首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Epigenetic reprogramming in early germ cells is critical toward the establishment of totipotency, but investigations of the germline events are intractable. An objective cell culture-based system could provide mechanistic insight on how the key determinants of primordial germ cells (PGCs), including Prdm14, induce reprogramming in germ cells to an epigenetic ground state. Here we show a Prdm14-Klf2 synergistic effect that can accelerate and enhance reversion of mouse epiblast stem cells (epiSCs) to a naive pluripotent state, including X reactivation and DNA demethylation. Notably, Prdm14 alone has little effect on epiSC reversion, but it enhances the competence for reprogramming and potentially PGC specification. Reprogramming of epiSCs by the combinatorial effect of Prdm14-Klf2 involves key epigenetic changes, which might have an analogous role in PGCs. Our study provides a paradigm toward a systematic analysis of how other key genes contribute to complex and dynamic events of reprogramming in the germline.  相似文献   

3.
Epigenetic re-programming is an important event in the development of primordial germ cells (PGC) into functional gametes, characterized by genome-wide erasure of DNA methylation and re-establishment of epigenetic marks, a process essential for restoration of the potential for totipotency. In this study changes in the methylation status of centromeric repeats and two IGF2-H19 differentially methylated domain (DMD) sequences were examined in porcine PGC between Days 24 and 31 of pregnancy. The methylation levels of centromeric repeats and IGF2-H19 DMD sequences decreased rapidly from Days 24 to 28 in both male and female PGC. At Days 30 and 31 of pregnancy centromeric repeats and IGF2-H19 DMD sequences acquired new methylation in male PGC, while in female PGC these sequences were completely demethylated by Day 30 and remained hypomethylated at Day 31. To characterize methylation changes that PGC undergo in culture, the methylation status of embryonic germ cells (EGCs) derived from PGC at Day 26 of pregnancy was examined. Centromeric repeats and IGF2-H19 DMD sequences were similarly methylated in both male and female EGC and hypermethylated in female EGC compared with female PGC at the same embryonic age. Our results show that, similar to murine PGC, porcine PGC undergo genome-wide DNA demethylation shortly after arrival in the genital ridges. When placed in culture porcine PGC terminate their demethylation program and may acquire new DNA methylation marks. To our knowledge, this is the first report regarding epigenetic re-programming of genital ridge PGC in the pig.  相似文献   

4.
A fascinating property of germ cells is their ability to maintain totipotency throughout development. At fertilization, this totipotency is unleashed and the egg generates all the cell types needed to make a brand new organism. Occasionally, germ cells differentiate precociously in the embryo or in the gonads and form teratomas, tumors containing many differentiated somatic cell types. Until recently, the genetic basis for teratoma formation was not known. The unexpected discovery of a teratoma in a C. elegans double mutant points to translational control as a key mechanism to maintain totipotency in developing germ cells.  相似文献   

5.
6.
7.
The germ cell lineage segregates from the somatic cell lineages in early embryos. Germ cell determination in mice is not regulated by maternally inherited germplasm, but is initiated within the embryo during gastrulation. However, the mechanisms of germ cell specification in mice remain unknown. We located precursors to primordial germ cells (PGCs) within early embryos, and show here that cell-cell interaction among these precursors is required for germ cell specification. We found that the expression of a calcium-dependent cell adhesion molecule, E-cadherin, is restricted to the proximal region of extra-embryonic mesoderm that contains PGC precursors, and that blocking the functions of E-cadherin with an antibody inhibits PGC formation in vitro. These results showed that E-cadherin-mediated cell-cell interaction among cells containing PGC precursors is essential to directing such cells to the germ cell fate.  相似文献   

8.
Germ cells possess the unique ability to acquire totipotency during development in vivo as well as give rise to pluripotent stem cells under the appropriate conditions in vitro. Recent studies in which somatic cells were experimentally converted into pluripotent stem cells revealed that genes expressed in primordial germ cells (PGCs), such as Oct3/4, Sox2, and Lin28, are involved in this reprogramming. These findings suggest that PGCs may be useful for identifying factors that successfully and efficiently reprogram somatic cells into toti- and/or pluripotent stem cells. Here, we show that Blimp-1, Prdm14, and Prmt5, each of which is crucial for PGC development, have the potential to reprogram somatic cells into pluripotent stem cells. Among them, Prmt5 exhibited remarkable reprogramming of mouse embryonic fibroblasts into which Prmt5, Klf4, and Oct3/4 were introduced. The resulting cells exhibited pluripotent gene expression, teratoma formation, and germline transmission in chimeric mice, all of which were indistinguishable from those induced with embryonic stem cells. These data indicate that some of the factors that play essential roles in germ cell development are also active in somatic cell reprogramming.  相似文献   

