glutathione as reducing agent but is not inhibited by mercaptosuccinate, and additional results indicate that it is inactivated during turnover.  相似文献   

12.
We have examined, by low temperature ESR, the protein-derived radicals formed by reaction of purified ram seminal vesicle prostaglandin H synthase (PHS). Upon addition of arachidonic acid or 5-phenyl-4-pentenyl-1-hydroperoxide (PPHP) to PHS reconstituted with Fe(III)-protoporphyrin IX (Fe-PHS) at -12 degrees C, an ESR spectrum was observed at -196 degrees C containing a doublet that rapidly converted into a singlet. These protein-derived radicals were identified as tyrosyl radicals. The addition of a peroxidase substrate, phenol, completely abolished the appearance of the doublet and suppressed the formation of the singlet but did not inhibit eicosanoid formation. Incubation of arachidonic acid with PHS reconstituted with Mn(III)-protoporphyrin IX (Mn-PHS) produced only a broad singlet that exhibited different power saturation behavior than the tyrosyl radicals and decayed more rapidly. This broad singlet does not appear to be a tyrosyl radical. No ESR signals were observed on incubation of PPHP with Mn-PHS, which has cyclooxygenase but not peroxidase activity. Eicosanoid synthesis occurred very rapidly after addition of arachidonic acid and was complete within 1 min. In contrast, the protein-derived radicals appeared at a slower rate and after the addition of the substrate reached maximal levels between 1 and 2 min for Fe-PHS and 4-6 min for Mn-PHS. These results suggest that the observed protein-derived radicals are not catalytically competent intermediates in cyclooxygenase catalysis by either Fe-PHS or Mn-PHS. The peroxidase activity appears to play a major role in the formation of the tyrosyl radicals with Fe-PHS.  相似文献   

13.
Elevated plasma homocysteine is considered to be a risk factor for cardiovascular disease. The mechanisms for this effect are not fully understood but there is some evidence for a role for reactive oxygen species (ROS). This study was conducted to explore the effects of elevated plasma total homocysteine (tHcy) concentration on activity of antioxidant enzymes in the circulation. The study group consisted of 10 patients with inherited defects of homocysteine metabolism, from whom 41 blood samples were collected over a period of six months. Blood samples were also collected from 13 of their obligate heterozygous parents. For data analysis samples were classified as those with plasma tHcy < 20 microM or > 20 microM. The activity of erythrocyte superoxide dismutase (SOD) and plasma glutathione peroxidase (GSHPx) was elevated in samples with plasma tHcy > 20 microM. Moreover, a significant correlation was demonstrated between plasma GSHPx activity, plasma glutathione peroxidase protein and plasma tHcy. III vitro studies confirmed that this observation was not due to a simple chemical enhancement of enzyme activity. Homocysteine protected GSHPx from loss of activity following incubation at 37 degrees C. A similar effect was seen with another thiol-containing amino acid, cysteine. Results suggest that elevated plasma tHcy represents an oxidative stress, resulting in an adaptive increase in activity of antioxidant enzymes in the circulation.  相似文献   

14.
Glutathione reductase catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). The kinetic mechanism is ping-pong, and we have investigated the rate-limiting nature of proton-transfer steps in the reactions catalyzed by the spinach, yeast, and human erythrocyte glutathione reductases using a combination of alternate substrate and solvent kinetic isotope effects. With NADPH or GSSG as the variable substrate, at a fixed, saturating concentration of the other substrate, solvent kinetic isotope effects were observed on V but not V/K. Plots of Vm vs mole fraction of D2O (proton inventories) were linear in both cases for the yeast, spinach, and human erythrocyte enzymes. When solvent kinetic isotope effect studies were performed with DTNB instead of GSSG as an alternate substrate, a solvent kinetic isotope effect of 1.0 was observed. Solvent kinetic isotope effect measurements were also performed on the asymmetric disulfides GSSNB and GSSNP by using human erythrocyte glutathione reductase. The Km values for GSSNB and GSSNP were 70 microM and 13 microM, respectively, and V values were 62 and 57% of the one calculated for GSSG, respectively. Both of these substrates yield solvent kinetic isotope effects greater than 1.0 on both V and V/K and linear proton inventories, indicating that a single proton-transfer step is still rate limiting. These data are discussed in relationship to the chemical mechanism of GSSG reduction and the identity of the proton-transfer step whose rate is sensitive to solvent isotopic composition. Finally, the solvent equilibrium isotope effect measured with yeast glutathione reductase is 4.98, which allows us to calculate a fractionation factor for the thiol moiety of GSH of 0.456.  相似文献   

