首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genes Distal-less, dachshund, extradenticle, and homothorax have been shown in Drosophila to be among the earliest genes that define positional values along the proximal-distal (PD) axis of the developing legs. In order to study PD axis formation in the appendages of the pill millipede Glomeris marginata, we have isolated homologues of these four genes and have studied their expression patterns. In the trunk legs, there are several differences to Drosophila, but the patterns are nevertheless compatible with a conserved role in defining positional values along the PD axis. However, their role in the head appendages is apparently more complex. Distal-less in the mandible and maxilla is expressed in the forming sensory organs and, thus, does not seem to be involved in PD axis patterning. We could not identify in the mouthparts components that are homologous to the distal parts of the trunk legs and antennnae. Interestingly, there is also a transient premorphogenetic expression of Distal-less in the second antennal and second maxillary segment, although no appendages are eventually formed in these segments. The dachshund gene is apparently involved both in PD patterning as well as in sensory organ development in the antenna, maxilla, and mandible. Strong dachshund expression is specifically correlated with the tooth-like part of the mandible, a feature that is shared with other mandibulate arthropods. homothorax is expressed in the proximal and medial parts of the legs, while extradenticle RNA is only seen in the proximal region. This overlap of expression corresponds to the functional overlap between extradenticle and homothorax in Drosophila.  相似文献   

2.
Tissue factor pathway inhibitor (TFPI) is a multivalent Kunitz-type serine proteinase inhibitor that plays a central role in the extrinsic pathway of blood coagulation. In earlier studies we could identify the [P151L]TFPI mutant, and we could also demonstrate that heterozygous carriers of this mutant show a nine-fold increased risk for deep venous thrombosis (DVT). To express greater amounts of both proteins and to enable their characterization, we expressed wild-type TFPI as well as [P151L]TFPI in High Five insect cells with expression rates of up to 215 ng/ml for wild-type TFPI and 214 ng/ml for [P151L]TFPI. The specific inhibitory activities for the recombinant proteins were determined as 11.3 and 11.5 mU/ng, respectively. Both proteins were detected via Western blot analysis and ELISA. The recombinant proteins' inhibitory activities were characterized by a chromogenic assay and by the determination of a modified activated thromboplastin time (aPTT) in which both of them proved to be inhibitorily active. We also examined both recombinant proteins' binding properties to glycoproteins, glycosaminoglycans, lipoproteins and tissue factor. Our results show that we have developed an efficient model system for the recombinant expression of inhibitorily active wild-type TFPI as well as [P151L]TFPI in insect cells, and we were able to characterize both proteins' inhibitory properties by determination of their influence on the aPTT and also their binding properties. Although both recombinant proteins did not show a significant difference in their effect on the aPTT, their binding properties differed significantly between the wild type and mutant protein.  相似文献   

3.
The expression of the Hox gene Distal-less (Dll) directs the development of appendages in a wide variety of animals. In Drosophila, its expression is subjected to a complex developmental control. In the present work we have studied a 17 kb genomic region in the Dll locus which lies downstream of the coding sequence and found control elements of primary functional importance for the expression of Dll in the leg and in other tissues. Of particular interest is a control element, which we have called LP, which drives expression of Dll in the leg primordium from early embryonic development, and whose deletion causes severe truncation and malformation of the adult leg. This is the first Dll enhancer for which, in addition to the ability to drive expression of a reporter, a role can be demonstrated in the expression of the endogenous Dll gene and in the development of the leg. In addition, our results suggest that some enhancers, contrary to the widely accepted notion, may require a specific 5′ or 3′ position with respect to the transcribed region.  相似文献   

4.
5.
Much of our understanding of arthropod limb development comes from studies on the leg imaginal disc of Drosophila melanogaster. The fly limb is a relatively simple unbranched (uniramous) structure extending out from the body wall. The molecular basis for this outgrowth involves the overlap of two signaling molecules, Decapentaplegic (Dpp) and Wingless (Wg), to create a single domain of distal outgrowth, clearly depicted by the expression of the Distal-less gene (Dll). The expression of wg and dpp during the development of other arthropod thoracic limbs indicates that these pathways might be conserved across arthropods for uniramous limb development. The appendages of crustaceans and the gnathal appendages of insects, however, exhibit a diverse array of morphologies, ranging from those with no distal elements, such as the mandible, to appendages with multiple distal elements. Examples of the latter group include branched appendages or those that possess multiple lobes; such complex morphologies are seen for many crustacean limbs as well as the maxillary and labial appendages of many insects. It is unclear how, if at all, the known patterning genes for making a uniramous limb might be deployed to generate these diverse appendage forms. Experiments in Drosophila have shown that by forcing ectopic overlaps of Wg and Dpp signaling it is possible to generate artificially branched legs. To test whether naturally branched appendages form in a similar manner, we detailed the expression patterns of wg, dpp, and Dll in the development of the branched gnathal appendages of the grasshopper, Schistocerca americana, and the flour beetle, Tribolium castaneum. We find that the branches of the gnathal appendages are not specified through the redeployment of the Wg-Dpp system for distal outgrowth, but our comparative studies do suggest a role for Dpp in forming furrows between tissues.  相似文献   