9.
10.
Estrogen related receptor beta (ERR-beta) is an orphan nuclear receptor specifically expressed in a subset of extra-embryonic ectoderm of post-implantation embryos. ERR-beta is essential for placental development since the ERR-beta null mutants die at 10.5dpc due to the placenta abnormality. Here, we show that the ERR-beta is specifically expressed in primordial germ cells (PGC), obviously another important cell type for reproduction. Expression of the ERR-beta mRNA in embryonic germ cells started at E11.5 as soon as PGC reached genital ridges, and persisted until E15-E16 in both sexes. Immunostaining with anti-ERR-beta antibody revealed that the ERR-beta protein is exclusively expressed in germ cells in both male and female gonads from E11.5 to E16. 5. To study function of the ERR-beta in PGC, we complemented placental defects of the ERR-beta null mutants with wild-type tetraploid embryos, and analyzed germ cell development in the rescued embryos. It was found that development of gonad and PGC was not apparently affected, but number of germ cells was significantly reduced in male and female gonads, suggesting that the ERR-beta appears to be involved in proliferation of gonadal germ cells. The rescued embryos could develop to term and grow up to adulthood. The rescued ERR-beta null male were found to be fertile, but both male and female null mutants exhibited behavioural abnormalities, implying that the ERR-beta plays important roles in wider biological processes than previously thought.  相似文献   

11.
12.
In recent years, a large amount of data on gene expression at different stages of primordial germ cell (PGC) development has been acquired. The process of germ line segregation in various species is realized differently, i.e., as preformation or epigenesis. The review surveys the mechanisms of the initial lineage specification of mammalian and human germ cells. The data on PGC identification from their initial detection in the epiblast to gonadal anlagen where they migrate has been analyzed. Information on the PGC markers of the different development, the mechanisms of PGC migration towards genital ridges and the chemokines that direct migration are discussed.  相似文献   

13.
In this work, we describe a single piggyBac transposon system containing both a tet-activator and a doxycycline-inducible expression cassette. We demonstrate that a gene product can be conditionally expressed from the integrated transposon and a second gene can be simultaneously targeted by a short hairpin RNA contained within the transposon, both in vivo and in mammalian and avian cell lines. We applied this system to stably modify chicken primordial germ cell (PGC) lines in vitro and induce a reporter gene at specific developmental stages after injection of the transposon-modified germ cells into chicken embryos. We used this vector to express a constitutively-active AKT molecule during PGC migration to the forming gonad. We found that PGC migration was retarded and cells could not colonise the forming gonad. Correct levels of AKT activation are thus essential for germ cell migration during early embryonic development.  相似文献   

14.
15.
Our understanding of the molecular mechanisms of primordial germ cell (PGC) proliferation in fish is rudimentary, but it is thought to be controlled by the surrounding somatic cells. We assumed that growth factors that are specifically involved in PGC proliferation are expressed predominantly in the surrounding genital ridge somatic cells. In order to isolate these growth factors, we compiled a complementary DNA (cDNA) subtractive library using cDNA from the genital ridges of 40-dpf rainbow trout embryos as the tester and cDNA from embryos without genital ridges as the driver. This approach identified a novel cytokine, designated gonadal soma-derived growth factor (GSDF), which is a member of the transforming growth factor (TGF)-beta superfamily. GSDF was expressed in the genital ridge somatic cells surrounding the PGCs during embryogenesis, and in both the granulosa and Sertoli cells at later stages. Inhibition of GSDF translation by antisense oligonucleotides suppressed PGC proliferation. Moreover, isolated testicular cells that were cultured with recombinant GSDF demonstrated dose-dependent proliferation of type-A spermatogonia; this effect was completely blocked by antiserum against GSDF. These results denote that GSDF, a novel member of the TGF-beta superfamily, plays an important role for proliferation of PGC and spermatogonia.  相似文献   