15.
Glutathione functions as an important antioxidant in the destruction of hydrogen peroxide and lipid peroxides by providing substrate for the glutathione peroxidase and also promotes the ascorbic acid. Glutathione plays a vital role in detoxification of xenobiotics, carcinogens, free radicals and maintenance of immune functions. The study was aimed to determine plasma glutathione as well as erythrocyte glutathione and glutathione peroxidase in patients with invasive cervical carcinoma (n = 30) before initiation and after completion of radiotherapy and subsequently, at the time of first three monthly follow-up visit. The levels of plasma glutathione, erythrocyte glutathione and glutathione peroxidase activity were found to be lower in all cervical cancer patients as compared to age matched normal control women. The study indicates a change in antioxidant status in relation with the glutathione system among patients with invasive carcinoma of the uterine cervix. This study also demonstrates the effect of radiation therapy on this antioxidant system.  相似文献   

16.
Automation of the glutathione peroxidase enzyme assay has been problematical. Although such methods have been reported, they do not give equivalent results to the standard manual assay, wherein glutathione oxidation is coupled to NADPH oxidation via glutathione reductase. We report here the development of a fully automated, continuous-flow, colorimetric method for glutathione peroxidase assays in which glutathione oxidation is monitored by its effect on the reaction of glutathione with the colorimetric reagent 2,6-dichloroindophenol. This method has a linear response to glutathione peroxidase over an 800-fold range of enzyme concentrations. Results of assays done by this method in erythrocyte and plasma samples correlate well with the standard manual coupled assay (r = 0.997 and 0.923, respectively), with no evidence of systematic errors. The assay works equally well with hydrogen peroxide or cumene hydroperoxide as substrate and shows the same selectivity toward glutathione S-transferases as the standard coupled assay. The within-day repeatability and the between-day reproducibility were estimated as 1.1 to 6.4% and 1.3 to 7.1% (relative standard deviation), respectively. This method is suitable for enzyme determinations in whole blood, erythrocytes, plasma, and serum from rats, rabbits, monkeys, and humans.  相似文献   

17.
The ATP-binding cassette transporter protein, multidrug resistance protein MRP1, was purified from doxorubicin-selected H69AR lung tumor cells which express high levels of this protein. A purification procedure comprised of a differential two-step solubilization of MRP1 from plasma membranes with 3-(3-cholamidopropyl)dimethylammonio-1-propanesulfonate followed by immunoaffinity chromatography using the MRP1-specific monoclonal antibody QCRL-1 was developed. Approximately 300 microgram of MRP1 was obtained from 6 mg of plasma membranes at 80-90% purity, as indicated by silver staining of protein gels. After reconstitution of purified MRP1 into proteoliposomes, kinetic analyses indicated that its K(m) for ATP hydrolysis was 104+/-22 microM with maximal activity of 5-10 nmol min(-1) mg(-1) MRP1. MRP1 ATPase activity was further characterized with various inhibitors and exhibited an inhibition profile that distinguishes it from P-glycoprotein and other ATPases. The ATPase activity of reconstituted MRP1 was stimulated by the conjugated organic anion substrates leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-D-glucuronide) with 50% maximal stimulation achieved at concentrations of 150 nM and 1.6 microM, respectively. MRP1 ATPase was also stimulated by glutathione disulfide but not by reduced glutathione or unconjugated chemotherapeutic agents. This purification and reconstitution procedure is the first to be described in which the ATPase activity of the reconstituted MRP1 retains kinetic characteristics with respect to ATP-dependence and substrate stimulation that are very similar to those deduced from transport studies using MRP1-enriched plasma membrane vesicles.  相似文献   