6.
The similarity in the genetic regulation of arthropod and vertebrate appendage formation has been interpreted as the product of a plesiomorphic gene network that was primitively involved in bilaterian appendage development and co-opted to build appendages (in modern phyla) that are not historically related as structures. Data from lophotrochozoans are needed to clarify the pervasiveness of plesiomorphic appendage-forming mechanisms. We assayed the expression of three arthropod and vertebrate limb gene orthologs, Distal-less (Dll), dachshund (dac), and optomotor blind (omb), in direct-developing juveniles of the polychaete Neanthes arenaceodentata. Parapodial Dll expression marks pre-morphogenetic notopodia and neuropodia, becoming restricted to the bases of notopodial cirri and to ventral portions of neuropodia. In outgrowing cephalic appendages, Dll activity is primarily restricted to proximal domains. Dll expression is also prominent in the brain. dac expression occurs in the brain, nerve cord ganglia, a pair of pharyngeal ganglia, presumed interneurons linking a pair of segmental nerves, and in newly differentiating mesoderm. Domains of omb expression include the brain, nerve cord ganglia, one pair of anterior cirri, presumed precursors of dorsal musculature, and the same pharyngeal ganglia and presumed interneurons that express dac. Contrary to their roles in outgrowing arthropod and vertebrate appendages, Dll, dac, and omb lack comparable expression in Neanthes appendages, implying independent evolution of annelid appendage development. We infer that parapodia and arthropodia are not structurally or mechanistically homologous (but their primordia might be), that Dll's ancestral bilaterian function was in sensory and central nervous system differentiation, and that locomotory appendages possibly evolved from sensory outgrowths.  相似文献   

7.
Few-polyhedra (FP) mutants of nucleopolyhedroviruses (NPVs) are a well-known phenomenon during serial passage of virus in cell culture. Under these circumstances such mutants produce low yields of occlusion bodies (OBs) and poorly occlude virions, but they are selected for through advantageous rates of budded virus replication. Spontaneous insertion of transposable elements originating from host cell DNA into the viral fp25 gene has been shown to be a common cause of the phenotype. A model of NPV population genetics predicts that mutants with these characteristics might persist within stable polymorphisms in viral populations during serial passage of virus in vivo. However, this hypothesis was previously untested, and FP mutants have not been recovered from field isolates of NPVs. We isolated and characterized an FP mutant that arose during routine passage of Autographa californica multinucleocapsid NPV (AcMNPV) in cell culture and identified a transposable element within the fp25 gene. We tracked the fates of coinfecting wild-type and FP mutant AcMNPV strains through serial passage in fifth-instar Trichoplusia ni larvae. The levels of both strains remained stable during successive rounds of infection. We applied the data obtained to a model of NPV population genetics in order to derive the frequency distribution of the multiplicity of cell infection in infected insects and estimated that 4.3 baculovirus genomes per OB-producing cell would account for this equilibrium.  相似文献   

8.
Insects display a whole spectrum of morphological diversity, which is especially noticeable in the organization of their appendages. A recent study in a hemipteran, Oncopeltus fasciatus (milkweed bug), showed that nubbin (nub) affects antenna morphogenesis, labial patterning, the length of the femoral segment in legs, and the formation of a limbless abdomen. To further determine the role of this gene in the evolution of insect morphology, we analyzed its functions in two additional hemimetabolous species, Acheta domesticus (house cricket) and Periplaneta americana (cockroach), and re-examined its role in Drosophila melanogaster (fruit fly). While both Acheta and Periplaneta nub-RNAi first nymphs develop crooked antennae, no visible changes are observed in the morphologies of their mouthparts and abdomen. Instead, the main effect is seen in legs. The joint between the tibia and first tarsomere (Ta-1) is lost in Acheta, which in turn, causes a fusion of these two segments and creates a chimeric nub-RNAi tibia–tarsus that retains a tibial identity in its proximal half and acquires a Ta-1 identity in its distal half. Similarly, our re-analysis of nub function in Drosophila reveals that legs lack all true joints and the fly tibia also exhibits a fused tibia and tarsus. Finally, we observe a similar phenotype in Periplaneta except that it encompasses different joints (coxa–trochanter and femur–tibia), and in this species we also show that nub expression in the legs is regulated by Notch signaling, as had previously been reported in flies and spiders. Overall, we propose that nub acts downstream of Notch on the distal part of insect leg segments to promote their development and growth, which in turn is required for joint formation. Our data represent the first functional evidence defining a role for nub in leg segmentation and highlight the varying degrees of its involvement in this process across insects.  相似文献   