16.
Primordial germ cell (PGC) allocation, characterization, lineage restriction, and differentiation have been extensively studied in the mouse. Murine PGC can be easily identified using markers as alkaline phosphatase content or the expression of pluripotent markers such as Pou5f1, Nanog, Sox2, Kit, SSEA1, and SSEA4. These tools allowed us to clarify certain aspects of the complex interactions of somatic and germinal cells in the establishment of the germ cell lineage, its segregation from the neighbouring somatic tissue, and the guidance mechanisms during migration that direct most of the germ cells into the genital ridges. Few data are available from other domestic animals and here we reported our preliminary studies on the isolation, characterization, and in vitro culture of sheep PGCs. Sheep PGCs can be identified with the markers previously used in mouse, but, in some cases, these markers are not coherently expressed in the same cell depending on the grade of differentiation and on technical problems related to commercial antibodies used. Pluripotency of PGCs in culture (EGCs) from domestic animals also needs further evaluation even though the derivation of embryonic pluripotent cell lines from large mammals may be an advantage as they are more physiologically similar to the human and perhaps more relevant for clinical translation studies. Comprehensive epigenetic reprogramming of the genome in early germ cells, and derived EGCs including extensive erasure of epigenetic modifications, may be relevant for gaining insight into events that lead to reprogramming and establishment of totipotency. EGCs can differentiate in vitro in a various range of tissues, form embryonic bodies, but in many cases failed to generate tumours when transplanted into immunodeficient mice and are not able to generate germline chimeric animals after their transfer. Such incomplete information clearly indicates the urge to improve the studies on derivation of stem cells in farm animals and shows the need for a multidisciplinary investigation in order to create farm animal models to set up suitable ethical and technical systems for cell regenerative therapies in humans.  相似文献   

17.
18.
19.
In most animals, primordial germ cell (PGC) specification and development depend on maternally provided cytoplasmic determinants that constitute the so-called germ plasm. Little is known about the role of germ plasm in vertebrate germ cell development, and its molecular mode of action remains elusive. While PGC specification in mammals occurs via different mechanisms, several germ plasm components required for early PGC development in lower organisms are expressed in mammalian germ cells after their migration to the gonad and are involved in gametogenesis. Here we show that the RNA of dead end, encoding a novel putative RNA binding protein, is a component of the germ plasm in zebrafish and is specifically expressed in PGCs throughout embryogenesis; Dead End protein is localized to perinuclear germ granules within PGCs. Knockdown of dead end blocks confinement of PGCs to the deep blastoderm shortly after their specification and results in failure of PGCs to exhibit motile behavior and to actively migrate thereafter. PGCs subsequently die, while somatic development is not effected. We have identified dead end orthologs in other vertebrates including Xenopus, mouse, and chick, where they are expressed in germ plasm and germ-line cells, suggesting a role in germ-line development in these organisms as well.  相似文献   

20.
Primordial germ cells (PGCs) are germ cell precursors that are committed to sperm or oocytes. Dramatic proliferation during PGC development determines the number of founder spermatogonia and oocytes. Although specified to a germ lineage, PGCs produce pluripotent embryonic germ (EG) cells in vitro and testicular teratomas in vivo. Wnt/beta-catenin signaling regulates pluripotency and differentiation in various stem cell systems, and dysregulation of this signaling causes various human cancers. Here, we examined the role of Wnt/beta-catenin signaling in PGC development. In normal PGC development, Wnt/beta-catenin signaling is suppressed by the GSK3beta-mediated active degradation of beta-catenin and the low expression of canonical Wnt molecules. The effects of aberrant activation of Wnt/beta-catenin signaling in PGCs were analyzed using mice carrying a deletion of the exon that encodes the GSK3beta phosphorylation sites in the beta-catenin locus. Despite the potential activity of Wnt/beta-catenin signaling in stem cell maintenance and carcinogenesis in various cell lineages, teratomas were not induced in the mice expressing the nuclear-localized beta-catenin in PGCs. Instead, the mutant mice showed germ cell deficiency caused by the delayed cell cycle progression of the proliferative phase PGCs. Our results show that the suppression of Wnt/beta-catenin signaling is a prerequisite for the normal development of PGCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号