18.
The 15,000xg supernatant of sonicated rat PMN contains 5-lipoxygenase that converts arachidonic acid to 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene A4 and an HPETE peroxidase that catalyzes reduction of the 5-HPETE. The specificity of this HPETE peroxidase for peroxides, reducing agents, and inhibitors has been characterized to distinguish this enzyme from other peroxidase activities. In addition to 5-HPETE, the HPETE peroxidase will catalyze reduction of 15-hydroperoxyeicosatetraenoic acid, 13-hydroperoxyoctadecadienoic acid, and 15-hydroperoxy-8,11,13-eicosatrienoic acid, but not cumene or t-butylhydroperoxides. The HPETE peroxidase accepted 5 of 11 thiols tested as reducing agents. However, glutathione is greater than 15 times more effective than any other thiol tested. Other reducing agents, ascorbate, NADH, NADPH, phenol, p-cresol, and homovanillic acid, were not accepted by HPETE peroxidase. This enzyme is not inhibited by 10 mM KCN, 2 mM aspirin, 2 mM salicylic acid, or 0.5 mM indomethacin. When 5-[14C]HPETE is generated from [14C]arachidonic acid in the presence of unlabeled 5-HPETE and the HPETE peroxidase, the 5-[14C]HETE produced is of much lower specific activity than the [14C]arachidonic acid. This indicates that the 5-[14C]HPETE leaves the active site of 5-lipoxygenase and mixes with the unlabeled 5-HPETE in solution prior to reduction and is a kinetic demonstration that 5-lipoxygenase has no peroxidase activity. Specificity for peroxides, reducing agents, and inhibitors differentiates HPETE peroxidase from glutathione peroxidase, phospholipid-hydroperoxide glutathione peroxidase, a 12-HPETE peroxidase, and heme peroxidases. The HPETE peroxidase could be a glutathione S-transferase selective for fatty acid hydroperoxides.  相似文献   

19.
One of the major hypotheses in the pathogenesis of vitiligo is the oxidative stress hypothesis. Pollution plays a major role in the production of free radicals. Gujarat, a highly industrialized state in India has a high prevalence of vitiligo patients. No previous studies were done on the age-dependent antioxidant status of vitiligo patients in Baroda city, Gujarat. Blood samples were collected from vitiligo patients of different age groups (5-15, 16-25, 26-35, 36-45 yr) and from age matched healthy volunteers. Antioxidant enzymes in blood such as catalase, superoxide dismutase, glutathione peroxidase and non-enzymatic antioxidants such as reduced glutathione and plasma vitamin E were estimated. Lipid peroxidation levels in erythrocytes and the reducing equivalent system, i.e. glucose-6-phosphate dehydrogenase were also measured. Significant increase in superoxide dismutase activity and lipid peroxidation levels in erythrocytes was observed in all age groups of vitiligo patients as compared with age-matched healthy controls, wherein an increase of 55% (P < 0.02) was observed in superoxide dismutase activity and lipid peroxidation levels in 36-45 yr age group. Whole blood glutathione levels, erythrocyte glutathione peroxidase and glucose-6-phosphate dehydrogenase activity were decreased significantly, whereas erythrocyte catalase activity and plasma vitamin E levels were not different in vitiligo patients as compared with age-matched healthy controls. No specific age group showed a significant difference. This is the first report on the age-dependent antioxidant status of vitiligo patients in Baroda. The disease affects individuals of any age group as shown in this study and systemic oxidative stress might precipitate the pathogenesis of vitiligo in susceptible patients.  相似文献   

20.
The 15,000xg supernatant of sonicated rat PMN contains 5-lipoxygenase that converts arachidonic acid to 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene A4 and an HPETE peroxidase that catalyzes reduction of the 5-HPETE. The specificity of this HPETE peroxidase for peroxides, reducing agents, and inhibitors has been characterized to distinguish this enzyme from other peroxidase activities. In addition to 5-HPETE, the HPETE peroxidase will catalyze reduction of 15-hydroperoxyeicosatetraenoic acid, 13-hydroperoxyoctadecadienoic acid, and 15-hydroperoxy-8,11,13-eicosatrienoic acid, but not cumene or t-butylhydroperoxides. The HPETE peroxidase accepted 5 of 11 thiols tested as reducing agents. However, glutathione is >15 times more effective than any other thiol tested. Other reducing agents, ascorbate, NADH, NADPH, phenol, p-cresol, and homovanillic acid, were not accepted by HPETE peroxidase. This enzyme is not inhibited by 10 mM KCN, 2 mM aspirin, 2 mM salicylic acid, or 0.5 mM indomethacin. When 5-[14C]HPETE is generated from [14C]arachidonic acid in the presence of unlabeled 5-HPETE and the HPETE peroxidase, the 5-[14C]HETE produced is of much lower specific activity than the [14C]arachidonic acid. This indicates that the 5-[14C]HPETE leaves the active site of 5-lipoxygenase and mixes with the unlabeled 5-HPETE in solution prior to reduction and is a kinetic demonstration that 5-lipoxygenase has no peroxidase activity. Specificity for peroxides, reducing agents, and inhibitors differentiates HPETE peroxidase from glutathione peroxidase, phospholipid-hydroperoxide glutathione peroxidase, a 12-HPETE peroxidase, and heme peroxidases. The HPETE peroxidase could be a glutathione S-transferase selective for fatty acid hydroperoxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号