9.
The appendages of the adult fruit fly and other insects and Arthropods develop from secondary embryonic fields that form after the primary anterior/posterior and dorsal/ventral axes of the embryo have been determined. In Drosophila, the position and fate of the different fields formed within each segment are determined by genes acting along both embryonic axes, within individual segments, and within specific fields. Since the major architectural differences between most Arthropod classes and orders involve variations in the number, type and morphology of body appendages, the elucidation of the embryology and molecular genetics of the origin and patterning of insect limb fields may help to facilitate an understanding of both the mechanism of appendage formation and some of the major steps in the morphological evolution of the Arthropods. In this review, we will discuss recent studies that have advanced our understanding of both the origin and patterning of Drosophila leg and wing secondary fields. These results provide fresh insights into potentially general mechanisms of how body parts develop and evolve.  相似文献   

10.
We describe the expression pattern of Gryllus homothorax (Gbhth) and dachshund (Gbdac), a cricket homologue of Drosophila homothorax and dachshund, together with localization of Distal-less or Extradenticle protein during leg development. We correlated their expression patterns with the morphological segmentation of the leg bud. The boundary of Gbhth/GbDll subdivision is correlated with the segment boundary of the future trochanter/femur at early stages. Gbdac expression subdivides the leg bud into the presumptive femur and more distal region. During the leg proximodistal formation, although the early expression patterns of GbDll, Gbdac, and Gbhth significantly differ from those of Drosophila imaginal disc, their expression patterns in the fully segmented Gryllus leg were similar to those in the Drosophila late third instar disc.  相似文献   

11.
To facilitate the purification of wild type p53 protein, we established a recombinant p53 vaccinia viral expression system. Using this efficient eukaryotic expression vector, we found that the expressed p53 proteins retained their specific structural characteristics. A comparison between wild type and mutant p53 proteins showed the conservation of the typical subcellular localization and the expression of specific antigenic determinants. Furthermore, wild type p53 exhibited a typical binding with large T antigen, whereas no binding was detected with mutant p53. Both wild type and mutant p53 proteins were highly stable and constituted 5-7% of total protein expressed in the infected cells. These expression recombinant viruses offer a simple, valuable system for the purification of wild type and mutant p53 proteins that are expressed abundantly in eukaryotic cells.  相似文献   

12.
DNA methylation has been studied in many eukaryotic organisms, in particular vertebrates, and was implicated in developmental and phenotypic variations. Little is known about the role of DNA methylation in invertebrates, although insects are considered as excellent models for studying the evolution of DNA methylation. In the red flour beetle, Tribolium castaneum (Tenebrionidae, Coleoptera), no evidence of DNA methylation has been found till now. In this paper, a cytosine methylation in Tribolium castaneum embryos was detected by methylation sensitive restriction endonucleases and immuno-dot blot assay. DNA methylation in embryos is followed by a global demethylation in larvae, pupae and adults. DNA demethylation seems to proceed actively through 5-hydroxymethylcytosine, most probably by the action of TET enzyme. Bisulfite sequencing of a highly abundant satellite DNA located in pericentromeric heterochromatin revealed similar profile of cytosine methylation in adults and embryos. Cytosine methylation was not only restricted to CpG sites but was found at CpA, CpT and CpC sites. In addition, complete cytosine demethylation of heterochromatic satellite DNA was induced by heat stress. The results reveal existence of DNA methylation cycling in T. castaneum ranging from strong overall cytosine methylation in embryos to a weak DNA methylation in other developmental stages. Nevertheless, DNA methylation is preserved within heterochromatin during development, indicating its role in heterochromatin formation and maintenance. It is, however, strongly affected by heat stress, suggesting a role for DNA methylation in heterochromatin structure modulation during heat stress response.  相似文献   

13.
Genetic screens for synaptogenesis mutants have been performed in many organisms, but few if any have simultaneously screened for defects in pre- and postsynaptic specializations. Here, we report the results of a small-scale genetic screen, the first in vertebrates, for defects in synaptogenesis. Using zebrafish as a model system, we identified seven mutants that affect different aspects of neuromuscular synapse formation. Many of these mutant phenotypes have not been previously reported in zebrafish and are distinct from those described in other organisms. Characterization of mutant and wild-type zebrafish, from the time that motor axons first arrive at target muscles through adulthood, has provided the new information about the cellular events that occur during neuromuscular synaptogenesis. These include insights into the formation and dispersal of prepatterned AChR clusters, the relationship between motor axon elongation and synapse size, and the development of precise appositions between presynaptic clusters of synaptic vesicles in nerve terminals and postsynaptic receptor clusters. In addition, we show that the mechanisms underlying synapse formation within the myotomal muscle itself are largely independent of those that underlie synapse formation at myotendinous junctions and that the outgrowth of secondary motor axons requires at least one cue not necessary for the outgrowth of primary motor axons, while other cues are required for both. One-third of the mutants identified in this screen did not have impaired motility, suggesting that many genes involved in neuromuscular synaptogenesis were missed in large scale motility-based screens. Identification of the underlying genetic defects in these mutants will extend our understanding of the cellular and molecular mechanisms that underlie the formation and function of neuromuscular and other synapses.  相似文献   

14.
An effective EBV-based expression system for eucaryotic cells has been developed and used for the study of the mitochondrial enzyme medium-chain acyl-CoA dehydrogenase (MCAD). 1325 bp of PCR-generated cDNA, containing the entire coding region, was placed between the SV40 early promotor and polyadenylation signals in the EBV-based vector. Both wild-type MCAD cDNA and cDNA containing the prevalent disease-causing mutation A to G at position 985 of the MCAD cDNA were tested. In transfected COS-7 cells, the steady state amount of mutant MCAD protein was consistently lower than the amount of wild-type human enzyme. The enzyme activity in extracts from cells harbouring the wild-type MCAD cDNA was dramatically higher than in the controls (harbouring the vector without the MCAD gene) while only a slightly higher activity was measured with the mutant MCAD. The mutant MCAD present behaves like wild-type MCAD with respect to solubility, subcellular location, mature protein size and tetrameric structure. In immunoblot comparisons, the MCAD protein was present in normal fibroblasts, but essentially undetectable in patient fibroblasts homozygous for the prevalent mutation. We suggest that the MCAD protein carrying this mutation has an impaired ability to form correct tetramers, leading to instability and subsequent degradation of the enzyme. This finding is discussed in relation to the results from expression of human MCAD in Escherichia coli, where preliminary results show that production of mutant MCAD leads to the formation of aggregates.  相似文献   

15.
16.
Photoaccumulation and random motility of wild-type and mutant gametes and dikaryons ofChlamydomonas reinhardtii were evaluated with quantitative assays and compared with those of vegetative cells. Gametes exhibited behavior similar to that of vegetative cells. Dikaryons constructed from (+) and (−) wild-type gametes exhibited strong photoaccumulation in the presence of a stimulus and normal random swimming in red light, which shows that the activity of flagella and other components from two cells can be integrated and coordinated to permit appropriate behavior. Dikaryons from crosses of the wild type with mutants exhibited intermediate photoaccumulation. suggesting that neither phenotype is dominant. In contrast, crosses between an abnormally swimming mutant and normally motile strains showed that wild-type swimming was dominant. Partial complementation of mutant photoresponse phenotypes occurred in some crosses, but recovery of fully normal behavior was not observed.  相似文献   

17.
Gingival fibroblast cell lines were derived from Sorsby's fundus dystrophy (SFD) patients carrying the S181C TIMP3 and the E139X TIMP3 mutations. These cell lines were grown in culture to study expression of the wild-type and mutant tissue inhibitor of metalloproteinase 3 (TIMP3) alleles from a normal diploid cell type. Firstly, patient cells were found to co-express the wild-type and mutant TIMP3 alleles, S181C TIMP3 or E139X TIMP3, at the mRNA level using restriction fragment length polymorphism (RFLP) analysis. A SpeI RFLP for E139X TIMP3 is described. Low levels of endogenous TIMP3 protein expression were elevated using the natural polysaccharide calcium pentosan polysulfate (CaPPs) in combination with the cytokine IL-1alpha. Immunoblotting detected protein expression from both wild-type and mutant alleles, S181C TIMP3 or E139X TIMP3. S181C TIMP3 from these cells was found to dimerise and retain MMP2 inhibitory activity. To facilitate studies of the E139X TIMP3 protein, the allele was expressed using HighFive insect cells. In this cell type, the E139X TIMP3 was synthesised as a mixture of monomer and dimer. Both monomeric and dimeric E139X TIMP3 protein retained MMP2 inhibitory activity in gelatin zymography. Expression of mutant E139X or S181C TIMP3 protein from a normal diploid patient-derived fibroblast cell had no effect on either MMP2 or MMP9 expression or activation whilst transcribed from their normal promoter context.  相似文献   

18.
M J Gething  K McCammon  J Sambrook 《Cell》1986,46(6):939-950
The hemagglutinin of influenza virus is synthesized as a monomeric subunit that is cotranslationally translocated across the membrane of the rough endoplasmic reticulum. We show that folding and assembly of hemagglutinin monomers into trimeric structures takes approximately 7-10 min and is completed before the protein leaves the endoplasmic reticulum. Mutants of hemagglutinin that fail to be transported from the endoplasmic reticulum are blocked at different stages of the folding pathway. Unfolded molecules of hemagglutinin are associated with a cellular protein of 77 kd that has been shown previously to bind to IgG heavy chain in the endoplasmic reticulum of certain myelomas. We discuss why assembly of native structures is required for transport of proteins through the exocytotic pathway.  相似文献   

19.
Melanogenesis during oogenesis in the wild-type and albino (a/a) axolotl was compared. Tyrosine-dopa oxidase activity, melanin accumulation, and melanosome development were correlated and the effect of the a gene on these biochemical and morphological events was examined. Studies of wild-type oocytes at the electron and light microscope level revealed that premelanosomes first appear in stage 2 oocytes. Mature melanosomes are present in stage 3 oocytes and steadily increase in number, reaching a maximum level in stage 6 oocytes. Melanosomes were detected in the albino. No obvious structural abnormalities were observed in these organelles, although they fail to accumulate melanin. Tyrosine-dopa oxidase (TDO) activity assayed radiometrically is at a very low level in stages 1 and 2 oocytes, reaches a maximum level in stage 3 oocytes, and declines to zero activity in stage 6 oocytes. In contrast to the finding with albino skin homogenates (Harsa-King, 1978), TDO activity was detected in albino oocytes. This activity never declined from its maximal stage 3 level. The addition of an inhibitor of proteolytic enzymes, phenylmethyl sulfonyl fluoride (PMSF), to the oocyte homogenization buffer completely blocks TDO activity in albino samples and reduces it somewhat in wild-type samples. It is suggested that TDO activity eliminated by PMSF represents TDO existing in an inactive form in vivo which is activated by proteolytic enzymes released upon homogenization. These results suggest that TDO is found only in an inactive state in albinos, a conclusion in agreement with the earlier work on albino skin melanocytes (Harsa-King, 1978). There is an inverse relationship between TDO activity and melanization in the wild type. The greater the amount of melanin deposited within the premelanosomes, the less enzyme activity is present. It is suggested, as it has been by others, that as melanin is synthesized within the confines of the oocyte melanosome, the active sites of the enzyme are covered up, resulting in its inactivation. The findings with the albino mutant support this hypothesis. No melanin deposition occurs in the albino, and TDO activity in PMSF-untreated samples does not decline from its maximal stage 3 level.  相似文献   

20.
Rat peroxisomal acyl-CoA oxidase I is a key enzyme for the beta-oxidation of fatty acids, and the deficiency of this enzyme in patients has been previously reported. We cloned the gene of rat peroxisomal acyl-CoA oxidase I into a bacterial expression vector pLM1 with six continuous histidine codons attached to the 5' end of the gene. The cloned gene was overexpressed in Escherichia coli and the soluble protein was purified with a nickel HiTrap chelating metal-affinity column in 90% yield to apparent homogeneity. The specific activity of the purified His-tagged rat peroxisomal acyl-CoA oxidase I was 1.5 micromol/min/mg. It has been proposed that Glu421 is a catalytic residue responsible for deprotonation of alpha-proton of acyl-CoA substrate. We constructed four mutant expression plasmids of the enzyme, pACO(E421D), pACO(E421A), pACO(E421Q), and pACO(E421G) using site-directed mutagenesis. Mutant proteins were overexpressed in E. coli and purified with a nickel metal-affinity column. Kinetic studies of wild-type and mutant proteins were carried out, and the result confirmed that Glu421 is a catalytic residue of rat peroxisomal acyl-CoA oxidase I. Our overexpression in E. coli and one-step purification of the highly active N-terminal His-tagged rat peroxisomal acyl-CoA oxidase I greatly facilitated our further investigation of this enzyme, and our result from site-directed mutagenesis increased our understanding of the mechanism for the reaction catalyzed by peroxisomal acyl-CoA oxidase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号